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CHAPTER 1

Highlights of the C++ API

This chapter revisits the design of the C++ API for batch BLAS, which has been previously
proposed in SLATE Working Note #4 [1]. The chapter focuses on the design aspects that would
affect the implementation of the API itself.

1.1 A Unified API for All Purposes

The main motivation behind a C++ API is to take advantage of certain features that are absent in
other programming languages, such as C and Fortran. In fact, the diverse expectations of what
batch BLAS routines can do have led to many divergent C APIs from different vendors and
library developers, as previously discussed [1]. Two main reasons have led to such divergent
APIs. The first is inability to overload function names in C, and the second is the absence of
standardized containers that can encapsulates useful information for batch BLAS routines.

The proposed C++ API is a unified API that can cover all the possible use cases of a batch BLAS
routine. It uses the std: :vector container to encapsulate vector arguments. The size of the
vector determines whether an input argument is fixed/varied across the batch. For example, a
vector of size one means that such an argument is unified across the batch. This eliminates the
need for unnecessary duplications, and removes the border between batches of “strictly fixed”
sizes and batches of “strictly variable” sizes. The API is flexible enough to host any combination
of unified/varying arguments.

The proposed API also takes advantage of the function-overloading. In order to support both
host CPUs and accelerators (e.g. GPUs), the API distinguishes between the two targets by using
an extra argument for accelerators. Such an argument is the C++ Queue class, which abstracts the
accelerator data types, runtime calls, optimized BLAS calls, and other accelerator-specifics that
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are dependent on the hardware itself. The proposition also uses C++ namespaces to distinguish

between batch BLAS calls, and regular (non-batch) calls.

1.2 API Example

The C++ API for batch matrix multiplication GEMM looks like:

namespace blas{

namespace batch{

inline

void gemm(

std::
std::
std::
std::
std::
std::
std::
std::
std:
std::

vector<blas::0p>
vector<blas::0p>
vector<int64_t>
vector<int64_t>
vector<int64_t>
vector<float >
vector<floatx>
vector<floatx>

:vector<float >

vector<floatx>

const size_t batch,

All vector arguments are passed by reference in order to avoid unnecessary copies. The same
routine name is overloaded to support accelerators. In this case, the API accepts a blas: :Queue

const
const
const
const
const
const
const
const
const
const

object as an extra argument.

namespace blas{

namespace batch{

inline

void gemm(

std::
std::
std::
std::
std::
std::
std::
std::
std::
std::

vector<blas::0p>
vector<blas::0p>
vector<int64_t>
vector<int64_t>
vector<int64_t>
vector<float >
vector<floatx>
vector<floatx>
vector<float >
vector<floatx*>

const size_t batch,
blas::Queue &queue );

const
const
const
const
const
const
const
const
const
const

&transA,
&transB,
&m,

&n,

&k,
&alpha,
&Aarray,
&Barray,
&beta,
&Carray,

&transA,
&transB,
&m,

&n,

&k,
&alpha,
&Aarray,
&Barray,
&beta,
&Carray,

std::
std::

std::
std::

std::
std::

std::
std::

vector<int64_t> const
vector<int64_t> const

vector<int64_t> const
vector<int64_t>

vector<int64_t> const
vector<int64_t> const

vector<int64_t> const
vector<int64_t>

&ldda,
&1ddb,

&lddc,
&info );

&ldda,
&lddb,

&lddc,
&info,
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1.3 Ensuring Correct Semantics

As mentioned before, the size of each vector plays an essential role in the semantics and the
behavior of the batch routine. Each batch routine is equipped with a thin layer, called size
error checking, that checks for the correctness of the semantics imposed by the vector sizes. In
fact, there are some semantically-wrong use cases for each batch routine. Such use cases are
detected in the size error checking layer, and an exception is thrown to the user. As an example,
each input vector can have one of two sizes (1 or batch). However, it is semantically wrong to
have the matrix A vector of size = 1, for example, while the corresponding 1da vector is of size
batch. This is because a single matrix cannot have multiple leading dimensions. The size error
checking layer is responsible for detecting similar wrong use cases at the very beginning of the
routine call.

