Publications

Export 75 results:
Filters: Author is Abdelfattah, Ahmad  [Clear All Filters]
2023
Abdelfattah, A., S. Tomov, P. Luszczek, H. Anzt, and J. Dongarra, GPU-based LU Factorization and Solve on Batches of Matrices with Band Structure,” SC-W 2023: Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, Denver, CO, ACM, November 2023. DOI: 10.1145/3624062.3624247
Sid-Lakhdar, W., S. Cayrols, D. Bielich, A. Abdelfattah, P. Luszczek, M. Gates, S. Tomov, H. Johansen, D. Williams-Young, T. Davis, et al., PAQR: Pivoting Avoiding QR factorization,” 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS), St. Petersburg, FL, USA, IEEE, 2023. DOI: 10.1109/IPDPS54959.2023.00040
2022
Abdelfattah, A., P. Ghysels, W. Boukaram, S. Tomov, X. Sherry Li, and J. Dongarra, Addressing Irregular Patterns of Matrix Computations on GPUs and Their Impact on Applications Powered by Sparse Direct Solvers,” 2022 International Conference for High Performance Computing, Networking, Storage and Analysis (SC22), Dallas, TX, IEEE Computer Society, pp. 354-367, November 2022.  (1.57 MB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Batch QR Factorization on GPUs: Design, Optimization, and Tuning,” Lecture Notes in Computer Science, vol. 13350, Cham, Springer International Publishing, June 2022. DOI: 10.1007/978-3-031-08751-6_5
Sid-Lakhdar, W. M., S. Cayrols, D. Bielich, A. Abdelfattah, P. Luszczek, M. Gates, S. Tomov, H. Johansen, D. Williams-Young, T. A. Davis, et al., PAQR: Pivoting Avoiding QR factorization,” ICL Technical Report, no. ICL-UT-22-06, June 2022.  (364.85 KB)
2021
Kolev, T., P. Fischer, M. Min, J. Dongarra, J. Brown, V. Dobrev, T. Warburton, S. Tomov, M. S. Shephard, A. Abdelfattah, et al., Efficient exascale discretizations: High-order finite element methods,” The International Journal of High Performance Computing Applications, pp. 10943420211020803, 2021. DOI: 10.1177/10943420211020803
Abdelfattah, A., V. Barra, N. Beams, R. Bleile, J. Brown, J-S. Camier, R. Carson, N. Chalmers, V. Dobrev, Y. Dudouit, et al., GPU algorithms for Efficient Exascale Discretizations,” Parallel Computing, vol. 108, pp. 102841, 2021. DOI: 10.1016/j.parco.2021.102841
Brown, J., A. Abdelfattah, V. Barra, N. Beams, J-S. Camier, V. Dobrev, Y. Dudouit, L. Ghaffari, T. Kolev, D. Medina, et al., libCEED: Fast algebra for high-order element-based discretizations,” Journal of Open Source Software, vol. 6, no. 63, pp. 2945, 2021. DOI: 10.21105/joss.02945
Abdelfattah, A., T. Costa, J. Dongarra, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Kurzak, P. Luszczek, S. Tomov, et al., A Set of Batched Basic Linear Algebra Subprograms and LAPACK Routines,” ACM Transactions on Mathematical Software (TOMS), vol. 47, no. 3, pp. 1–23, 2021. DOI: 10.1145/3431921
Abdelfattah, A., M. Al Farhan, C. Brown, M. Gates, D. Sukkari, A. YarKhan, and J. Dongarra, SLATE Port to AMD and Intel Platforms,” SLATE Working Notes, no. 16, ICL-UT-21-01, April 2021.  (890.75 KB)
Abdelfattah, A., H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, M. Gates, N. J. Higham, X. S. Li, et al., A survey of numerical linear algebra methods utilizing mixed-precision arithmetic,” The International Journal of High Performance Computing Applications, vol. 35, no. 4, pp. 344–369, 2021. DOI: 10.1177/10943420211003313
2020
Kolev, T., P. Fischer, A. Abdelfattah, S. Ananthan, V. Barra, N. Beams, R. Bleile, J. Brown, R. Carson, J-S. Camier, et al., CEED ECP Milestone Report: Improve Performance and Capabilities of CEED-Enabled ECP Applications on Summit/Sierra,” ECP Milestone Reports: Zenodo, May 2020. DOI: 10.5281/zenodo.3860804  (28.12 MB)
Brown, C., A. Abdelfattah, S. Tomov, and J. Dongarra, Design, Optimization, and Benchmarking of Dense Linear Algebra Algorithms on AMD GPUs,” Innovative Computing Laboratory Technical Report, no. ICL-UT-20-12: University of Tennessee, August 2020.  (476.36 KB)
Brown, C., A. Abdelfattah, S. Tomov, and J. Dongarra, Design, Optimization, and Benchmarking of Dense Linear Algebra Algorithms on AMD GPUs,” 2020 IEEE High Performance Extreme Computing Virtual Conference: IEEE, September 2020.  (476.36 KB)
