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Abstract—We present a high-performance GPU kernel with a substantial speedup over vendor libraries for very small matrix

computations. In addition, we discuss most of the challenges that hinder the design of efficient GPU kernels for small matrix algorithms.

We propose relevant algorithm analysis to harness the full power of a GPU, and strategies for predicting the performance, before

introducing a proper implementation. We develop a theoretical analysis and a methodology for high-performance linear solvers for very

small matrices. As test cases, we take the Cholesky and LU factorizations and show how the proposed methodology enables us to

achieve a performance close to the theoretical upper bound of the hardware. This work investigates and proposes novel algorithms for

designing highly optimized GPU kernels for solving batches of hundreds of thousands of small-size Cholesky and LU factorizations.

Our focus on efficient batched Cholesky and batched LU kernels is motivated by the increasing need for these kernels in scientific

simulations (e.g., astrophysics applications). Techniques for optimal memory traffic, register blocking, and tunable concurrency are

incorporated in our proposed design. The proposed GPU kernels achieve performance speedups versus CUBLAS of up to 6� for the

factorizations, using double precision arithmetic on an NVIDIA Pascal P100 GPU.

Index Terms—Batched computation, GPUs, variable small sizes

Ç

1 INTRODUCTION

ALTHOUGH it might seem like an attractive idea to focus
the efforts of the high-performance computing (HPC)

community on addressing large-scale problems, the experi-
ence of the research community over the last few years has
clearly shown that applications that use many small matri-
ces or tensors cannot make efficient use of modern HPC sys-
tems and the associated vendor-optimized linear algebra
libraries. The existing libraries have been designed for large
matrices, and—historically—the scope of vendor libraries
has been too narrow to address matrix computation prob-
lems. Consequently, the performance that these libraries
deliver tends to be inadequate. Moreover, there are good
reasons to believe that neither improved compiler technol-
ogy nor autotuning will make any significant headway on
this problem. This lack of coverage by current library infra-
structure is especially alarming because of the number of

applications from important fields that fit this profile,
including deep learning [1], data mining [2], astrophys-
ics [3], image and signal processing [4], [5], hydrodynam-
ics [6], quantum chemistry [7], and computational fluid
dynamics (CFD) and the resulting partial differential equa-
tions (PDEs) through direct and multifrontal solvers [8],
to name a few. Dramatically better performance on these
applications can be achieved by using software that can
repetitively execute small matrix/tensor operations grou-
ped together in “batches.” However, the near total lack of
such capabilities in existing software has forced users to
rely on different inefficient solutions.

For example, in the NWChem package used in chemistry
problems, the computation of the two-electron integrals and
the Fock matrix becomes a bottleneck when many integrals
of small size have to be computed independently, which
shows the necessity of optimized batched libraries. More-
over, in [9], the authors discussed the optimization of
NWChem for Intel’s MIC architecture and highlighted the
need for tensor computations of about 200–2,000 matrices
from 10� 10 to 40� 40 in size. In his dissertation, David
Ozog discussed NWChem’s Tensor Contraction Engine
(TCE) and revealed how strongly it relies on the perfor-
mance of general matrix-matrix multiplication (GEMM) in
the computation of the tensor contraction. In the summary
of the work done by [10], the authors noted that small
matrix computations have a severe bottleneck, and special-
ized libraries are required. The need for efficient libraries
for thousands of small matrix computations was also dis-
cussed at NVIDIA’s GPU Technology Conference in 2016
by Mniszewski et al. [11] in the context of their research on
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quantummolecular dynamics, where the dense matrix com-
putation can be performed as an independent set of compu-
tations. Another important motivation is that the matrix
polynomial can be computed in a batch fashion as a set of
small, independent computations [12].

Deep Learning communities have also showed a signifi-
cant interest in computations involving many small matri-
ces. NVIDIA [13] already highlighted the need for a batched
GEMM routine and has also started providing some of the
batched routines (e.g., GEMM, triangular solver matrix
[TRSM], LU, QR, inversion) for fixed size in their cuBLAS
library. Nervana [14], which is one of the pioneers of deep
learning, demonstrated the critical need for batched matrix
computation kernels for high-performance deep learning
software. Intel has also provided batched GEMM and
batched TRSM routines for fixed matrix sizes.

For the block-mass, weighted Hessian in the molecular
dynamics simulation [15], computing the eigendecomposi-
tion involves computing the eigendecomposition of many
small, independent matrices, which can be viewed as a
batched eigendecomposition. In addition to the package
cited above, we note that in the GROMACS package [16],
because the particle-particle and mesh interactions are inde-
pendent, batched computation can be used to speed up and
overlap the expensive global communication in the Particle-
mesh Ewald (PME). Also, in [17], the authors noted the
need for optimized and hardware-aware basic linear alge-
bra subprograms (BLAS) to perform many independent
computations inside the GROMACS MD simulation.