batch index 0 \ 1 \ 2 \ 3
transA NoTrans

transB NoTrans ‘ Trans

m 16

n 32 8-1 | 24 50

k 16

alpha (670} (6751 ‘ (65) Qs

A Aq6x16)

lda 20

B Boaex3s2) | Biexs) | Baaxie) | Bssox1e)
1db 16 18 2420 50
beta Bo b1 B2 B3

C Coex32) | Ciaexs) | Copex2a) | C3(16x50)
ldc 16

Table 1.1: An example batch GEMM use case

1.4 BLAS Error Checking

The regular BLAS error checking is available in the C++ batch routines. However, it provides
more flexibility to the user, who can choose one of three available error checking modes. It has
been shown before that the use of the legacy xerbla() function is not practical, and so it was
replaced by the info parameter. The latter is another std: : vector whose size determines the
behavior of the error checking layer. The user can totally skip the BLAS error checking layer
by passing info as an empty vector. If info.size() returns 1, that turns on an argument-based
error checking, where each argument is checked individually across all problems in the batch.
If an error is detected, the info parameter is set to a unique value that reflects the index of the
wrong argument, and an exception is thrown to the user. It is important to note that this mode
does not specify which entry of the vector caused an error. Checking subsequent arguments is
also canceled once an error is found in the current argument. On the other hand, if info.size()
is equal to the batch size, a more informative error checking is performed, where each problem
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has its own error code. The error code reflects the first error detected in the argument subset of
a certain problem. An exception is thrown if any error is detected. The user can inspect the
info vector by inserting the routine call in a try-catch statement.

As an example, consider batch GEMM call for 4 multiplications, as summarized in Table 1.1. All
operations share the same input matrix A, but have four different matrices for the B argument.
Note that this is a use case that is not supported by any software library, except for Intel MKL.
However, using MKL for the problem shown in Table 1.1 requires duplication of some arguments.
Since the MKL group interface requires identical arguments per group, the shown problem
must be divided into four different groups.

Imagine replacing some arguments with wrong values, which are shown in red in Table 1.1.
Depending on the error mode selected, the user gets different error codes. If info.size()
returns 1, then the user receives an exception due to the error in the n argument, with the value
of info set to —4. If info.size() returns 4, then an error code is generated for each problem,
and the info vector, upon exit, will have the values {0, —4, —10, 0}.

1.5 Summary

This chapter shed the light on some important features of the C++ API of batch BLAS. API
unification, semantic correctness, and error checking are features with the most influence on
the implementation, which is thoroughly discussed in Chapter 2.
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CHAPTER 2

Implementation Details

This chapter introduces details about the implementation of the C++ API for batch BLAS.
It focuses on the support for GPU accelerators, since they are the key to performance on
today’s heterogeneous supercomputers. In addition, the SLATE library is designed to use batch
BLAS (i.e. batch GEMM) on GPUs for the compute-intensive rank updates [2]. The extension for
group-based API or stride-based APIs [1] is not discussed.

2.1 GPU Abstraction Layer

The Batch BLAS++ is intended to support both host CPUs and hardware accelerators. Two
backends are considered for GPU support, namely NVIDIA’s cuBLAS library!, and AMD’s
rocBLAS libraryﬂ. Both libraries have a common structure, in terms of handles, execution
queues (i.e. streams), events, and others. The Batch BLAS++ will eventually abstract both
libraries, including data types and the BLAS routines provided by both. Currently, only the
cuBLAS backend is implemented. As an example, the following code shows the abstraction of
some cuBLAS (and eventually rocBLAS) data types.

