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Machine learning and artificial intelligence (AI) applications often rely on performing many small
matrix operations—in particular general matrix–matrix multiplication (GEMM). These operations are
usually performed in a reduced precision, such as the 16-bit floating-point format (i.e., half precision
or FP16). The GEMM operation is also very important for dense linear algebra algorithms, and half-
precision GEMM operations can be used in mixed-precision linear solvers. Therefore, high-performance
batched GEMM operations in reduced precision are significantly important, not only for deep learning
frameworks, but also for scientific applications that rely on batched linear algebra, such as tensor
contractions and sparse direct solvers.

This paper presents optimized batched GEMM kernels for graphics processing units (GPUs) in FP16
arithmetic. The paper addresses both real and complex half-precision computations on the GPU. The
proposed design takes advantage of the Tensor Core technology that was recently introduced in CUDA-
enabled GPUs. With eight tuning parameters introduced in the design, the developed kernels have a
high degree of flexibility that overcomes the limitations imposed by the hardware and software (in
the form of discrete configurations for the Tensor Core APIs). For real FP16 arithmetic, performance
speedups are observed against cuBLAS for sizes up to 128, and range between 1.5× and 2.5×. For the
complex FP16 GEMM kernel, the speedups are between 1.7× and 7× thanks to a design that uses
the standard interleaved matrix layout, in contrast with the planar layout required by the vendor’s
solution. The paper also discusses special optimizations for extremely small matrices, where even
higher performance gains are achievable.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

High-performance linear algebra libraries enable scientific
pplications to run efficiently on massively parallel architectures.
onsidering dense linear algebra software, high performance is
sually achievable through algorithmic designs that express as
any computational stages as possible in terms of compute-
ound routines in general, and matrix multiplication (GEMM) in
articular. The GEMM kernel is not only embarrassingly parallel;
t also has a relatively high arithmetic intensity [30], which
s defined as the ratio between the amount of floating-point
perations (FLOPs) and the number of bytes transferred to/from
he main memory. These two properties make the GEMM ker-
el extremely important for numerous computational domains.
ccording to the standard interface of Basic Linear Algebra Sub-
rograms (BLAS), a standard GEMM operation updates a matrix
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C , where CM×N = αAM×K × BK×N + βCM×N. Both α and β

are scalars. The total number of FLOPs in a GEMM operation is
equal to (2MNK ). The amount of bytes transferred is equal to
P × [K (M +N)+ 2MN], where P is the number of bytes required
to represent a floating-point number in a specific precision. We
consider real and complex half-precision arithmetic in this paper.
For real FP16 arithmetic (HGEMM), P is equal to 2, while for
the Half-Complex GEMM (i.e., HCGEMM), P is equal to 4. The
name HCGEMM does not follow the standard Basic Linear Algebra
Subprograms (BLAS) notation, which assigns a single letter prefix
to denote the precision. In fact, there is no consensus to date for
naming linear algebra operations in half-complex precision. The
term HCGEMM is used only within this paper, and may not be
used in the final API of the released software.

The GEMM kernel is also important in many scientific domains
other than dense linear algebra, especially where the compu-
tational workload can be broken down into a large number of
small matrix operations. The workload is often called a ‘‘batched
workload’’, and dedicated routines have been optimized for such

https://doi.org/10.1016/j.jpdc.2020.07.001
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Fig. 1. Half precision format according to the IEEE-754 standard.

workloads (e.g., batched GEMMs). It turns out that the batched
GEMM kernel is almost as important as the regular non-batched
GEMM, since it has been featured in many applications, such
as sparse direct solvers [32], and tensor contractions [1]. Some
hardware vendors now provide optimized batched GEMM ker-
nels, such as the Intel Math Kernel Library (MKL) library1 and the
VIDIA cuBLAS library.2 The latter provides an optimized batched
GEMM kernel as well. However, for the complex case, the ven-
or advises the use of ‘‘split-complex’’ computations, which as-
umes that the real and the imaginary parts of the matrix are
eparated in a ‘‘planar layout’’.
The artificial intelligence (AI) and machine learning revolution

as created a huge demand for high-performance half-precision
rithmetic (16-bit floating-point format), since most AI applica-
ions do not necessarily require the accuracy of single or double
recisions [10]. In terms of memory bandwidth and footprint,
alf precision theoretically offers a natural 2× improvement over

single precision, and 4× over double precision. With respect to
floating-point operations, the improvement factors over single
and double precision depends on the architectural properties of
the hardware. In this paper, we target NVIDIA’s Volta GPUs, which
offer native FP16 arithmetic. The theoretical peak performance
for ‘‘general’’ FP16 computation is about 31.25 tera floating-point
operations per second (teraFLOP/s). This is double the peak single
precision performance of 15.6 teraFLOP/s, and four times the
peak double precision performance of 7.8 teraFLOP/s. However,
Volta GPUs offer even more performance for special operations
in FP16 arithmetic. These operations are mostly variations of
matrix multiplication, and are hardware-accelerated using special
units called Tensor Cores (TCs). For such special operations, the
performance of a single GPU can reach up to 125 teraFLOP/s.
Although the Tensor Cores units first appeared in Volta GPUs,
NVIDIA’s first GPUs to ever support half precision were the Pascal
GPUs. Half precision on NVIDIA GPUs implements the ‘‘binary16’’
format which is defined by the IEEE-754 standard [14]. As shown
in Fig. 1, half precision uses one bit for the sign, five bits for
the exponent, and ten bits for the fraction. However, the format
assumes an implicit leading bit that is set to one unless the
exponent is all zeros. This gives the FP16 format a total of eleven
bits for the fraction, which accounts for an accuracy of about three
decimal digits.

This paper investigates the use of the Tensor Cores to provide
a general-purpose batched matrix multiplication in FP16 arith-
metic. The paper extends the previous effort by the authors [4]
by considering half-complex computation on the GPU, which is
not natively supported to the best of our knowledge. While half-
complex precision may be of limited use in the machine learning
domain, it is of significant value in linear algebra, especially with
respect to mixed-precision solvers. The paper addresses some
challenges in using the Tensor Cores programmatically in a GPU
kernel, such as discrete sizes and restricted thread configurations.

1 https://software.intel.com/mkl
2 https://developer.nvidia.com/cublas
The kernel design is expressed in terms of ‘‘building blocks’’,
which are developed as device routines that perform specific
tasks in the kernel. Some of these building blocks are shared
across half and half-complex precisions, but some other functions
had to be explicitly developed for each precision. An important
goal was to provide highly flexible kernels that can withstand
potential future changes to the Tensor Core technology. The de-
veloped kernels have at least eight tuning parameters that control
different aspects of the kernel. An extensive tuning process has
been applied to the developed kernels, with respect to typical use
cases for batched GEMM operations. We also investigate the ben-
efit of using Tensor Cores for extremely small problems, where
full utilization of the Tensor Core units is not possible. While the
vendor routine is very optimized for relatively large sizes, we
observe that the batched HGEMM kernel outperforms cuBLAS for
sizes ≤ 128 with speedups that range between 1.5× and 2.5×.
We also show that the batched HCGEMM kernel outperforms
the vendor solution (which uses split complex computation) by
improvement factors between 1.7× and 7×. This work is part of
the open-source MAGMA library [6].3

Below are the main highlights of the paper:

1. The use of FP16 arithmetic is proven to be useful for
numerical linear algebra, and so important kernels like
batched matrix multiplications must be optimized. This
kernel is the focus of the paper.