The approach behind Flash Principle Component Analy-
sis (FlashPCA) performs a large number of eigendecompo-
sitions across many samples. Also, in combustion and
astrophysics supernova applications [3], [18], [19], [20], [21],
the study of a thermonuclear reaction networks (XNet pack-
age) requires the solution of many sparse linear systems of
around 150� 150. Furthermore, the need for batched rou-
tines can be illustrated in radar signal processing [5], where
a batch of 200� 200 QR decompositions is needed, as well
as in hydrodynamic simulations [6], where thousands of
matrix-matrix and matrix-vector (GEMV) products of matri-
ces of around 100� 100 are needed.

Although the brief introduction above shows some viable
approaches, it mostly highlights the keen awareness of the
need for batched libraries that can enable small matrix appli-
cations to finally start exploiting the full power of current
and future hybrid platforms. Some vendors have started to
provide some batched functionalities in their numerical
libraries (e.g., NVIDIA’s CUBLAS and Intel’s Math Kernel
Library [MKL]). Additionally, some open-source libraries
from the HPC community (e.g., the Matrix Algebra on GPU
and Multicore Architectures [MAGMA] library [22]) have
also started to deliver batched routines [23], [24], [25]. While
performance has been improving with these contributions,
there is still a lack of understanding of how to design, imple-
ment, analyze, and optimize batched routines to exploit
modern architectures at full efficiency. The goal of this paper
is to develop a theoretical analysis and a methodology for
high-performance linear solvers. As test cases, we take the
Cholesky and LU factorizations and show how the proposed
methodology enables us to achieve performance close to the
theoretical upper bound.

2 CONTRIBUTIONS

The primary goal of this paper is to propose a framework
design for batched algorithms and to study their efficient
implementations.WebelievethisstudywillhelpHPCapplica-
tion developers more effectively harness GPUs and achieve
performance close the theoretical peak of the hardware. Our
primarycontributionstothisendarelistedbelow.

� In addition to efficient implementations that exhibit
a good speedup, we provide a detailed analysis of
optimization techniques. We also present a collection
of best practices to help users understand and
develop batched computation kernels in a simple
and efficient fashion.

� We propose a methodology for designing a perfor-
mance model that provides insight into the per-
formance spectrum of batched kernels. The main
advantage of this model is that it helps predict the
achievable performance of the kernels with increased
accuracy.

� We investigated a model that simplifies the autotun-
ing process by considering hardware information
and representative experiments that enable us to
considerably reduce the configuration/parametriza-
tion search space. We expect this contribution to
drastically reduce the significant autotuning time
required by complex GPU kernels.

� We propose a modular design that relies on standard
data formats and interfaces to enable a straightfor-
ward connection with mainstream application code.

3 RELATED WORK

At the time of writing, there are no specifications for the com-
putation of batched small linear algebra problems. Conse-
quently, the Linear Algebra PACKage (LAPACK), which is
the de-facto standard library for linear algebra problems,
doesn’t provide such a functionality. However at the request
of users, NVIDIA added a few batch kernels to CUBLAS
6.5 [26]. Those additions include a batched version of both
BLAS and LAPACK. For BLAS kernels, batched GEMM and
batched TRSM have been released. More effort has been put
into the direction of LAPACK kernels, resulting in a batched
version of LU and QR factorizations, matrix inversion, and a
least squares solver. Similarly, in response to customer
demand, Intel’s MKL team released a batched GEMM,
while—at the time of writing—AMD does not provide any
batched operations. Vendor efforts on batched BLAS may
have a tremendous impact and enhance the portability of
HPC applications, much like optimized BLAS did [27] when
released. While real-world applications may require solving
a batch of smallmatrices of different dimensions, the batched
kernels developed by NVIDIA and Intel are limited to
the case where the matrix problems in the batch are of the
same dimension. NVIDIA’s release of four major batched
LAPACK–based routines is significant; however, they did
not address the problem of portability and device-specific
redesigns of the batched LAPACK algorithms.

Batched linear algebra concepts could be applied to mul-
ticore CPUs as well. Indeed, small problems can be solved
efficiently on a single core (e.g., using vendor-supplied
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libraries like MKL [28] or the AMD Core Math Library
[ACML] [29]), because the CPU’s memory hierarchy would
support a “natural” data reuse (small enough problems can
fit into small, fast memory). Besides memory reuse, to fur-
ther speed up the computation, vectorization can be added
to use the supplementary single instruction, multiple data
(SIMD) processor instructions—either explicitly as in the
Intel Small Matrix Library (SML) [30], or implicitly through
the vectorization in BLAS. Batched factorizations can then
be efficiently computed for multicore CPUs by having a sin-
gle core factorize a single problem at a time.