#ifdef HAVE_CUBLAS

// types

typedef int device_blas_int;
typedef cudaError_t device_error_t;
typedef cublasStatus_t device_blas_status_t;
typedef cublasHandle_t device_blas_handle_t;
typedef cublasOperation_t device_trans_t;
typedef cublasDiagType_t device_diag_t;

'https://developer.nvidia.com /cublas
Zhttps://github.com /ROCmSoftwarePlatform /rocBLAS
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

2.1. GPUABSTRACTION LAYER CHAPTER 2

typedef cublasFillMode_t device_uplo_t;
typedef cublasSideMode_t device_side_t;

// constants

#define DevSuccess cudaSuccess

#define DevBlasSuccess CUBLAS_STATUS_SUCCESS
#define DevNoTrans CUBLAS_OP_N

#define DevTrans CUBLAS_OP_T

#define DevConjTrans CUBLAS_OP_C

#define DevDiagUnit CUBLAS_DIAG_UNIT
#define DevDiagNonUnit CUBLAS_DIAG_NON_UNIT
#define DevUploUpper CUBLAS_FILL_MODE_UPPER
#define DevUploLower CUBLAS_FILL_MODE_LOWER
#define DevSidelLeft CUBLAS_SIDE_LEFT
#define DevSideRight CUBLAS_SIDE_RIGHT
#elif defined (HAVE_ROCBLAS)

/* define rocBLAS types and constants */

#endif

. IMPLEMENTATION DETAILS

Another important abstraction is GPU errors, which can be categorized into runtime errors and
BLAS errors. The GPU abstraction layer in Batch BLAS++ abstracts both types of errors. The
macros device_error_check and device_blas_check throw exceptions to the user if an error is
encountered on the runtime/BLAS side, respectively.

namespace blas{

inline

bool is_device_error(device_error_t error){ return (error != DevSuccess); }

inline

bool is_device_error(device_blas_status_t status){ return (status != DevBlasSuccess); }
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// blaspp aborts on device errors
#define device_error_check( error ) \

do{ device_error_t e error; \
blas::internal::abort_if( blas::is_device_error(e), \
__func__, "%s", blas::device_error_string( e ) ); } while(0)

// blaspp aborts on device blas errors

#define device_blas_check( status ) \
do{ device_blas_status_t s = status; \
blas::internal::abort_if ( blas::is_device_error(s), \
__func__, "%s", blas::device_error_string( s ) ) ; } while(0)
} // namespace blas

0 N wWwN =

Following the abstraction of types, constants, and errors, some utility functions can also be
abstracted, such as conversion of constants and memory management.

namespace blas {

// conversion from BLAS++ constants to device constants

inline
device_trans_t blas::device_trans_const(blas::0p trans){
blas_error_if( trans != Op::NoTrans &&
trans != Op::Trans &&
trans != Op::ConjTrans );
device_trans_t trans_ = DevNoTrans;

switch(trans)

{
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3

case Op::NoTrans: trans_ = DevNoTrans; break;
case Op::Trans: trans_ = DevTrans; break;
case Op::ConjTrans: trans_ = DevConjTrans; break;
default:;

}

return trans_;

// memory allocation

template<typename T>

inline

Tx blas::device_malloc(int64_t nelements){

}

Tx ptr = NULL;

#ifdef HAVE_CUBLAS

device_error_check( cudaMalloc((void*x)&ptr, nelements * sizeof(T)) );
#elif defined (HAVE_ROCBLAS)

/* allocation on AMD GPUs x*/

#endif

return ptr;

// free a device pointer
inline
void blas::device_free(void* ptr){

3

#ifdef HAVE_CUBLAS

device_error_check( cudaFree( ptr ) );
#elif defined (HAVE_ROCBLAS)

/* free memory on AMD GPUs %/

#endif

} // namespace blas

While data transfers are possible through memory copy functions (e.g. cudaMemcpy), there are
sophisticated functions that are more useful for dense linear algebra. Such functions are part of
the vendor BLAS library, rather than the GPU runtime.