2. The use of Tensor Cores is restricted by some limitations
that are imposed by the programming model.

3. The proposed kernel design builds a flexible abstraction
layer over the tensor cores. Such a layer hides the afore-
mentioned restrictions.

4. The final kernel design has 8 tuning parameters. A com-
prehensive tuning sweep is conducted to record the best
performance at different sizes.

5. For half-complex computations, we theoretically prove that
the interleaved layout is better for performance than planar
layouts (split-complex).

6. The performance gains for batch GEMM in half precision
are between 1.5× and 2.5× for sizes up to 128.

7. The performance gains for batch GEMM in half-complex
precision are between 1.7× and 7× for sizes up to 256.

8. For tiny matrices, we show that the use of Tensor Cores
might be questionable due to the sub-optimal utilization
of the Tensor Core units.

2. Related work

Matrix multiplication is an embarrassingly parallel operation
with a relatively high operational intensity. These two properties
enable GEMM operations to run asymptotically at 90+% of the
GPU’s peak performance. This good match between the proper-
ties of GEMM and GPUs being throughput-oriented processors
has led to the emergence and success of GPU-accelerated dense
linear algebra. Research efforts date back almost a decade, when
GPUs started to have programmable shared memories (i.e., user-
controlled caches). This enabled researchers to develop the first
compute-bound GEMM on GPUs [29]. Since then, the GEMM
kernel has been subject to continuous improvements, like reg-
ister and shared-memory blocking and prefetching [23]. Such
developments sparked many efforts in providing fast high-level
dense linear solvers on GPUs, such as the MAGMA library [27],
ViennaCL [25], and Chameleon [5]. Performance portability of
GEMM was achieved through performance-critical tuning param-
eters that control different properties of the GEMM design [18,

3 https://icl.cs.utk.edu/magma/

https://software.intel.com/mkl
https://developer.nvidia.com/cublas
https://icl.cs.utk.edu/magma/
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1]. Following the publicly available developments from the re-
earch community, the GPU vendor started providing highly op-
imized GEMM implementations that are written in a low-level
anguage [26] in order to overcome some limitations imposed
y the compiler and the hardware scheduler. Similarly, assembly
mplementations [9,19] are available today in the cuBLAS library,
ith the ability to achieve a performance that is very close to the
PU theoretical peak. Similar to the libraries mentioned above,
he vendor also provides a library called cuSOLVER4 for high-level
dense linear algebra algorithms.

All the aforementioned efforts address the problem of one
GEMM operation that is relatively large enough to provide suf-
ficient parallel work for the GPU. The recent application-driven
interest in batched linear solvers have encouraged vendors and
library developers to design dedicated routines that can address
a large number of small matrix problems. Algorithmically, a
batched GEMM is still a very important operation, since it re-
mains the performance key to higher-level algorithms such as the
batched one-sided factorizations [12]. However, the importance
of the batched GEMM goes beyond the boundaries of dense linear
algebra to affect other scientific domains, such as sparse direct
solvers [32], tensor contractions [1,15], and machine learning [8].
The challenges in optimizing batched GEMM are different from
the regular GEMM kernel. As the problem sizes are relatively
smaller, the GEMM operations are no longer compute-bound, and
more attention should be paid to optimizing the memory traffic.
Automatic performance tuning is even more important in batched
routines, since it has been found that the performance is more
sensitive to tuning parameters in small matrix problems [2].

Batched GEMM operations are crucial to machine learning
applications in particular. For example, convolutional neural net-
works (CNNs) are a very popular class of deep neural networks
(DNNs). They were initially implemented using custom dense
kernels, as originally done in Caffe [16] and other libraries, such
as tensor convolutions and activation functions. These custom
kernels were developed locally per package. And since they dom-
inate the training time for CNNs, re-optimizations had to be
done whenever the underlying architecture changed. This is why
research efforts, such as cuDNN [8], MagmaDNN [24], and others,
focused on providing optimized primitives for deep learning,
similar to the way BLAS provides optimized primitives to LAPACK
algorithms. The most important operation in CNNs is batched
spatial convolution, which can be cast into batched matrix mul-
tiplication [7,8]. In addition, the work done in [20] uses batched
GEMMs of very small sizes (3 × 3) to implement fast CNN al-
gorithms based on minimal filtering algorithms [31]. On another
front, the batched GEMM operations in machine learning are not
necessarily required to have the accuracy of single or double
precisions. In fact, it has been shown that lower precisions are
enough for training deep neural networks [10]. Furthermore, the
need for extreme computational power in DNNs arises from their
hyperparameter tuning—a process of training multiple DNNs to
empirically find the best network in various applications [28].
With the popularity of GPUs in large-scale AI applications, the
latest architectures from NVIDIA, namely Volta and Turing, are
equipped with Tensor Cores, which provide hardware accelera-
tion for matrix-multiply-accumulate operations. The cuBLAS li-
brary provides high-level APIs for GEMM and batched GEMM in
half precision (i.e., HGEMM and batched HGEMM, respectively).
There are also low-level APIs that can be used to program the
Tensor Cores inside a GPU kernel. While the high-level APIs
have been used to accelerate mixed-precision iterative refine-
ment dense linear solvers [11,13], this is the first effort, to the
best of the authors’ knowledge, to programmatically use the Ten-
sor Cores in an open-source and general-purpose batched GEMM
routine that is competitive with the vendor optimized library.

4 https://developer.nvidia.com/cusolver
3. The FP16 tensor cores in GPUs

The CUDA Toolkit is one of the first programming models
to provide half-precision (i.e., FP16) arithmetic. Early support
was added in late 2015 for selected embedded GPU models that
are based on the Maxwell architecture. The FP16 arithmetic has
become mainstream in CUDA-enabled GPUs since the Pascal ar-
chitecture. In general, half precision has a dynamic range that
is significantly smaller than single or double precisions. Incor-
porating such a reduced precision was mainly motivated by the
disruptive emergence of machine learning applications.

The Volta and Turing architectures introduce hardware accel-
eration for matrix multiplication in FP16. The hardware accelera-
tion units are called Tensor Cores. They can deliver a theoretical
peak performance that is up to 8× faster than the peak FP32
performance. As an example, each Volta V100 GPU has 640 Tensor
Cores, evenly distributed across 80 multiprocessors. Each Tensor
Core possesses a mixed-precision 4 × 4 × 4 matrix processing
array which performs the operation D = A× B+ C , where A, B, C
and D are 4 × 4 matrices. The inputs A and B must be represented
in FP16 format, while C and D can be represented in FP16 or in
FP32 formats. It is also possible that C and D point to the same
matrix.