For higher-level routines, prior work has concentrated on
achieving high performance for large problems using hybrid
algorithms [31]. The motivation came from the fact that the
GPU’s compute power cannot be used on a panel factoriza-
tion as efficiently as it can on trailing matrix updates [32]. As
a result, various hybrid algorithms were developed—where
the panels are factorized on the CPU, while the GPU is used
for trailing matrix updates (mostly GEMMs) [33], [34]. For
large-enough problems, the panel factorizations and associ-
ated CPU-GPU data transfers can be overlapped with GPU
work. For small problems, however, this is not possible, and
our experience has shown that hybrid algorithms would not
be as efficient as they are for large problems.

To compensate for the lack of support for batched opera-
tions, application developers implemented customized
batched kernels using various approaches. For example, tar-
geting very small problems (no larger than 128� 128), Villa
et al. [35], [36] designed a GPU kernel for a batched LU fac-
torization, where a single CUDA thread, or a single thread
block, was used to solve one system at a time. Similar tech-
niques, including the use of single CUDA thread warp for a
single factorization, were investigated by Wainwright [37]
for LU factorization with full pivoting on small matrices of
up to 32� 32. These problems are small enough to fit in the
GPU’s shared memory (48 KB on a K40 GPU) and thus can
benefit from data reuse. Unfortunately, the results showed
these strategies do not exceed the performance of memory-
bound kernels like GEMV.

4 METHODOLOGY, ANALYSIS, AND DISCUSSION

In this section, we present our methodology for analyzing
high-performance batched linear algebra computations and
discuss the insight and theory required to design, implement,
and optimize algorithms to run efficiently on modern GPU
architectures. We also provide algorithm design guidance to
ensure an efficient and effortless portability of batched linear
algebra kernels across a large range of GPU architectures.

It is a common misconception that algorithm analysis is
only useful for squeezing the last possible 5 percent of
performance from very small matrix applications. In
other words, when forgoing this analysis, one sacrifices
only 5 percent in performance while avoiding a rigorous
algorithm analysis. While it is true that some specific multi-
core CPU applications do not gain much from algorithm
analysis, accelerator-based applications have far more
potential, since their underlying principles are fundamen-
tally different from conventional CPUs.

CPUs have accumulated design complexity that enables
them to optimize instruction streams by looking ahead

hundreds of instructions at a time. Consequently, CPUs can
resolve data dependence hazards, predict branch decisions,
and buffer cache/memory requests efficiently. The majority
of these features are missing from GPU “cores,” which—for
the sake of accuracy—should be called “processing units.”
Intel Xeon Phi coprocessors are only marginally better with
their basic cache coherency, but they still require program-
mer/compiler-directed scheduling to use their in-order exe-
cution at full efficiency. Thus, many factors and constraints
should be studied carefully to achieve relevant insight and
provide a design framework that could benefit the research
and development community. One of the main issues asso-
ciated with working on small matrices is that the overall
execution time is dominated by data transfer, because the
time required to process a small matrix on modern GPUs is
negligible. Put differently, the computation of small matri-
ces follows the trend of memory-bound algorithms, and the
performance strongly correlates with data transfer rather
than floating-point operations (FLOPs).

On CPUs, very small matrices are more likely to remain in
at least the L2 cache. With such a configuration, using each
core to solve one problem at a time is enough to achieve rea-
sonably high performance. This makes the development of
batched algorithms easy to handle and optimize with a rela-
tively small effort from the CPUs. However, for GPUs the
cache size is very small (48–64KB for on newerGPUs), which
makes batched linear algebra kernel implementation more
challenging. Building and implementing an efficient GPU
batched algorithm kernel requires an understanding and
analysis of many factors, whichwe address in this work.

In addition, we demonstrate that, because GPU applica-
tion design puts the focus on maximizing data throughput
rather than minimizing processing latency, the common
practice of optimizing a sequential implementation first and
then optimizing the parallel version no longer applies. For
well designed kernels focused on large matrix-matrix type
operations, autotuning helps a lot in achieving a good perfor-
mance. However, autotuning is becoming overrated in the
GPU programming community, where smaller matrices
reign supreme. A common misinterpretation of recent auto-
tuning studies is to believe that an efficient autotuning
framework is enough to harness a GPU’s performance. How-
ever, when it comes to operations like solving a batch of very
small matrix problems, even the most powerful autotuning
framework, without the correct algorithm design, will fail to
provide a good performance. That said, if one designs the
kernel using both an algorithmic analysis and a good under-
standing of the underlying hardware, the autotuning frame-
work can be simplified and tested/implemented. Unlike
most autotuning approaches, though, our strategy does not
require hundreds of thousands of runs followed by result
interpretations to provide an efficient kernel.

Finally, we analyze the effect of reshaping the data stor-
age into a non-conventional storage to design highly opti-
mized kernels for batches of small linear algebra operations.

4.1 Theoretical Analysis and Performance
Roofline Model

In this section, we discuss the theoretical analysis of algo-
rithms designed for batches of very small matrix problems.
A detailed study based on Cholesky and LU factorization
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algorithms are used for the sake of illustration. The roofline
model for processing very large matrices can be easily pre-
sented without much complexity. On the other hand, work-
ing out an accurate roofline model for matrices of small to
medium size involves a lot of complexities related to both
the algorithm and the hardware itself.