namespace blas {

// copy matrix to GPU
template<typename T>

inline

void blas::device_setmatrix(

3

int64_t m, int64_t n,

Tx hostPtr, int64_t 1ldh,

T* devPtr, int64_t 1ldd, Queue &queue){
#ifdef HAVE_CUBLAS
device_blas_check( cublasSetMatrixAsync(

(device_blas_int)m, (device_blas_int)n, (device_blas_int)sizeof(T),
(const void #*)hostPtr, (device_blas_int)ldh,
( void *)devPtr, (device_blas_int)ldd, queue.stream() ) );

#elif defined (HAVE_ROCBLAS)
/* call rocBLAS set matrix routine %/
#endif

// copy matrix from GPU
template<typename T>

inline

void blas::device_getmatrix(

int64_t m, int64_t n,

T* devPtr, int64_t 1ldd,

Tx hostPtr, int64_t 1ldh, Queue &queue){
#ifdef HAVE_CUBLAS
device_blas_check( cublasGetMatrixAsync(
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(device_blas_int)m, (device_blas_int)n, (device_blas_int)sizeof(T),
(const void *)devPtr, (device_blas_int)ldd,
( void *)hostPtr, (device_blas_int)ldh, queue.stream() ) );

#elif defined (HAVE_ROCBLAS)
/* call rocBLAS get matrix routine */
#endif

3

} // namespace blas

Finally, the GPU abstraction layer provides wrappers for all the BLAS routines that are sup-
ported by the vendor BLAS library. The APIs of such wrappers are compliant with the BLAS++
interface [3], except that they accept a blas: : Queue object to indicate that this is an accelerator
interface. As an example, the DGEMM interface for GPUs looks like:
namespace blas{
inline
void gemm(

blas::Layout layout,

blas::0p transA, blas::0p transB,

int64_t m, int64_t n, int64_t k,

double alpha,

double const *dA, int64_t ldda,

double const *dB, int64_t 1lddb,

double beta,

double *dC, int64_t lddc,
blas::Queue &queue );

All level-3 BLAS routines have C++ interfaces. These APIs are used to provide an reference
implementation for the use cases that are not directly supported by the vendor’s batch routines.

2.2 The blas::Queue Class

The Queue class provides an execution context for launching kernels on GPU accelerators.
It hides the complexity of setting up the proper environment for executing computational
workloads, GPU synchronization, calling the vendor BLAS routines, and others. In particular,
the current implementation of the Queue class provides the following functionalities:

(1) Aseamless selection of GPUs on multi-GPU systems. Each Queue object is simply bound
to a certain GPU.

(2) Setting up the vendor BLAS library, so that the user can directly call the C++ wrappers for
a given routine. For example, with a cuBLAS backend, the Queue class is responsible for
managing the cuBLAS handle, which is needed for most cuBLAS routines.

(8) Every Queue object has a distinct execution queue (e.g. CUDA stream for NVIDIA GPUs).
The object is responsible for creating, destroying, and launching kernels into the execution
queeu.

(4) The Queue class also provides the functionality of GPU synchronization, so that the host
CPU waits for the completion for all the workloads submitted into a given Queue object.
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Eventually, the Queue will also support more fine-grain synchronization against certain
tasks that are submitted to a given Queue object.

(5) A workspace on the GPU memory for the setup of batch routines is also provided. The
C++ API for batch BLAS uses std: : vector containers for scalar and array arguments. Such
vectors are stored in the CPU memory. In order to call the vendor-supplied batch BLAS
routines, array argument must be stored in the GPU memory. The blas: :Queue class
allows the user, through a constructor function, to set up a GPU workspace of certain size.
Such workspace is used underneath to copy the array arguments, if required.