The vendor library (cuBLAS) provides various optimized rou-
tines, mostly GEMMs, that can take advantage of the Tensor Core
acceleration by setting the proper flag. As an example, the routine
cublasHgemmBatched implements the batched GEMM opera-
tion for real FP16 arithmetic. All matrices are assumed to have
the same dimensions. Considering complex FP16 computations,
there is no native support for half-complex precisions yet in the
library. In fact, the only way to use cuBLAS is to use a ‘‘planar
layout’’ for the matrices, where the real and the imaginary parts
of the matrices are separated. The planar layout enables an easy
solution using existing cuBLAS routines, but it lacks an important
performance advantage, which will be discussed later in the
paper. The same concept of split-complex computation applies
to the cuBLASLt library,5 as well as the open-source CUTLASS
library.6

Taking advantage of the Tensor Cores in a custom kernel is
possible through the use of low-level APIs that are provided
by the programming model as well. As shown in Fig. 2, Tensor
Cores deal with input and output data through opaque data
structures called fragments. Each fragment is used to store one
matrix. Fragments can be loaded from shared memory or from
global memory using the load_matrix_sync() API. A similar
API is available for storing the contents of an output fragment
into the shared/global memory of the GPU. The mma_sync() API
is used to perform the multiplication. The user is responsible for
declaring the fragments as required, and calling the APIs in the
correct sequence.

The programming model imposes some restrictions to the
programming of the Tensor Cores. First, the GEMM dimensions
(M , N , K ), which also control the size of the fragments, are
limited to three discrete combinations, namely (16, 16, 16), (32,
8, 16), and (8, 32, 16). Second, the operations of load, store, and
multiply must be performed by one full warp (32 threads). Finally,
the load/store APIs require that the leading dimension of the
corresponding matrix be multiple of 16-bytes. As an example,
a standard GEMM operation of size (16, 16, 16) requires three
load_matrix_sync() calls (for A, B, and C), one mma_sync()
all, and then a final store_matrix_sync() call to write the
result. The latest CUDA version to date (10.1) provides direct ac-
cess to the Tensor Cores through an instruction called mma.sync.

5 https://docs.nvidia.com/cuda/cublas/index.html#using-the-cublasLt-api
6 https://github.com/NVIDIA/cutlass

https://developer.nvidia.com/cusolver
https://docs.nvidia.com/cuda/cublas/index.html#using-the-cublasLt-api
https://github.com/NVIDIA/cutlass
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Fig. 2. Programmability of the Tensor Core units.

Fig. 3. Organization of the batched GEMM grid.

The instruction allows one warp to perform four independent
GEMM operations of size (8, 8, 4). However, using the explicit
instruction may lead to long-term compatibility issues as new
architectures are released. This is why we decide not to consider
using parallel thread execution (PTX) instructions, and focus only
on the device-level CUDA APIs.

4. General design outlines

This section describes some general concepts about the design
of the batched HGEMM and the batched HCGEMM kernels. The
dimensions (M , N , K ) of the GEMM operation are assumed to be
unified across the batch. According to the CUDA programming
model, a GPU kernel is, in general, a three-dimensional grid of
three-dimensional thread blocks (TBs). The number of GEMM
operations in the batch is referred to as batchCount. For real
half-precision computation, the CUDA data type __half is used.
For half-complex computations, we use the __half2 vector type.
The low 16-bits represent the real part, while the high 16-bits
represent the imaginary part.

4.1. Grid design

The MAGMA library uses a common grid design for all of its
batched kernels [2,3]. The output matrices are subdivided into
smaller blocks that can fit into a fast memory level (i.e., registers
or shared memory). Such blocks can be square or rectangu-
lar, with their sizes denoted as (BLK_M×BLK_N). The first two
dimensions of the grid are used to denote a two-dimensional⌈ M
BLK_M

⌉
×

⌈ N
BLK_N

⌉
‘‘subgrid’’ for each output matrix in the batch.

he third grid dimension is used for batching across the problems,
hich yields a three-dimensional grid configuration of (

⌈ M
BLK_M

⌉
,⌈ N

BLK_N

⌉
, batchCount). Each subgrid has a unique batchid (the

−dimension of the grid) and takes care of a single GEMM oper-
tion. Similarly, the input matrices A and B are subdivided into
maller blocks of sizes (BLK_M×BLK_K) and (BLK_K×BLK_N),
espectively. Within every subgrid, each TB is responsible for
omputing a block of the output matrix by reading a block row
f A and a block column of B. The block rows/columns are read in
teps of BLK_K. At each iteration of the main loop, a TB multiplies
block of A (BLK_M×BLK_K) with a block of B (BLK_K×BLK_N).
ince we are using the Tensor Core units, the accumulations
f the partial results take place in the fragments rather than
egular register buffers or shared memory. Fig. 3 illustrates the
B organization of the kernel.
The following sections describe the main design aspects of the

ernel, which leverages some design concepts from existing ker-
els [2] while modifying or generalizing them to take advantage
f the Tensor Cores.

. Detailed thread block design

.1. Abstracting tensor cores

As mentioned before, the use of the Tensor Cores program-
atically must follow some constraints that are required by the
evice-level APIs. Our goal in this paper is to design GPU kernels
ith an abstraction layer over the Tensor Cores. The abstraction

ayer takes care of the device-API constraints and provides a
eneral-purpose use of the cores. The three main constraints for
sing Tensor Cores are:

1. Tensor Cores can be used only with three discrete combi-
nations of blocking sizes

2. Device-level APIs must be called by a single warp
3. Loading/storing fragments must be from/to memory spaces

with specific leading dimensions (multiples of 16 bytes).

The abstraction layer proposed in this paper addresses each
ne of these constraints. Eventually, the GPU kernels will be able
o use arbitrarily large blocking sizes, using any number of warps,
ith no constraints on the leading dimension of the matrices.
The developed solution must support arbitrary leading dimen-

ions for A, B, and C in the global memory of the GPU. A straight-
orward solution is to read the matrices into shared-memory
uffers, rather than reading them directly into the Tensor Core
ragments. The shared-memory buffers are allocated with leading
imensions that abide by the 16-byte rule.

.2. Double-Sided Recursive Blocking (DSRB)

This technique allows GPU kernels to use arbitrarily large
locking sizes (BLK_M, BLK_N, BLK_K) that are not necessarily
estricted to the Tensor Core sizes (TC_M, TC_N, TC_K). Recursive
locking is a well-known technique that has been used for years
n previous GEMM designs [23]. It transfers each block of A, B,
nd C to/from the global memory using a two-dimensional thread
onfiguration DIM_X×DIM_Y. These blocks are subdivided into
maller DIM_X×DIM_Y tiles that can be stored in shared memory
r in the register file. The same DIM_X×DIM_Y subdivision is used
or computing the partial products of these blocks. We call this
echnique single-sided recursive blocking (SSRB). Such a technique
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Fig. 4. An example of the double-sided recursive blocking (DSRB) applied to a
block of C . The blocking dimensions for reads and writes are decoupled from
hose used for computations.

s not applicable to Tensor Cores, which have discrete blocking
izes for computation. This is why we propose a generalization
ver SSRB, which we call double-sided recursive blocking (DSRB). As

shown in Fig. 4, it simply decouples the way blocks are read/writ-
ten from the way they are passed to/from the Tensor Core units.
During the read/write of a block from/to the global memory,
a matrix block is always subdivided into DIM_X×DIM_Y tiles.
uring the computation of a partial product, however, the loaded
locks are subdivided using the TC sizes (TC_M, TC_N, TC_K).