The roofline model for large size matrix computations
has been widely studied, and a remarkable discussion of
matrix computation roofline models by James Demmel can
be found in [38]. In general, large matrix computation algo-
rithms can be classified into three categories, listed below.

(1) Compute-Intensive Algorithms. The first category incl-
udes compute-intensive algorithms, which are char-
acterized by a high arithmetic intensity. Arithmetic
intensity is the ratio of total FLOPs to total data
movement (bytes). In this case, the computation time
is dominant compared to the data transfer time.
Consequently, a good implementation could easily
overlap the communication time with computation,
which leads to a roofline model mostly defined by
the arithmetic intensity. The upper bound is then
limited by the computation’s peak performance. As
an example, an optimized GEMM kernel for large
matrices can achieve performance close to that of the
machine’s peak.

(2) Memory/Bandwidth-Bound Algorithms. The second cat-
egory includes low arithmetic intensity algorithms—
also known as memory-bound algorithms or
bandwidth-bound algorithms. Matrix-vectors and
vector-vector operations are typical examples of
these algorithms.

(3) Compute-Intensive, Bandwidth-Bound Algorithms. The
third category deals with algorithms that lie some-
where between the previous two. These algorithms
require a detailed analysis in order to evaluate their
performance upper bound. This is the case, for
example, when applying matrix-matrix operations
on small matrices. While a matrix-matrix operation
itself has a high arithmetic intensity, owing to the
significant data transfer latency, the time to process
the small matrices may be closer to the time required
to move the matrices. Since processing very small
matrices falls in this category, we provide more
details on assessing its performance upper bound
and give some recommendations for medium-size
matrix computations.

The theoretical bound of floating-point performance is
computed as follows: Pmax ¼ FLOPs=Tmin, where FLOPs is
the number of floating-point operations, and Tmin the mini-
mum time to solution. The Tmin can be defined as

Tmin ¼ minðTRead þ TCompute þ TWriteÞ: (1)

Depending on the implementation and the type of algo-
rithm, there might be some overlap between the data trans-
fer step (read and write) and the computation steps.
However, on modern high-performance architectures that
are capable of achieving many FLOPs per cycle per core, the
time required to read and write very small size matrices is
about 1–2 orders of magnitude higher than the computation

time. The time to read or write is predefined by the band-
width, while the computation time is determined by both
the speed of the hardware and the efficiency of the imple-
mentation. Thus, for very small matrix operations, any
algorithm—even the historically compute-intensive matrix-
matrix multiplication—is bounded by the data movement,
and its upper-bound performance can be easily derived. For
a generic description, and for matrices of medium size
(larger than 32� 32), we assume that the algorithm is ele-
gantly designed. This means that the algorithm has the best
computation/communication overlap, even though it is less
likely to be the case for very small matrices. In such a situa-
tion, one can easily predict the minimal time Tmin and thus
the performance upper bound.

Let us take LU factorization as an example. The LU fac-
torization algorithm reads an n� n matrix, meaning n2 ele-
ments, and processes 2

3n
3 FLOPs and writes back n2

elements. On the other hand, in double precision, an NVI-
DIA P100 GPU can perform 5,300 gigaFLOP/s, while its
maximum achievable read/write bandwidth is about
600 GB/s. On the P100 hardware, the time to transfer one
byte is approximately 9� higher than the time required to
complete one FLOP. Consequently, the time to complete a
batch of small matrices operations will be dominated by the
data transfer time. In other words, even with a full overlap,
the minimal time will be bounded by the data movement
time, making the computation time negligible. To approxi-
mate the roofline upper bound, we can define

Pupper bound ¼ FLOPs=Tdata transfer ¼ FLOPs� b

M
; (2)

where FLOPs is the number of floating-point operations, b
is the achievable bandwidth of the hardware, and M is the
size of the data to be moved (load and store).

4.2 The Occupancy and Bandwidth Analysis

GPU occupancy has been treated as a performance indicator
for many years. Unfortunately, although the occupancy is
correlated to performance, it does not necessarily imply that
a code that achieves a high occupancy will also deliver high
performance.

The importance of the occupancy parameter and its cor-
relation to high performance varies between compute-
intensive kernels and bandwidth-bound kernels. For exam-
ple, with about 12 percent occupancy, a compute-intensive,
matrix-matrix multiplication achieves performance close to
that of the machine’s peak. The performance of a compute-
intensive kernel is determined by the amount of data reuse
(i.e., a high arithmetic intensity). More over, occupancy is
not the most determinant factor in achieving good perfor-
mance. In fact, the occupancy is defined as the ratio of active
threads running over the total number of active threads
supported by the hardware (2,048 threads for the NVIDIA
P100 GPU). For example, if there are 336 thread blocks (TBs)
executing simultaneously on each of the P100’s 56 streaming
multiprocessors (SMXs), and each uses 256 threads, then the
occupancy is ð6� 256Þ=2048 ¼ 75%. A bandwidth-bound,
matrix-vector kernel attains about 3 percent of the machine
peak, while it reaches about 95 percent of the achievable
bandwidth with an occupancy between 60–90 percent.
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Since it is a bandwidth-bound kernel, it is always preferable
to use bandwidth as the metric rather than FLOPs per sec-
ond (FLOP/s).