Anzt, H., Y. M. Tsai, A. Abdelfattah, T. Cojean, and J. Dongarra, Evaluating the Performance of NVIDIA’s A100 Ampere GPU for Sparse and Batched Computations,” 2020 IEEE/ACM Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS): IEEE, November 2020.  (1.9 MB)
Beams, N., A. Abdelfattah, S. Tomov, J. Dongarra, T. Kolev, and Y. Dudouit, High-Order Finite Element Method using Standard and Device-Level Batch GEMM on GPUs,” 2020 IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA): IEEE, November 2020.  (1.3 MB)
Brown, C., A. Abdelfattah, S. Tomov, and J. Dongarra, hipMAGMA v1.0 : Zenodo, March 2020. DOI: 10.5281/zenodo.3908549
Brown, C., A. Abdelfattah, S. Tomov, and J. Dongarra, hipMAGMA v2.0 : Zenodo, July 2020. DOI: 10.5281/zenodo.3928667
Abdelfattah, A., S. Tomov, and J. Dongarra, Investigating the Benefit of FP16-Enabled Mixed-Precision Solvers for Symmetric Positive Definite Matrices using GPUs,” International Conference on Computational Science (ICCS 2020), Amsterdam, Netherlands, Springer, Cham, June 2020. DOI: 10.1007/978-3-030-50417-5_18  (702.38 KB)
Farhan, M. Al, A. Abdelfattah, S. Tomov, M. Gates, D. Sukkari, A. Haidar, R. Rosenberg, and J. Dongarra, MAGMA Templates for Scalable Linear Algebra on Emerging Architectures,” The International Journal of High Performance Computing Applications, vol. 34, issue 6, pp. 645-658, November 2020. DOI: 10.1177/1094342020938421
Abdelfattah, A., S. Tomov, and J. Dongarra, Matrix Multiplication on Batches of Small Matrices in Half and Half-Complex Precisions,” Journal of Parallel and Distributed Computing, vol. 145, pp. 188-201, November 2020. DOI: 10.1016/j.jpdc.2020.07.001  (1.3 MB)
Abdelfattah, A., T. Costa, J. Dongarra, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Kurzak, P. Luszczek, S. Tomov, et al., A Set of Batched Basic Linear Algebra Subprograms,” ACM Transactions on Mathematical Software, October 2020.
Abdelfattah, A., H. Anzt, E. Boman, E. Carson, T. Cojean, J. Dongarra, M. Gates, T. Gruetzmacher, N. J. Higham, S. Li, et al., A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic,” SLATE Working Notes, no. 15, ICL-UT-20-08: University of Tennessee, July 2020.  (3.98 MB)
2019
Masliah, I., A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra, Algorithms and Optimization Techniques for High-Performance Matrix-Matrix Multiplications of Very Small Matrices,” Parallel Computing, vol. 81, pp. 1–21, January 2019. DOI: 10.1016/j.parco.2018.10.003  (3.27 MB)
Tomov, S., A. Abdelfattah, V. Barra, N. Beams, J. Brown, J-S. Camier, V. Dobrev, J. Dongarra, Y. Dudouit, P. Fischer, et al., CEED ECP Milestone Report: Performance Tuning of CEED Software and 1st and 2nd Wave Apps : Zenodo, October 2019. DOI: 10.5281/zenodo.3477618  (8.31 MB)
Brown, J., A. Abdelfattah, V. Barra, V. Dobrev, Y. Dudouit, P. Fischer, T. Kolev, D. Medina, M. Min, T. Ratnayaka, et al., CEED ECP Milestone Report: Public release of CEED 2.0 : Zenodo, April 2019. DOI: 10.5281/zenodo.2641316  (4.98 MB)
YarKhan, A., J. Kurzak, A. Abdelfattah, and J. Dongarra, An Empirical View of SLATE Algorithms on Scalable Hybrid System,” Innovative Computing Laboratory Technical Report, no. ICL-UT-19-08: University of Tennessee, Knoxville, September 2019.  (441.16 KB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Fast Batched Matrix Multiplication for Small Sizes using Half Precision Arithmetic on GPUs,” 33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, IEEE, May 2019.  (675.5 KB)
Kurzak, J., Y. Tsai, M. Gates, A. Abdelfattah, and J. Dongarra, Massively Parallel Automated Software Tuning,” 48th International Conference on Parallel Processing (ICPP 2019), Kyoto, Japan, ACM Press, August 2019. DOI: 10.1145/3337821.3337908  (911.88 KB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Optimizing Batch HGEMM on Small Sizes Using Tensor Cores , San Jose, CA, GPU Technology Conference (GTC), March 2019.  (2.47 MB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Progressive Optimization of Batched LU Factorization on GPUs,” IEEE High Performance Extreme Computing Conference (HPEC’19), Waltham, MA, IEEE, September 2019.  (299.38 KB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Towards Half-Precision Computation for Complex Matrices: A Case Study for Mixed Precision Solvers on GPUs,” ScalA19: 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, Denver, CO, IEEE, November 2019.  (523.87 KB) (3.42 MB)