The following code provides a basic implementation for the Queue class using CUDA (and
cuBLAS) as a backend.

namespace blas {

class Queue

{
public:
voidxx devPtrArray;
voidxx hostPtrArray;
Queue () {
blas::get_device( &device_ );
device_error_check( cudaStreamCreate (&stream_) );
device_blas_check( cublasCreate(&handle_) );
device_blas_check( cublasSetStream( handle_, stream_ ) );
3
Queue(blas::Device device, int64_t batch_size){
device_ = device;
blas::set_device( device_ );
hostPtrArray = blas::device_malloc_pinned<void*>( 3 x batch_size );
devPtrArray = blas::device_malloc<void*>( 3 * batch_size );
device_error_check( cudaStreamCreate (&stream_) );
device_blas_check( cublasCreate(&handle_) );
device_blas_check( cublasSetStream( handle_, stream_ ) );
3
blas::Device device() { return device_; }
device_blas_handle_t handle() { return handle_; }
void sync(){
device_error_check( cudaStreamSynchronize(this->stream()) );
3
“Queue (){
blas::device_free( devPtrArray );
blas::device_free_pinned( hostPtrArray );
device_blas_check( cublasDestroy(handle_) );
device_error_check( cudaStreamDestroy(stream_) );
b
private:
blas::Device device_; // associated device ID
device_blas_handle_t handle_; // associated device blas handle
cudaStream_t stream_; // associated CUDA stream; may be NULL
B
} // namespace blas
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2.3 Supporting Different Use Cases

The proposed C++ API supports significantly more use cases than what the vendor-supplied
routines provides. Most vendor libraries support only batches of fixed sizes. The C++ API
inspects the argument to see if there is a match between the input arguments and the signature
of the vendor’s batch routine. If a match is found, the C++ routine calls the wrapper of the
vendor’s batch routine. As an example, the C++ wrapper of the batch DGEMM routine looks like:

void DEVICE_BATCH_dgemm(
device_blas_handle_t handle,
device_trans_t transA, device_trans_t transB,
device_blas_int m, device_blas_int n, device_blas_int k,
double alpha,
double const * const * dAarray, device_blas_int ldda,
double const * const * dBarray, device_blas_int lddb,
double beta,
doublex* dCarray, device_blas_int lddc,
device_blas_int batch_size)

{
#ifdef HAVE_CUBLAS
cublasDgemmBatched( handle, transA, transB,
m, n, k,
&alpha, (const double*x)dAarray, ldda, (const double*x)dBarray, lddb,
&beta, dCarray, lddc, batch_size );
#elif defined (HAVE_ROCBLAS)
// TODO: call rocBLAS
#endif
3

If a match is not found, then the C++ routines switches to a reference implementation that
calls the vendor’s regular BLAS routine inside a for loop. The current implementation loops
sequentially over the operations in the batch, and, for each problem, submits a GPU kernel
to the input queue. A future enhancement to this implementation includes launching GPU
kernels into multiple concurrent queues.

2.4 A Complete Example for Batch GEMM

The following example shows a complete implementation of the batch DGEMM routine. The
implementation covers all the possible combinations of the input arguments.

inline

void gemm(
std::vector<blas::0p> const &transA,
std::vector<blas::0p> const &transB,
std::vector<int64_t> const &m,
std::vector<int64_t> const &n,
std::vector<int64_t> const &k,
std::vector<double > const &alpha,
std::vector<double*> const &Aarray, std::vector<int64_t> <const &ldda,
std::vector<doublex> const &Barray, std::vector<int64_t> <const &1lddb,
std::vector<double > const &beta,
std::vector<doublex> const &Carray, std::vector<int64_t> const &lddc,
const size_t batch, std::vector<int64_t> &info,
blas::Queue &queue )

-~

blas_error_if( batch < @ );

10
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18 blas_error_if( !(info.size() == || info.size() == 1 || info.size() == batch) )
19 if(info.size() > 0){

20 // perform error checking

21 blas::batch::gemm_check<double>( transA, transB,

22 m, n, k,

23 alpha, Aarray, ldda,

24 Barray, 1lddb,

25 beta, Carray, lddc,

26 batch, info );