Thread regrouping is also used to select the best configuration
at each stage of the kernel. As an example, assume a single warp
configuration in a kernel where all blocking sizes are equal to 16.
When loading a 16 × 16 block of data, it is much better to use
a 16 × 2 or 8 × 4 configuration rather than the default 32 × 1
one. This is why we allow a single warp to reorganize itself into a
DIM_X×DIM_Y configuration when reading and writing blocks of
data. During the computation, the regular 32 × 1 configuration is
used.

5.2.1. How does DSRB improve memory traffic?
The DSRB technique generalizes BLK_M, BLK_N, and BLK_K

so that they are not bound to the TC sizes. Generic block sizes
help improve the memory traffic required by the GEMM ker-
nel. To illustrate this point further, we simplify our analysis by
assuming that BLK_M and BLK_N fully divide M and N , respec-
tively. According to our grid configuration in Section 4.1, the
proposed kernels would require M×N

BLK_M×BLK_N TBs. Theoretically, an
ideal implementation would read A, B, and C from the global
memory exactly once, and write C once. The proposed kernels
perform an ideal memory traffic for C , since each TB takes care
of one block of C , and so it reads and writes such a block exactly
once. However, since the parallel work is distributed across many
independent TBs, there have to be redundant memory loads for
A and B. The redundant loads are significantly affected by BLK_M
and BLK_N. The total memory loads for A and B per TB are given
by (K × (BLK_M + BLK_N)), since it has to read an entire block
row of A and a block column of B. The total memory traffic (for A
and B) for the whole kernel is given by MNK (BLK_M+BLK_N)

BLK_M×BLK_N . We can
now calculate the improvement (reduction) in memory traffic by
comparing the previous formula against the case when (BLK_M,
BLK_N, BLK_K) = (TC_M, TC_N, TC_K), which eventually yields:

Memory traffic improvement =
BLK_M × BLK_N × (TC_M + TC_N)
TC_M × TC_N × (BLK_M + BLK_N)

Fig. 5 shows the relative reduction in memory traffic for block-
ing sizes up to 128. As an example, using (BLK_M, BLK_N) = (64,
4) can theoretically reduce the memory traffic by a factor of
4× when (TC_M, TC_N) = (16, 16), and by a factor of 5× when
(TC_M, TC_N) = (32, 8). Such a reduction usually leads to a better
performance, since most of the memory requests are fulfilled
from the main memory due to the relatively small caches in GPUs
(compared to CPUs). However, this theoretical analysis assumes
infinite resources available for each TB. Using too many resources
per TB could actually worsen other aspects of the kernel, such
as the occupancy and the register pressure. Therefore, a tuning
process is usually required to search for the best blocking sizes
on a specific GPU.

5.3. Two-stage loading of input data

Instead of loading the blocks of A and B directly into the
shared-memory buffers, we use a two-stage process where the
data is first read in register buffers, then offloaded to the shared
memory. The use of double buffers would allow us incorporate
a prefetching mechanism into the register file while the data are
being processed through the buffers. Two device-level functions
have been developed for this purpose. The first one reads a block
of data from the global memory into the register file.
template <typename T,
const int DIM_X, const int DIM_Y,
const int BLK_R, const int BLK_C>
static __device__ __inline__ void
read_global2reg(

const int blk_m, const int blk_n,
const T* __restrict__ A, int LDA,
T reg[BLK_C/DIM_Y][BLK_R/DIM_X],
const int tx, const int ty)

{
int m, n;
#pragma unroll
for(n = 0; n < BLK_C; n+=DIM_Y) {

#pragma unroll
for(m = 0; m < BLK_R; m+=DIM_X) {

reg[n/DIM_Y][m/DIM_X]
= fetch<T>(/* address info */);

}
}

}

The function is templated for type, block sizes (BLK_R ×

BLK_C), as well as the thread configuration (DIM_X×DIM_Y).
hese parameters are known at compile time, which enables fully
nrolled loops, and avoids register spilling into the local memory.
he fetch<T>() function returns either the required element, or
ero if the passed address is out-of-bound. This function is one of
he shared building blocks across half and half-complex kernels.

The second device function offloads the content of a register
uffer into a shared-memory space. A similar structure of two
ested loops is used.

template <const int DIM_X, const int DIM_Y,
const int BLK_R, const int BLK_C>

static __device__ __inline__ void
store_reg2smem(

__half rA[BLK_C/DIM_Y][BLK_R/DIM_X],
__half* sA,
const int tx, const int ty)

{
int m, n;
#pragma unroll
for (n = 0; n < BLK_C; n+=DIM_Y) {

#pragma unroll
for (m = 0; m < BLK_R; m+=DIM_X) {

sA[(n+ty) * BLK_R + (m+tx)] = rA[n/DIM_Y][m/DIM_X];
}

}
}

Unlike the previous device function, the store_reg2smem func-
tion cannot be used as it is for half-complex buffers. Since the TCs
support only real arithmetic, we need to split the contents of the
register file into two separate memory spaces; one for the real
part, and the other for the imaginary part. The function below
shows the corresponding stroe_reg2smem_complex function,
which uses low-level intrinsics for splitting the values.
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Fig. 5. The relative reduction in memory traffic for A and B using (BLK_M, BLK_N) ≥ (TC_M, TC_N). Results are shown for (TC_M, TC_N) = (16, 16) and (32, 8). Note
hat BLK_x must always be multiple of TC_x.
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template<const int DIM_X, const int DIM_Y,
const int BLK_R, const int BLK_C>

static __device__ __inline__ void
store_reg2smem_complex(

__half2 reg[BLK_C/DIM_Y][BLK_R/DIM_X],
__half* sAr, __half* sAi,
const int tx, const int ty)

{
int m, n;
#pragma unroll
for (n = 0; n < BLK_C; n+=DIM_Y) {

#pragma unroll
for (m = 0; m < BLK_R; m+=DIM_X) {

sAr[(n+ty) * BLK_R + (m+tx)]
= __low2half ( reg[n/DIM_Y][m/DIM_X] );

sAi[(n+ty) * BLK_R + (m+tx)]
= __high2half( reg[n/DIM_Y][m/DIM_X] );

}
}

}

5.4. Multi-warp configuration

All TC device functions must be invoked using one warp. How-
ver, this does not necessarily mean that the TB configuration
hould be restricted to a single warp. In fact, it is sometimes ben-
ficial to use multiple warps per TB, especially when the amount
f work per TB is relatively large, or when a warp is stalled.
e generalize our thread configuration to support any number
f warps. As mentioned before, threads reorganize themselves
nto a DIM_X×DIM_Y configuration during memory operations.
uring computation, however, we must reorganize the threads
n a 32 × N_WARPS configuration in order to use the TC. Note
hat the parameter space for DIM_X and DIM_Y is now much
igger, which serves the design flexibility. As an example, four
arps can be used in many configurations, such as 8 × 16,

16 × 8, 32 × 4, 64 × 2, · · · etc. When a partial product is being
computed, the block accumulator of C is subdivided into many
sub-blocks of size TC_M×TC_N. Warps loop over these sub-blocks
in a round-robin manner. For each sub-block, the respective warp
loops over the corresponding sub-block row of A and the sub-
block column of B, sends them in chunks to the Tensor Cores, and
keeps accumulating the results in its respective fragment. Fig. 6
shows the workload distribution for two different configuration
on a block accumulator that has 15 sub-blocks.