As shown by the representative experiment in Fig. 1, the
achievable bandwidth strongly correlates to the number of
threads per TB and to the number of TBs running simulta-
neously per SMX. In other words, the achievable bandwidth
is strongly correlated to the total number of threads running
on an SMX. We use the metric “per SMX” since the GPU
hardware specifications are mostly defined by the number
of SMXs. However, for the sake of clarity, when we show
6 TBs/SMX, we mean that there are 56� 6 ¼ 336 TBs
running on the whole P100 GPU. This will be one of the
important data points to consider when implementing a
memory-bound algorithm or when designing a batched
algorithm for small-size matrices. Note that any type of
algorithm that operates on small amounts of data is consid-
ered to be bandwidth-bound as shown in Section 4.1.

The number of threads per TB is mostly related to the
algorithmic design of the target application. For example, a
Cholesky factorization proceeds column by column, from
left to right. One column is processed at a time followed by
the update of all the right-side columns, while the columns
on the left remain untouched. These algorithm details, along
with the matrix size, are very important and should guide
the design choices when considering thread configurations.

To design a kernel for a batched Cholesky factorization,
one has the choice of using a 1-D or a 2-D grid of threads for
each matrix factorization. For anm�m square matrices fac-
torization, the 2-D configuration is the most intuitive choice
since the implementation can be straightforward, with an
m�m thread mapping, resulting in a 1 : 1 thread-to-matrix
entry. Unfortunately, this will require using heavyweight
TBs, which are relatively expensive to manage. Put differ-
ently, using a 2-D configuration will result in limited TBs
per SMX, consequently inducing a low-bandwidth situa-
tion, as illustrated by the experiment depicted in Fig. 1. In
addition, the Cholesky algorithm is sequential by column,
and it is only during the update steps that the whole 2-D
grid can be involved (i.e., during a column process, all of
the threads that are not involved will be in an idle state, los-
ing a lot of resources). Another penalty associated with the
2-D configuration is the synchronization. In fact, a 2-D

configuration is more likely to exceed the warp size (32
threads), and barriers will be required when accessing
shared data.

To avoid the drawbacks exhibited by the 2-D configura-
tion, we propose a design based on a 1-D configuration. For
example, for an m�m matrix, we use a TB with m threads.
This means more work per thread and therefore more room
for parallelism.

4.3 An Analytical Study of the Algorithmic Design

This section is dedicated to the efficient implementation of
the Cholesky factorization kernel based on a design that
uses a 1-D grid of threads. Designing this kernel involves a
relatively high level of complexity. The design is critical
because a non-optimal decision could be penalizing in
terms of autotuning time.

Simply put, a basic kernel design could consist of the fol-
lowing steps. (1) Load the whole matrix into the shared
memory or into the register. (2) Perform all necessary com-
putations. (3) Finally, write the result back to the main
memory. This approach is the most common for compute-
intensive kernels used to solve large matrix problems. How-
ever, this design decision is not an attractive option for solv-
ing thousands of small, independent matrix operations. On
modern GPUs, the shared memory size is 64 KB per SMX.
This means that, in double precision, each SMX cannot hold
matrices larger than 80� 80. Therefore, a shared-memory
kernel that implements the algorithm, which consists of
loading the whole matrix into the shared memory and per-
forming the factorization, will be limited to solving matrices
that are 80� 80 or smaller in double precision and
160� 160 or smaller in single precision. Similarly, if we use
the register to hold the matrix, we will also be limited to
matrices that are 128� 128 or smaller in double precision
(the register file size is about 256 KB, while about half of
that will be used for internal variables and parameters). In
addition, using the full shared memory or too many regis-
ters will severely limit the number of active TBs per SMX.

According to our representative experiments illustrated
in Fig. 1, having 1–2 TBs per SMX will result in low
bandwidth. Since small-size matrix computations are
bandwidth-bound, using a few TB per SMX is a bad design
decision that can lead to poor performance. To achieve
good performance from very small–size matrices (up to
32� 32), one option is to use roughly 8þKB of shared
memory per TB, with 7 TBs per SMX. However, when the
matrix size exceeds 32� 32, another design option should
be investigated.