27 3}

28 bool fixed_size = ( transA.size() == 1 &&

29 transB.size() == 1 &&

30 m.size() == 1 &&

31 n.size() == 1 &&

32 k.size () == 1 &&

33 alpha.size() == 1 &&

34 Aarray.size() == batch &&

35 ldda.size () == 1 &&

36 Barray.size() == batch &&

37 lddb.size () == 1 &&

38 beta.size() == 1 &&

39 Carray.size() == batch &&

40 lddc.size () == 1);

41

42 blas::set_device( queue.device() );

43 if( fixed_size ) {

44 // call the vendor routine

45 device_trans_t transA_ = blas::device_trans_const( transA[0] );
46 device_trans_t transB_ = blas::device_trans_const( transB[0] );
47 device_blas_int m_ = (device_blas_int) m[0@];

48 device_blas_int n_ = (device_blas_int) n[0@];

49 device_blas_int k_ = (device_blas_int) k[0@];

50 device_blas_int ldda_ = (device_blas_int) ldda[@];

51 device_blas_int 1lddb_ = (device_blas_int) 1lddb[@];

52 device_blas_int lddc_ = (device_blas_int) lddc[0];

53

54 // copy Aarray, Barray, and Carray to device

55 double *xdAarray, *xdBarray, *xdCarray;

56 dAarray = (doublex*)queue.devPtrArray;

57 dBarray = dAarray + batch;

58 dCarray = dBarray + batch;

59 device_setvector<doublex>(batch, (doublex*)&Aarray[@], 1, dAarray, 1, queue);
60 device_setvector<doublex>(batch, (doublex*)&Barray[@], 1, dBarray, 1, queue);
61 device_setvector<doublex>(batch, (doublex*)&Carray[@], 1, dCarray, 1, queue);
62 DEVICE_BATCH_dgemm( queue.handle(),

63 transA_, transB_,

64 m_, n_, k_,

65 alphal[@], dAarray, ldda_, dBarray, lddb_,
66 beta[@], dCarray, lddc_,

67 batch);

68 }

69 else{

70 for(size_t i = 0; i < batch; i++){

71 Op transA_ = blas::batch::extract<Op>(transA, i);

72 Op transB_ = blas::batch::extract<Op>(transB, i);

73 int64_t m_ = blas::batch::extract<inté64_t>(m, i);

74 int64_t n_ = blas::batch::extract<inté64_t>(n, i);

75 int64_t k_ = blas::batch::extract<inté64_t>(k, i);

76 int64_t lda_ = blas::batch::extract<int64_t>(ldda, i);
77 int64_t ldb_ = blas::batch::extract<int64_t>(lddb, i);
78 int64_t ldc_ = blas::batch::extract<int64_t>(lddc, i);
79 double alpha_ = blas::batch::extract<double>(alpha, i);
80 double beta_ = blas::batch::extract<double>(beta, i);

81 doublex dA_ = blas::batch::extract<doublex>(Aarray, i);
82 doublex dB_ = blas::batch::extract<doublex>(Barray, i);
83 doublex dC_ = blas::batch::extract<double*>(Carray, i);
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blas::gemm(

Layout::ColMajor, transA_, transB_, m_, n_, k_,
alpha_, dA_, lda_,

dB_, 1ldb_,
beta_, dC_, ldc_, queue );

}

The routine starts with two trivial checks of the batch size and the info vector size. The latter is
very important to verify that the user has selected a valid size that matches one of the available
error checking modes.