The use of multiple warps enables controlling the amount of
work per warp, especially for large blocks of data. Reading in large
blocks is usually required to achieve a high memory bandwidth
and to increase data reuse. But since TC multiplications must be
Fig. 6. Multi-warp configuration with round-robin assignment for the output C
block.

performed by a single warp, large blocks of data could mean
too much work for one warp, and it becomes better to involve
more warps in computation. To better quantify this concept,
we performed an experiment on a batched HGEMM on square
64 × 64 matrices. For simplicity, we fix BLK_M = BLK_N = BLK_K

64, and TC_M =TC_N =TC_K = 16. We also show two possible
hread configurations, one with DIM_X = 16, and the other with
DIM_X = 32. Fig. 7 shows that increasing the number of warps
per TB leads to significant performance gains when the blocks are
relatively large (while fixing all other parameters). However, the
performance drops if too many warps are used per TB. One reason
is the occupancy, which impacts the number of live TBs that can
be scheduled by the runtime on the same multiprocessor. Another
reason is that some warps may be idle during the compute phase.
This appears in Fig. 7 when the number of warps is set to 32. With
blocking sizes set to 64 and Tensor Core sizes set to 16, we have
a 4 × 4 sub-block organization, which means that 16 warps out
of the 32 are not assigned to any computational workload.

5.5. Performing the multiplication using the tensor cores

After loading the input data blocks in the shared-memory
buffers, another device function (tc_multiply()) is invoked to
perform the TC multiplication using the round-robin style illus-
trated before. The function is heavily templated with a number
of constants that are known at compile time, such as TC_BLOCKS,
NWARPS, and NFRAG. The parameter TC_BLOCKS refers to the total
number of multiplications a thread block performs, while NWARPS
and NFRAG refer to the number of warps and the number of
accumulator fragments per warp, respectively. The pseudocode
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Fig. 7. The impact of the number of warps on performance for relatively large
blocking sizes. Results are shown for square 64 × 64 matrices using a Tesla
V100 GPU, with batchCount = 500. CUDA version is 10.1. All blocking sizes
re set to 64, with all Tensor Core sizes set to 16. DIM_Y = (#warps×32)/DIM_X.

below distributes the TC_BLOCKS multiplications across warps.
At each iteration of the outer loop, every warp independently
calculates the coordinates of the C sub-block it should compute.
It then proceeds to the innermost loop, where the corresponding
sub-block row of A is multiplied by the corresponding sub-block
column of B using the TC APIs. The code has a cleanup section
that handles the situation when NWARPS does not fully divide
TC_BLOCKS.
template <...>
__device__ __inline__ void
tc_multiply( half* sA, half* sB,

wmma::fragment <...> fC[NFRAG] )
{

// Declare A, B fragments
wmma::fragment <...> fA;
wmma::fragment <...> fB;

int b = 0;
#pragma unroll
for(b = 0; b < TC_BLOCKS - NWARPS; b += NWARPS){

(i, j, fid) <- get_next_frag_indices(warp_id);
#pragma unroll
for(int k = 0; k < BLK_K; k+=TC_K){

half* ptrA = sA + k * BLK_M + i;
half* ptrB = sB + j * BLK_K + k;
wmma::load_matrix_sync(fA, ptrA, BLK_M);
wmma::load_matrix_sync(fB, ptrB, BLK_K);
wmma::mma_sync(fC[fid], fA, fB, fC[fid]);

}
}

// cleanup code
if(warp_id < TC_BLOCKS - b){

(i, j, fid) <- get_next_frag_indices(warp_id);
#pragma unroll
for(int k = 0; k < BLK_K; k+=TC_K){

half* ptrA = sA + k * BLK_M + i;
half* ptrB = sB + j * BLK_K + k;
wmma::load_matrix_sync(fA, ptrA, BLK_M);
wmma::load_matrix_sync(fB, ptrB, BLK_K);
wmma::mma_sync(fC[fid], fA, fB, fC[fid]);

}
}

}

The tc_multiply() function does not work for half-complex
rithmetic, and a dedicated function is required to do a split-
omplex multiplication on the TB level, which we call
c_multiply_complex(). The function accepts two shared-

memory pointers (real and imaginary) for each of the A and B
blocks. The innermost loop performs four multiplications instead
of one. The partial results are accumulated in separate output
fragments.
template <...>
__device__ __inline__ void
tc_multiply_complex(
half* sAr, half* sAi, half* sBr, half* sBi,
wmma::fragment <...> fCr[NFRAG],
wmma::fragment <...> fCi[NFRAG] )

{
// Declare A, B fragments
wmma::fragment <...> fA;
wmma::fragment <...> fB;

#pragma unroll
for(int b = 0; b < nblks; b += NWARPS){

(i, j, fid ) <- get_next_frag_indices ( warp_id );
#pragma unroll
for(int k = 0; k < BLK_K; k+=TC_K){

half* ptrAr = sAr + k * BLK_M + i;
half* ptrAi = sAi + k * BLK_M + i;

half* ptrBr = sBr + j * BLK_K + k;
half* ptrBi = sBi + j * BLK_K + k;

// sAr * sBr -> real
wmma::load_matrix_sync(fA, ptrAr, BLK_M);
wmma::load_matrix_sync(fB, ptrBr, BLK_K);
wmma::mma_sync(fCr[fid], fA, fB, fCr[fid]);

// sAr * sBi -> complex
wmma::load_matrix_sync(fB, ptrBi, BLK_K);
wmma::mma_sync(fCi[fid], fA, fB, fCi[fid]);

// sAi * sBr -> complex
wmma::load_matrix_sync(fA, ptrAi, BLK_M);
wmma::load_matrix_sync(fB, ptrBr, BLK_K);
wmma::mma_sync(fCi[fid], fA, fB, fCi[fid]);

// -sAi * sBi -> real
wmma::load_matrix_sync(fB, ptrBi, BLK_K);
#pragma unroll
for(int t=0; t<fA.num_elements; t++)

fA.x[t] *= (half)(-1.0);
wmma::mma_sync(fCr[fid], fA, fB, fCr[fid]);

}
}
/* cleanup code similar to the real case */

}

5.6. Post processing

Recall that the GEMM operation is defined as CM×N = αAM×K×

BK×N + βCM×N. So far, all of the different computational stages
serve for computing the A× B product. The scaling operations by
α and β are performed at a post-processing stage. For the batched
HGEMM kernel, the post-processing stage loads the respective
block of C into a register buffer and scales it by β . In order to
save memory traffic, this step takes place only if β is a non-zero.
The product A×B resides in shared memory. It is scaled by α and
added to the register buffer of C before finally writing it to the
global memory. As for the half-complex case (batched HCGEMM),
recall that the tc_multiply_complex() function has the real
and imaginary parts of the product separated. The product A × B
is therefore merged first in the shared memory before any scaling
takes place. The rest of the post-processing step is similar to the
batched HGEMM kernel.