For the sake of simplicity, we rely on the shared-memory
implementation to describe the design for matrices larger
than 32� 32. The register-based version is very similar.
Later, we will revisit both the shared memory and the regis-
ter versions for LU factorization. To address matrices larger
than 32� 32, the key idea is to divide the whole matrix into
block columns—also known as “panels.” For example, an
n� n matrix will be divided into blocks of n� ib, where
ib—called the “block size”—is the number of columns per
block. This modification helps us avoid loading the whole
matrix directly into shared memory and instead allows us
to load it panel by panel. This is known as a “blocking
technique.” Since the panel factorization is mainly

Fig. 1. The achievable bandwidth based on the number of TBs per SMX
and the number of threads in each TB on the NVIDIA P100 GPU. Note:
to obtain the total number of TBs running on the whole GPU, the x axis
value should be multiplied by 56 since the P100 has 56 SMXs.
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sequential, splitting the factorization into panels is a reason-
able design decision.

There are many versions of the Cholesky factorization.
Here, we discuss the right-looking, the left-looking, and the
top-looking variants. As an example, we show the analysis of
the left-looking and the right-looking variants. In the right-
looking variant illustrated in Algorithm 1, thematrix is factor-
ized, per panel, from left to right. At each step, the current
panel is processed followed by an immediate update of the
panel at the right side of the current panel. In the left-looking
variant described in Algorithm 2, at each step the update
from previous panels (left side) are applied to the current
panel before performing the computations on the current
panel. In other words, the updates are applied as late as pos-
sible, while on the right-looking algorithm, the updates are
applied as soon as possible. We refer the reader to [39] for
further details on the different Cholesky implementations.

Algorithm 1. The Right-Looking Fashion

for i 0 tom Step ib do
// Panel factorize Ai:m;i:iþib
POTF2 Ai:iþib;i:iþib;
TRSM Aiþib:m;i:iþib ¼ Aiþib:m;i:iþib �A�1i:iþib;i:iþib;
// Update trailing matrix Aiþib:m;iþib:m
SYRK Aiþib:m;iþib:m ¼ Aiþib:m;iþib:m �Aiþib:m;i:iþib �AT

iþib:m;i:iþib;
end

Algorithm 2. The Left-Looking Fashion

for i 0 tom Step ib do
if (i > 0) then
// Update current panel Ai:m;i:iþib
SYRK Ai:iþib;i:iþib ¼ Ai:iþib;i:iþib �Ai:iþib;0:i �AT

i:iþib;0:i;

GEMM Aiþib:m;i:iþib ¼ Aiþib:m;i:iþib �Aiþib:m;0:i �AT
i:iþib;0:i;

end
// Panel factorize Ai:m;i:iþib
POTF2 Ai:iþib;i:iþib;
TRSM Aiþib:m;i:iþib ¼ Aiþib:m;i:iþib �A�1i:iþib;i:iþib;

end

To analyze the roofline bound of the right-looking variant,
let’s calculate the volume of the data transfer. At each itera-
tion, applying the updates from the current panel requires
loading and storing back all the panels at the right of the
current one. For the sake of exposure, the panels at the right
of the current panel will be referred to as the “trailing
matrix.” If the shared memory is used to hold the current
panel, then a register will be dedicated to the storage of a
portion of the trailing matrix to update and vice versa. The
main drawback exhibited by this algorithm is the unneces-
sarily large amount of data movement. In fact, the first panel
will be loaded once, only for its factorization. The second
panel will be loaded once to apply the updates for the first
panel, and the second panel will be loaded the second time
for its own factorization; in general, the kth panel will be
loaded k times. In terms of communication volume, at itera-
tion k, the current panel will be of size ðn� ðk� 1ÞibÞ � ib,
and the trailing matrix will be of size ðn� ðk� 1ÞibÞ�
ðn� k� ibÞ. The sum gives ðn� ðk� 1ÞibÞ2. However, since
the Cholesky factorization is applied to a symmetric posi-
tive definite matrix, only half of the matrix needs to be

considered, which reduces the communication volume to
1
2 ðn� ðk� 1ÞibÞ2. Since each panel is loaded and then stored
back, we can infer that the volume of data transfer can be
multiplied by two, which means that the total communica-
tion volume at the kth iteration is ðn� ðk� 1ÞibÞ2. Assum-
ing that the matrix is divided into p same-size panels
(n ¼ p� ib), the total volume of communications for the
right looking variant is

V ¼ data readþ data written

¼
Xp

k¼1
n� ðk� 1Þibð Þ2;

¼
Xp

k¼1
ðp� ib� ðk� 1ÞibÞ2;

¼ ib2
Xp

k¼1
ðpþ 1� kÞ2;

¼ ib2
p3

3
þ p2

2
þ p

6

� �
;

� ib2
p3

3
¼ ib2

n3

3ib3
;

� 1

3

n3

ib
:

(3)