The second step is to perform the error checking if info.size() returns a non-zero value. The
gemm_check performs the required BLAS error checking. It also verifies the integrity of the input
vector sizes. The third stage is to decide whether there is a match between the input use case and
the vendor’s batch routine. As mentioned before, all GPU vendor libraries support only fixed
size batches. The flag fixed_size tests such a match. If it is true, then the C++ routine directly
invokes the vendor’s batch routine. Note that all the pointer arrays have to copied from the
CPU memory space to the GPU memory space. This is where the workspace inside the Queue
object becomes very useful. If the flag fixed_size is false, then the reference implementation
is invoked. Note that the loop heavily relies on the extract function, which reads the input
arguments for each individual operation, after which the non-batch blas: : gemm is called.

2.5 Summary

This chapter presented the implementation details of the C++ Batch BLLAS. The chapter focuses
on batch matrix multiplication as an example. It shows an implementation of a software stack
that abstracts the hardware details at the very bottom, wraps necessary utility functions and
regular BLAS routines, and then moves up to provide a very flexible API for batch BLAS at
the top of the stack. Considering performance, the C++ implementation has the ability to call
optimized vendor routines if the input use case is vendor-supported. Otherwise, a reference
implementation is provided to maintain a complete coverage of all the possible use cases
of a batch routine. Future improvements on the vendor size, regarding either performance
optimization or wider coverage, can be reflected very easily and transparently without any
change to the APIs exposed to the user.
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CHAPTER 3

Performance Numbers

In this chapter, we present the performance of selected C++ batch routines with respect to the
overheads associated with maintaining a very flexible interface.

3.1 Analysis of Overheads

In general, there are two categories of overheads for the implemented C++ API:

(1) Permanent Overhead. This overhead is mainly associated with hardware accelerators,
where a memory copy is required from the host memory space to the device memory
space. Since the C++ API uses std: : vector containers, which reside in the CPU memory
space, a device memory copy is required for all array arguments of the batch routines. As
of today’s vendor libraries, this corresponds to the pointer arrays of the data arguments
(e.g. matrices and vectors). Such source of overhead exist in all use cases. It can be avoided
in the future by adding a thorough support for the std: : vector containers in the device
runtime. In such a case, a vector can be directly initialized in the GPU memory space, and
no copy is required.

(2) Controllable Overhead. This source of overhead is associated with error checking, which
is not trivial in batch BLAS, especially with an API that support numerous use cases. The
overhead can be totally avoided by turning error checking off. If error checking is turned
on, then the overall performance of the batch routine depends on whether the check is
set to be argument-wise or problem-wise.

The following experiments illustrate the impact of such overheads on the performance of batch
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batch dgemm, N = 32, Pascal P100 GPU
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Figure 8.1: Performance analysis of batch DGEMM on square matrices of size 32

matrix multiplication in double precision DGEMM. Each experiment considers square matrices of
a given size, and shows the observed performance while varying the size of the batch.

3.2 Small-to-medium Sizes

Figures 3.1 and 3.2 show the performance for batch DGEMM on square matrices of size 32 and
128, respectively. The first observation is that, even with the error checking turned off, call-
ing cuBLAS natively is faster than calling the C++ API. The reason behind such behavior is
permanent overhead of sending the pointer arrays from the std: : vector containers on the
CPU memory to the pointer arrays that are resident on the GPU memory. Such overhead is
significant in Figure 3.1, because the matrix size is very small. However, even for small sizes,
the communication overhead decreases consistently as the batch size grows. As an example,
Figure 3.1 shows that cuBLAS is 3.4x faster than BLAS++ with no error checking for a small
batch of 100 operations. Such speedup shrinks significantly to 1.3x for a batch of 1800. It is
also clear that turning on any of the two error checking modes results in more overhead, and
therefore, less performance.

Figure 3.2 shows that, as the size of the problem grows, all sources of overheads become less
significant. The native cuBLAS call is only 1.10x-1.16x faster than BLAS++ with no error check-
ing. The overhead can become almost negligible if the batch contain more operations. Another
interesting observation is that the error checking is significantly faster when it configured to
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batch dgemm, N = 128, Pascal P100 GPU
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Figure 8.2: Performance analysis of batch DGEMM on square matrices of size 128

1.4

be problem-wise rather than argument-wise. The former contains more parallel work. Each
operation is independently checked in parallel, and its respective entry in the info vector is set.
On the other hand, the argument-wise error checking is costly because a reduction operation is
required after checking every argument, unlike the problem-wise mode, which require exactly
one reduction at the very end to test if any entry of info is non-zero.