5.7. The main kernel structure

The pseudocode below shows the main loop of the kernel. At
each iteration, a pair of data blocks – from A and B – is loaded
from global memory to shared memory (in two stages). The actual
dimensions of these blocks (am, an, bm, bn) are computed at
the beginning of the iteration so that the read_global2reg()
function accounts for partial blocks by means of zero-padding
if required. Synchronization is required to make sure all data
are visible to all warps before proceeding to the multiplication
subroutine tc_multiply(). The multiplication takes place si-
multaneously while reading a new pair for data blocks. Another
synchronization point is required to make sure all warps are done
with the currently loaded data, and that it is safe to overwrite the
contents of the shared memory.
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(am, an) <- compute_block_size( A, kk );
(bm, bn) <- compute_block_size( B, kk );

rA[][] <- read_global2reg <...>(am, an, A, LDA);
rB[][] <- read_global2reg <...>(bm, bn, B, LDB);

for (int kk = 0; kk < K; kk += BLK_K) {
sA[] <- store_reg2smem( rA[][] );
sB[] <- store_reg2smem( rB[][] );

sync <...>();
if(/* not last iteration*/) {

// prefetch
A += BLK_K * LDA;
B += BLK_K;
(am, an) <- compute_block_size( A, kk );
(bm, bn) <- compute_block_size( B, kk );
rA[][] <- read_global2reg <...>(am, an, A, LDA);
rB[][] <- read_global2reg <...>(bm, bn, B, LDB);

}

tc_multiply <...>(sA[], sB[], fC[]);
sync <...>();

}

// post processing step
rC[][] <- post_process( fC[], sC[]);

// write output
wrire_reg2global( rC[][], C[] );

5.8. Tuning Parameters

The developed kernels are written using CUDA C++ templates,
ith eight main tuning parameters. These parameters are:

• The configuration sizes of the Tensor Cores (TC_M, TC_N,
TC_K). These sizes are discrete configurations that are en-
forced by the programming model.

• The blocking sizes for A, B, and C (BLK_M, BLK_N, BLK_K).
These sizes control the amount of data reuse by improving
the memory traffic, as explained in Section 5.2.1. They also
influence the shared memory requirement for the kernel.

• The thread configuration for reading and writing data blocks
(DIM_X, DIM_Y). These parameter control the number of
threads processing the data blocks of A, B, and C . They also
influence the register pressure per thread. Assuming that
the blocking sizes (BLK_M, BLK_N, BLK_K) are not changed,
increasing the number of threads leads to fewer registers
per thread.

The tuning parameters must satisfy a number of conditions
in order for the kernel to perform correctly. The Tensor Core
dimensions TC_x must fully divide BLK_x, where x∈{M, N, K}.
Each of DIM_X and DIM_Y must fully divide every blocking size
BLK_x. The product DIM_X×DIM_Y must also be multiple of 32,
in order to have full warps. We chose to run a comprehensive
brute-force tuning sweep for all eligible kernel instances. Our
reasoning behind that decision was to get the best performance
for small sizes, where the performance is more sensitive to the
tuning parameters than for large sizes [2].

6. Half-complex batched GEMM: Planar vs. interleaved layouts

In order to perform half-complex computations using the
cuBLAS library, a user must use ‘‘split-complex’’ computation.
The real and the imaginary parts of A, B, and C must be stored
separately in a planar layout. Considering dense linear algebra
algorithms, planar layouts do not help achieve good performance,
especially for relatively small sizes. First, all the existing linear
algebra numerical libraries assume an interleaved layout, mean-
ing that the real and the imaginary parts of each element are
contiguous in memory. It is not practical to rewrite entire algo-
rithms using split-complex computations to make use of the TCs.
Second, while it is relatively easy to develop the GEMM kernel
in planar layouts using the existing GEMM kernels, other linear
algebra components might not be as straightforward. Examples
are triangular solve and the pivoting stage in the LU factorization.
For such operations, it is not possible to use the existing triangu-
lar solve or pivoting kernels, which leads to new developments at
the BLAS level. Therefore, it is more convenient to use the stan-
dard interleaved layout. Third, complex compute-bound kernels
normally reach the peak performance of the underlying hardware
earlier than their counterparts that use real arithmetic. This is
because complex kernels have more operational intensity than
real arithmetic kernels. The operational intensity of an operation
is the ratio between the number of FLOPs and the number of
bytes transferred for that operation. As an example, the real FP16
scalar operation (c = c + a × b) costs 2 FLOPs (1 addition and
1 multiplication), which results in 2

8 = 0.25 FLOP/byte ratio.
Using complex FP16 arithmetic, the same operation would cost
8 FLOPs. The product a × b costs 6 FLOPs (4 multiplications
and 2 additions), and the update of c costs 2 more additions.
This results in 8

16 = 0.5 FLOP/byte ratio (double the operational
intensity of the real scalar operation). Such a difference in the
operational intensity leads to a ‘‘slowly growing’’ theoretical peak
performance (i.e. roofline) for the HCGEMM kernel, thus requiring
relatively large sizes to approach the hardware peak performance.
In other words, the planar layout makes the HCGEMM kernel
operate at the same roofline as the real arithmetic HGEMM
kernel, since it calls HGEMM four times.

We theoretically investigate the half-complex GEMM opera-
tion based on the Roofline model [30]. Our focus is on batched
square multiplications (M = N = K ), as well as batched rank-k
updates (M = N , K is a relatively small constant). The former use
case demonstrates a test for the peak performance of the kernel,
while the latter is an important use case in batched linear algebra,
especially in the batched LU factorization.

6.1. Roofline for HCGEMM (standard interleaved layout)

For simplicity of our analysis, we can safely ignore the scaling
by α and β . According to the LAPACK Working Note #41,7 a
standard GEMM operation (CM×N = CM×N + AM×KBK×N ) involves
(M ×N ×K ) additions, and (M ×N ×K ) multiplications. This can
be explained as follows. The output C matrix has M×N elements.
Each element cij is computed as cij = cij +

∑K
k=1 aikbkj, which

accounts for K multiplications and K additions. Therefore, the
HCGEMM-interleaved operation requires (MNK ) additions and
(MNK ) multiplications. In order to estimate the number of FLOPs,
we recall that one multiplication of complex numbers requires 6
FLOPs and one addition requires 2 flops. The total number of flops
is, therefore, (8MNK ).

In order to derive a roofline (i.e. a performance upper-bound),
we derive the ideal (minimum) amount of memory traffic for the
operation. The ideal amount of data required for HCGEMM is

1. One read and one write for C , which equals (2 × M × N)
2. One read for A (M × K )
3. One read for B (K × N)

Considering half-complex precision, each element is stored
n 4-bytes. Therefore, the ideal amount of bytes transferred is
× [2MN + K (M + N)]. Now we can write:

perational intensity of HCGEMM-interleaved

=
2MNK

2MN + K (M + N)
(1)

7 http://www.netlib.org/lapack/lawns/lawn41.ps

http://www.netlib.org/lapack/lawns/lawn41.ps
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Fig. 8. Performance upper bound for batched HCGEMM on square sizes. The
analysis is based on a 847 GB/s peak bandwidth (STREAM benchmark on a Tesla
V100-PCIe GPU).

Fig. 9. Performance upper bound for batched HCGEMM for rank-16 updates.
The analysis is based on a 847 GB/s peak bandwidth (STREAM benchmark on a
Tesla V100-PCIe GPU).