In contrast, to the right-looking algorithm, the left-looking
variant loads a panel, applies the updates from previous
panels (left side of the panel), factorizes, and stores back.
With respect to the right-looking design, the current panel is
stored into the shared memory, portions of the matrix on its
left loaded into a register, in order to perform its update. At
the kth iteration, the volume of data involved in loading the
current panel and storing it back is ðn� ðk� 1ÞibÞ � ib, while
the volume of data required for moving the updates from
previous panels is ðn� ðk� 1ÞibÞ � ðk� 1Þib. Thus, the vol-
ume of communication at iteration k is kðn� ðk� 1ÞibÞib.
Since n ¼ p� ib, we get kðp� kþ 1Þib2: As consequence,
the total amount of communications for the left looking
variant is

V ¼ data readþ data written

¼ ib2
Xp

k¼1
kðp� kþ 1Þ;

¼ ib2
Xp

k¼1
ðkðpþ 1Þ � k2Þ;

¼ ib2 ðpþ 1Þ ðpþ 1Þp
2

� p3

3
þ p2

2
þ p

6

� �� �
;

¼ ib2
1

6
p3 þ 1

2
p2 þ 1

3
p

� �
� 1

6
ib2p3;

� 1

6

n3

ib
:

(4)

Since very small size matrix processing is bandwidth-
bound, and the performance depends on the volume of data
transfer, we can now derive the roofline performance upper
bound for both the right-looking and the left-looking variants.
The Cholesky factorization of an n� n matrix consumes
about 1

3n
3 FLOPs. Thus, with respect to Equation (2), in
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double precision, we can expect the right-looking version
to have an asymptotic performance upper bound of
1
3n

3 � 3ibb
8n3
¼ ibb

8 . Using the same method, the left-looking

variant will be bounded by ibb
4 , in double precision, which

means that—in theory—the left-looking variant could
achieve twice the performance of the right-looking imple-
mentation, in the context of very small size matrices. To
decide whether to use the right-looking or the left-looking
algorithm, a traditional approach consists of prototyping
both approaches and going through long autotuning
sweeps before assessing the performance of the two algo-
rithms. However, based on our effective algorithm analysis,
we proved that the right-looking variant is not suitable for
very small matrices.

At this point, the primary question is the effectiveness of
our algorithm analysis. In an ideal scenario, the bandwidth
b � 600 GB=s. With ib ¼ 8, the performance left-looking ker-
nel is bounded by 1,200 gigaFLOP/s. On the other hand, the
experimental results of our kernel based on the left-looking
design is depicted in Fig. 2a. As illustrated by the chart, the
performance obtained is far from the 1,200 gigaFLOP/s per-
formance upper bound. Achieving half of the upper bound
performance does not necessary mean that the computation
is expensive or sequential. It is important to note that the
results displayed have been intensively autotuned, and
only the best results have been reported.

A careful study of the design, along with the information
reported in Fig. 1, could—in fact—allow an accurate guess
of most of the results displayed in Fig. 2a. For the sake of
illustration, let us take n ¼ 512 and ib ¼ 8 as examples.
Based on the algorithm characteristics, the code requires

about n� ibþ ib2 elements to be stored in shared memory,
which is about 32.5 KB using 512 threads. As result, only
1 TB can run per SMX, meaning our achievable bandwidth
in this condition is about 420 GB/s. Consequently, a reason-
able performance upper bound is 840 gigaFLOP/s. This
demonstrates the effectiveness of our implementation.
However, more investigations may provide additional
information that will help us understand why we did not
make it close to the upper bound. An advanced analysis of
the Cholesky factorization revealed that, for the first panel,
the algorithm requires all 512 threads to work. However,
for the next panel, the number of threads required decreases

by ib and so on until the last panel, where only ib threads
have to work. This is an interesting clue for understanding
why we failed to reach the performance upper bound. Since
the real bandwidth is a function of the number of threads
and the number of TBs, we achieve 420 GB/s with 1 TB per
SMX, when 512 threads are working. But by using only 128
threads with 1 TB per SMX, the bandwidth decreases up to
200 GB/s. Thus, if we reformulate our performance analysis
based on these details, we can display the upper bound cor-
responding to each ib. With this, we realized in advance
that ib ¼ 8 or ib ¼ 10 will be among the optimal configura-
tions. This shows that our model can also serve as a base to
prune the autotuning search space. Consequently, the auto-
tuning process is simplified considerably.

As shown in Fig. 1, when a small number of threads are
used in a TB (e.g., 32 threads) it is beneficial to run more
than 8 TBs per SMX in order to extract a high bandwidth.
Unfortunately, run more TBs we have to decrease the value
of ib, which is more likely to decrease our roofline bound.
Therefore, ib ¼ 8 is the best scenario for the current design.
For example, for n ¼ 512, we need to allow more than 1 TB
per SMX when, say, only 64 threads are working. By study-
ing the algorithm, we found that the shared memory
requirement to reserve n� ibþ ib2 elements, where n is the
size of the matrix, is the constraint that does not allow more
than 1TB per SMX. However, for the factorization of a
remaining portion of size 64� 64, only 64 threads are
required, and in terms of memory, only 64� ibþ ib2 is
required, not the entire 512� ibþ ib2. To optimize the
shared memory usage, instead of allocating n� ibþ ib2 for
entire factorization, we revisited the algorithm to enable
launching a kernel for every panel with the appropriate
memory requirement. For example, when the remaining
portion is 64� 64, we need 64� ibþ ib2 as a shared memory
space, which will allow for an ib ¼ 8 achieving up to 14 TBs
per SMX using 64 threads each. Such a configuration is
bandwidth friendly, and we can expect to extract more than
550 GB/s—instead of 100 GB/s with the previous design.
This improvement is beyond the insight one can gain from
autotuning.