3.3 Relatively Large Sizes

Figures 3.3 and 3.4 show more promising results for BLAS++. In general, the overheads are less
significant, and the problem-wise error checking is always faster than the argument-wise error
checking. For sizes 256 x 256, the performance of BLAS++ is almost identical to cuBLAS for
large batches. More importantly, turning on error checking by problem is not a source of large
overhead, as the performance stays close to its native upper-bound.

In Figure 3.4, calling BLAS++ with either no error checking or with problem-wise checking is
almost identical to natively calling cuBLAS, which means that the overheads are negligible. The
argument-wise error checking still suffers from performance drops that are mostly associated
with the frequent reduction operations.

In typical use cases, it is recommended to turn on any of the error checking modes during
development runs only to check for potential errors or development bugs. Production runs
should always turn off any error checking in order to get the best performance out of BLAS++.
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batch dgemm, N = 256, Pascal P100 GPU
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Figure 3.3: Performance analysis of batch DGEMM on square matrices of size 256

batch dgemm, N = 512, Pascal P100 GPU

4500
4000
3500
3000
2500
2000
1500
1000

Gflop/s

-o-
: : : : blaspp - no check -+
BOO i ZRTETTITINY CITTRPRTINS B blaspp - check by pb .= |
: : : : o

ble}spp - qheck by arg

0 i i i i
O 02 04 06 0.8 1 12 14 16 1.8
Batch size (x 1000)

Figure 3.4: Performance analysis of batch DGEMM on square matrices of size 512
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Recall that such reconfiguration is very easy in BLAS++. By resizing the info vector, the behavior
of BLAS++ is controlled. The size of the info can be even configured as a runtime argument, so
that no change to the developed code is required.

3.4 Summary

This chapter introduced some performance tests to Batch BLAS++, taking batch matrix multipli-
cation as an example. In general, calling the C++ API is equal or slower than natively calling the
vendor-supplied API. Relatively large problems encounter nearly negligible overheads, since
most of the execution time is spent performing the actual operation. Small to medium size,
however, suffer from some overheads that are associated with error checking, as well as the
necessary host-to-device communication to set the array arguments of the batch APL

17



Bibliography

[1] Ahmad Abdelfattah, Konstantin Arturov, Cris Cecka, Jack Dongarra, Chip Freitag, Mark
Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, and Panruo Wu. C++
API for Batch BLAS. Technical Report 4, ICL-UT-17-12, 12-2017 2017.

[2] Jakub Kurzak, Panruo Wu, Mark Gates, Ichitaro Yamazaki, Piotr Luszczek, Gerald Ragghianti,
and Jack Dongarra. Designing SLATE: Software for Linear Algebra Targeting Exascale.
SLATE Working Notes 3, ICL-UT-17-06, 10-2017 2017.

[8] Mark Gates, Piotr Luszczek, Jakub Kurzak, Jack Dongarra, Konstantin Arturov, Cris Cecka,
and Chip Freitag. C++ API for BLAS and LAPACK. Technical Report 2, ICL-UT-17-03,
06-2017 2017. revision 06-2017.

18



	Contents
	List of Figures
	List of Tables
	Highlights of the C++ API
	A Unified API for All Purposes
	API Example
	Ensuring Correct Semantics
	BLAS Error Checking
	Summary

	Implementation Details
	GPU Abstraction Layer
	The blas::Queue Class
	Supporting Different Use Cases
	A Complete Example for Batch GEMM
	Summary

	Performance Numbers
	Analysis of Overheads
	Small-to-medium Sizes
	Relatively Large Sizes
	Summary

	Bibliography