2018
Masliah, I., A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra, Algorithms and Optimization Techniques for High-Performance Matrix-Matrix Multiplications of Very Small Matrices,” Innovative Computing Laboratory Technical Report, no. ICL-UT-18-09: Innovative Computing Laboratory, University of Tennessee, September 2018.  (3.74 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Analysis and Design Techniques towards High-Performance and Energy-Efficient Dense Linear Solvers on GPUs,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 12, pp. 2700–2712, December 2018. DOI: 10.1109/TPDS.2018.2842785  (2.53 MB)
Yamazaki, I., A. Abdelfattah, A. Ida, S. Ohshima, S. Tomov, R. Yokota, and J. Dongarra, Analyzing Performance of BiCGStab with Hierarchical Matrix on GPU Clusters,” IEEE International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, BC, Canada, IEEE, May 2018.  (1.37 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Batched One-Sided Factorizations of Tiny Matrices Using GPUs: Challenges and Countermeasures,” Journal of Computational Science, vol. 26, pp. 226–236, May 2018. DOI: 10.1016/j.jocs.2018.01.005  (3.73 MB)
Haidar, A., A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. Tomov, and J. Dongarra, The Design of Fast and Energy-Efficient Linear Solvers: On the Potential of Half-Precision Arithmetic and Iterative Refinement Techniques,” International Conference on Computational Science (ICCS 2018), vol. 10860, Wuxi, China, Springer, pp. 586–600, June 2018. DOI: 10.1007/978-3-319-93698-7_45  (487.88 KB)
Haidar, A., A. Abdelfattah, M. Zounon, S. Tomov, and J. Dongarra, A Guide for Achieving High Performance with Very Small Matrices on GPUs: A Case Study of Batched LU and Cholesky Factorizations,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 5, pp. 973–984, May 2018. DOI: 10.1109/TPDS.2017.2783929  (832.92 KB)
Haidar, A., A. Abdelfattah, S. Tomov, and J. Dongarra, Harnessing GPU's Tensor Cores Fast FP16 Arithmetic to Speedup Mixed-Precision Iterative Refinement Solvers and Achieve 74 Gflops/Watt on Nvidia V100 , San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.  (2.96 MB)
Abdelfattah, A., M. Gates, J. Kurzak, P. Luszczek, and J. Dongarra, Implementation of the C++ API for Batch BLAS,” SLATE Working Notes, no. 07, ICL-UT-18-04: Innovative Computing Laboratory, University of Tennessee, June 2018.  (1.07 MB)
Abdelfattah, A., J. Dongarra, A. Haidar, S. Tomov, and I. Yamazaki, MATEDOR: MAtrix, TEnsor, and Deep-learning Optimized Routines , Dallas, TX, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), Research Poster, November 2018.  (2.55 MB)
Haidar, A., S. Tomov, A. Abdelfattah, I. Yamazaki, and J. Dongarra, MAtrix, TEnsor, and Deep-learning Optimized Routines (MATEDOR) , Washington, DC, NSF PI Meeting, Poster, April 2018. DOI: 10.6084/m9.figshare.6174143.v3  (2.4 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Optimizing GPU Kernels for Irregular Batch Workloads: A Case Study for Cholesky Factorization,” IEEE High Performance Extreme Computing Conference (HPEC’18), Waltham, MA, IEEE, September 2018.  (729.87 KB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Tensor Contractions using Optimized Batch GEMM Routines , San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.  (1.64 MB)
Haidar, A., S. Tomov, A. Abdelfattah, M. Zounon, and J. Dongarra, Using GPU FP16 Tensor Cores Arithmetic to Accelerate Mixed-Precision Iterative Refinement Solvers and Reduce Energy Consumption,” ISC High Performance (ISC'18), Best Poster, Frankfurt, Germany, June 2018.  (3.01 MB)
Haidar, A., S. Tomov, A. Abdelfattah, M. Zounon, and J. Dongarra, Using GPU FP16 Tensor Cores Arithmetic to Accelerate Mixed-Precision Iterative Refinement Solvers and Reduce Energy Consumption , Frankfurt, Germany, ISC High Performance (ISC18), Best Poster Award, June 2018.  (3.01 MB)
2017
Abdelfattah, A., M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, et al., Accelerating Tensor Contractions in High-Order FEM with MAGMA Batched , Atlanta, GA, SIAM Conference on Computer Science and Engineering (SIAM CSE17), Presentation, March 2017.  (9.29 MB)

Pages