6.2. Roofline for HCGEMM (planar layout)

We now estimate the roofline for the HCGEMM-planar op-
eration similar to Section 6.1. For a split-complex computation,
the operation can be done via four calls to the standard HGEMM
operation. Assuming that we have two separate output matrices
Cr (real) and Ci (imaginary), the four HGEMM calls are:

1. First call: Cr = Cr + Ar × Br
2. Second call: Cr = Cr − Ai × Bi
3. Third call: Ci = Ci + Ar × Bi
4. Fourth call: Ci = Ci + Ai × Br

Each call involves (MNK ) additions and (MNK ) multiplica-
tions. Since these calls perform real half-precision arithmetic,
each addition/multiplication accounts for one FLOPs. Therefore,
one call performs (2MNK ) FLOPs, leading to a total of (8MNK )
FLOPs. From an operation count point of view, these four calls
have the same complexity as HCGEMM-interleaved. However, the
collective memory traffic for these calls is different. Each call to
HGEMM involves (2MN) traffic for C , an (MK ) traffic for A, and
an (KN) traffic for B. The memory traffic for one HGEMM call is
2-bytes×[2MN + K (M + N)], leading to an aggregate traffic of
8 × [2MN + K (M + N)]. Similarly, we can write

Operational intensity of HCGEMM-planar =
MNK

2MN + K (M + N)

(2)
To summarize, HCGEMM-interleaved has double the opera-
tional intensity of HCGEMM-planar. For a square multiplication
(M = N = K ), the operational intensity is simplified to 0.25N
or HCGEMM-planar, and to 0.5N for HCGEMM-interleaved. The
roofline model [30] estimates the performance upper bound
as operational intensity × the peak memory bandwidth.
sing a GPU STREAM benchmark on the Tesla V100 GPU, we got
p to 847 GB/s of peak memory bandwidth. Fig. 8 shows the per-
ormance upper bounds for HCGEMM-planar and HCGEMM in-
erleaved for square matrices. Both graphs grow linearly with the
atrix size until they hit the GPU peak performance. However,
ue to the increased operational intensity, HCGEMM-interleaved
eaches the peak earlier than HCGEMM-planar. This is very crucial
or relatively small sizes. As an example, HCGEMM-planar is
andwidth-limited at size 300, while HCGEMM-interleaved be-
omes compute bound. For large sizes (larger than 550 in Fig. 8),
e may not see a difference between the two kernels (if properly
ptimized), since HCGEMM-planar will be able to saturate the
PU anyway.
Another useful test case for GEMM is the rank-k updates. This

s a very important use case in dense linear algebra. Fig. 9 shows
similar roofline analysis for updating a square matrix (M = N),

with a rank-16 update (K = 16). As per the roofline model,
his is a use case that always remains bandwidth-limited on the
100 GPU, regardless of the size. The operational intensity of
CGEMM-planar will be given by 8N2

N2+16N
, while the HCGEMM-

interleaved has its own at 16N2

N2+16N
. This means that HCGEMM-

interleaved is theoretically 2× faster than HCGEMM-planar, no
matter how large M and N are.

7. Performance results

This section shows the performance results of the proposed
MAGMA kernels against the equivalent implementations by the
vendor library (cuBLAS).

7.1. Experimental setup

The performance tests are conducted on a system equipped
with a two-socket CPU (Intel Xeon E5-2650 v3 @ 2.30 GHz), with
10 cores per socket, and a Tesla V100-PCIe GPU. The GPU has
16 GB of memory, and 80 streaming multiprocessors, which are
clocked at 1.38 GHz. We use CUDA Toolkit 10.1 for the compi-
lation of the MAGMA kernels, as well as for testing cuBLAS. The
tests are done for relatively small square sizes and for relatively
small rank-16 updates.

7.2. Performance of the batched-HGEMM kernel

Fig. 10 shows the performance of the tuned MAGMA kernel
against cuBLAS for the batched HGEMM operation. Performance
speedups are observed for the MAGMA kernel for sizes up to 100
on square sizes and for sizes up to 128 for the rank-16 updates.
This behavior shows the importance of auto-tuning. For small
problem sizes, we notice that the performance of a given kernel
is sensitive to tuning parameters in the sense that more kernel
instances are required for relatively small problems. This is unlike
the situation for larger sizes, where usually one or two kernel
instances can deliver the best performance.

Fig. 11 summarizes the performance speedup for every size
between 10 and 128. On average, the speedup numbers range
between 1.5× and 2.8×, except for few spikes or drops. The
spikes/drops in speedup are mainly due to the cuBLAS perfor-
mance behavior, which seem to have periodic drops for some
sizes ≤ 64, and some other performance spikes after that.
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Fig. 10. Performance of the batched HGEMM kernel against cuBLAS. Results are
for square sizes up to 128, with batchCount = 1000, on a Tesla V100-PCIe
PU.

Fig. 11. Performance speedup of the batched HGEMM kernel against cuBLAS.
Results are for sizes up to 128, with batchCount = 1000, on a Tesla V100-PCIe
GPU.

Recall that the cuBLAS kernel is written in a low-level language
to utilize some optimization techniques that are not available in
CUDA C or PTX instructions. And so, its asymptotic performance is
faster than MAGMA by factors greater than 2× for large matrices.
However, the significant cuBLAS advantage is observable only for
sizes that are multiples of 8. As an example, for a batch of 100
square problems of size 2000, the cuBLAS kernel is 2.3× faster
han MAGMA (68.8 teraFLOP/s for cuBLAS vs. 29.5 teraFLOP/s for
MAGMA). However, the same batch for sizes of 2100 × 2100 sees
a significant drop for cuBLAS vs. a slight one for MAGMA. In fact,
MAGMA has a slight 3% advantage in this case (26.5 teraFLOP/s
for cuBLAS vs. 27.4 teraFLOP/s for MAGMA). In general, large
sizes that are not multiples of 8 witness competitive performance
numbers from both libraries.

7.3. Performance of the batched-HCGEMM kernel

Fig. 12 shows the performance of the batched HCGEMM ker-
nels, while Fig. 13 shows the respective relative speedups. Recall
that the cuBLAS library uses a planar layout where the real
and the imaginary parts of the matrices are stored in separate
memory spaces. However, the reported results do not include
the timing for separating and merging these components. We
only compare the execution time of the computational kernels
with no overheads. As per the theoretical analysis in Section 6,
there is an advantage to using interleaved layouts over planar
layouts. The increased operational intensity in the former gives a
performance advantage for the MAGMA kernel on a wider range
of sizes. In fact, the speedup numbers reported in Fig. 13 are much
more significant than those reported in Fig. 11. The reported
speedups for the MAGMA batched HCGEMM kernel are in the
range between 1.7× and 7×.

7.4. Impact of batch size on performance

The performance of batched kernels often depends on the
batch size. So far, we have tested the batched kernels on relatively
large batches, which saturate the GPU with enough parallel work.
Such experiments are conducted to test how much of sustained
peak performance is achievable by the kernels. However, appli-
cations may not necessarily use large batches, and the typical
sizes vary from one application to another. This is why we show
the performance of the batched HGEMM/HCGEMM kernels on
relatively small batches that may not necessarily occupy all of the
GPU resources.

Figs. 14 and 15 show the performance for two different batch
sizes (10 and 100), for the batched HGEMM and HCGEMM ker-
nels, respectively. We highlight square sizes only, since the be-
havior for rank-k updates is the same, and hence was omitted to
avoid redundancy.

As expected, a small batch leads to a slower performance,
since less parallel work is available for the GPU. However, the
relative performances between MAGMA and cuBLAS in both fig-
ures are very similar to the asymptotic behaviors observed in
Figs. 10 and 12. As an example, the behavior of the batched
HGEMM kernel in Fig. 14 shows two similar pairs of graphs.
Increasing batchCount from 10 to 100 results in shifting up the
performance graphs without a significant change in the relative
speedups. The exact same behavior is observable in Fig. 15 for the
batched HCGEMM kernel. However, since the MAGMA HCGEMM
kernel has a better arithmetic intensity, we can observe that the
MAGMA performance on 10 operations is sometimes equivalent
to the cuBLAS performance on 100 operations. Such a behavior
emphasizes the advantage of the interleaved layouts for dense
matrix computations, especially for batch workloads.

8. Optimization for extremely small matrices

The Tensor Core APIs have discrete configurations (TC_M,
TC_N, TC_K). For batched GEMM problems with sizes smaller
than these configurations, the TC utilization is below 100%, and
depending on the problem size, the use of the TCs might be
questionable. This section focuses on performance optimization
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Fig. 12. Performance of the batched HCGEMM kernel (interleaved layout)
against cuBLAS (planar layout). Results are for square sizes up to 256, with
batchCount = 1000, on a Tesla V100-PCIe GPU.

Fig. 13. Performance speedup of the batched HCGEMM kernel (interleaved
ayout) against cuBLAS (planar layout). Results are for sizes up to 256, with
atchCount = 1000, on a Tesla V100-PCIe GPU.

or small sizes that cannot fully occupy the TCs when using the
endor-provided APIs. Without loss of generality, we are looking
nto small square matrices whose dimensions are ≤ 16. This
range of sizes has been subject to many research efforts recently,
due to its popularity in many applications [1,17].
 G
Fig. 14. The impact of batch size on the batched HGEMM performance. Results
are for sizes up to 128, with batchCount∈ {10, 100}, on a Tesla V100-PCIe GPU.

Fig. 15. The impact of batch size on the batched HCGEMM performance. Results
are for sizes up to 256, with batchCount∈ {10, 100}, on a Tesla V100-PCIe GPU.

8.1. Multiple GEMMs in one tensor core multiplication

Recall that the permissible sizes for the TC multiplications
are (16, 16, 16), (32, 8, 16), and (8, 32, 16). A single TC multi-
plication can therefore perform 8192 FLOPs using any of these
combinations. Considering a square multiplication of size 4, the
operation count is 2 × 43

= 128 FLOPs, which is less than
1.5% of a full TC multiplication. A previous proposition by the
authors [4] showed how to improve the utilization by performing
multiple GEMM operations in a single call to the TC APIs. An
example is shown in Fig. 16, which improves the utilization for
a (4, 4, 4) GEMM from 1.5% to about 6%. While this is a 4×
improvement, the TC utilization is still very low. Fig. 17 shows
the maximum achievable utilization for the TCs when performing
square multiplications using the (16, 16, 16) configuration. The
utilization in this figure is computed as

⌊ 16
N

⌋
×

2×N3

8192 . The figure
lso shows the peak half-precision performance (as a percentage)
ithout using the TC multiplications. Theoretically, a sufficiently
ptimized kernel that does not use the TC APIs can outperform
he TC kernels for small sizes, ≤ 10.

The low utilization percentages shown in Fig. 17 raise ques-
ions about using TCs for tiny matrices, and whether conventional
ethods (i.e., without Tensor Cores) can perform the multipli-
ations more efficiently. In this regard, we refer to a kernel
eveloped for very small matrices specifically [22]. The kernel
ddresses very small square multiplications of sizes up to 32. The
ain design idea is to use an N ×N thread configuration for each
EMM, such that each thread is responsible for a single element
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Fig. 16. Improving Tensor Core utilization by assigning multiple GEMMs at a
time. Example for square matrices of size 4, with all Tensor Core sizes set to
16.

Fig. 17. The percentage of available Tensor Core compute power for square
multiplications of small matrices.

Fig. 18. Performance of the batched HGEMM kernels. Results are for small
square sizes up to 16, with batchCount = 10k, on a Tesla V100-PCIe GPU.

in the output matrix. The code is fully unrolled for every size
using C++ templates. In this paper, we use a similar kernel design
that supports both half and half-complex arithmetic. We call this
kernel magma-small.

We tested the performance of the magma-small kernel against
he general MAGMA kernel as well as against cuBLAS, the results
f which are summarized in Figs. 18 and 19 for the batched
GEMM and HCGEMM kernels, respectively. The generic MAGMA
ernel is the best performing kernel for sizes ≈ 10 and up. For
izes smaller than 10, themagma-small kernel is the best solution,
hough no Tensor Cores are used. This is an interesting obser-
ation that nicely aligns with Fig. 17. Suboptimal TC utilization
Fig. 19. Performance of the batched HCGEMM kernels. Results are for small
square sizes up to 16, with batchCount = 10k, on a Tesla V100-PCIe GPU.

does not give access to the full 125 teraFLOP/s of compute power.
Depending on the utilization (which is impacted by the problem
size), the available compute power through the TCs may be lower
than the available compute power without them. The threshold of
25% shown in Fig. 17 is the ratio between the full FP16 compute
power in both situations. A utilization below this threshold may
give the advantage to a kernel that does not use the TCs. This
is realized in Figs. 18 and 19, where the magma-small kernel
outperforms any kernel that uses the TCs as long as the problem
size is below ≈ 10× 10. For sizes larger than that, the use of TCs
begins to pay off. For the batched HGEMM kernel, the observed
speedups against cuBLAS are between 6.6× and 8.4×. For the
atched HCGEMM, the use of the interleaved layout adds an extra
dvantage for the MAGMA kernels, which score speedups up to
1.8×.

9. Conclusion and future work

This paper introduced optimized batched matrix multiplica-
tion kernels using FP16 arithmetic on GPUs. The developed ker-
nels address both half and half-complex precisions, and take
advantage of the Tensor Core accelerator units in NVIDIA GPUs.
The kernels share a common abstraction layer that encapsulates
several constraints when calling the vendor-supplied APIs for
programming the TC units. For half-precision matrices (batched
HGEMM), the developed kernel outperforms cuBLAS for sizes up
to 128, with speedups ranging between 1.5× and 2.5×. For sizes
larger than 128, the developed kernel is still very competitive
with cuBLAS—except for sizes multiple of 8, where cuBLAS has
a clear advantage. For half-complex matrices, the paper shows
that the standard interleaved layout provides a better solution
than using planar layouts. This is mainly due to the increased
operational intensity. The developed batched GEMM for complex
matrices (batched HCGEMM) is between 1.7× and 7× faster than
the cuBLAS solution using planar layouts. The paper also discusses
special optimizations for extremely small problems, where the
use of the TC APIs is questionable. The overall solution for tiny
matrices can be up to 8.4×/21.8× faster than cuBLAS for the
batched HGEMM and HCGEMM kernels, respectively.

The development of optimized matrix multiplication kernels is
usually the most important step in developing higher-level dense
linear algebra algorithms. The developed kernels can be used
in reduced precision factorizations as well as mixed-precision
solvers for linear systems of equations. The role of auto-tuning
is critical in maintaining performance portability across different
architectures. Some applications also require batches to have
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roblems of different sizes. All of these directions are promising
or future work based on the developed kernels.
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