When implementing this third design, we used the same
kernel proposed above (design of Algorithm 2 left-looking),
but we now use an optimal shared memory allocated at

Fig. 2. Kernel design and autotuning of the Cholesky factorization.
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each step. Thus, we designed a fused GPU kernel that per-
forms the four routines of one iteration of Algorithm 2. Such
a design will minimize the memory traffic, increase the data
reuse from shared memory, and reduce the overhead of
launching multiple kernels. Our optimized and customized
fused kernel performs the update (SYRK and GEMM opera-
tions) and keeps the updated panel in shared memory to be
used by the factorization step. The cost of the left-looking
algorithm is dominated by the update step, (SYRK
and GEMM). The panel C, illustrated in Fig. 3, is updated
as C ¼ C �A�BT . In order to decrease its cost, we
implemented a double buffering scheme as described in
Algorithm 3. We prefix the data array with “r” to specify
the register and “s” to specify the shared memory. We pre-
fetch data from A into the register array, rAk, while a multi-
plication is being performed between the register array rAkk
and the array sB stored in shared memory. Since the matrix
B is the shaded portion of A, our kernel avoids reading it
from the global memory and transposes it in situ to the
shared memory, sB. Once the update is finished, the factori-
zation (POTF2 and TRSM) is performed as one operation
on the panel C, held in shared memory.

Algorithm 3. The Fused Kernel Correspond to One
Iteration of Algorithm 2.

rAk Aði:m;0:lbÞ; rC 0;
for k 0 tom� i Step lb do
rAkk rAk;
sB rAkði:lb;k:kþlbÞ inplace transpose;
barrierðÞ;
rA1 Aði:m;kþlb:kþ2lbÞ prefetching;
rC rC + rAkk�sB multiplying;
barrierðÞ;

end
sC rA1 - rC;
factorize sC;

This implementation achieves close to the peak band-
width, and—according to our model—in double precision
Pupper bound ¼ ibb

4 ¼ 1; 200 gigaFLOP/s. The performance of
this implementation is depicted in Fig. 2b. Not only did the
performance improve considerably, but we achieved perfor-
mance very close to the predicted theoretical peak, which
highlights both the efficiency of the implementation and the
accuracy of our model.

The objective of this example is to learn and understand
the expectation of a design without necessarily delving into
the implementation and autotuning efforts. There is also a
practical lesson from this study in that we now know

autotuning strategies can only help one get close to the theo-
retical peak of the algorithm being designed. To achieve rea-
sonable performance, one should investigate the design that
has the highest theoretical bound before investing in auto-
tuning. This should reduce the effort of researchers/devel-
opers in exploiting modern GPUs at full efficiency and
provide an accurate performance spectrum.

4.4 Analysis and Design of Batched LU
Factorization of Very Small–Size Matrices

In this section, we analyze another example of kernel design
for batched computations of very small matrices ranging in
size from 2� 2 to 32� 32. Using the LU factorization as an
example in this study, the analysis performed in this section is
similar to the experiments we defined for Cholesky. Since the
target sizes are very small (less than 32� 32), it is beneficial to
keep thewholematrix in sharedmemory or in the register.

To accurately estimate the number of TBs that we should
run simultaneously, we need a reliable estimate of the
amount of shared memory required. This is also true for the
number of registers. To ensure good performance, only a
limited number of registers can be allocated per thread. In
fact, for the number of registers per threads, beyond a cer-
tain bound, the number of TBs to run simultaneously will
be reduced to only a few, which is detrimental to the band-
width. To start our performance analysis, we first evaluated
the amount of shared memory required in cases where the
shared memory implementation is beneficial. We did the
same study for the register version (i.e., where the whole
matrix is stored in the registers). The left y-axis of Fig. 4
shows the amount of shared memory (in KBs) required for
the shared memory design (SH-MEM). The right y-axis of
Fig. 4 shows the number of registers per thread required by
the register design (REG-v1).

Using the data from Fig. 4, we try to predict the perfor-
mance bound of each design (SH-MEM and REG-v1) to
select the most suitable candidate.

Based on the design options and hardware constraints,
the optimal number of TBs per SMX can be approximated.
For the SH-MEM case, the estimated optimal ratio of TBs
per SMX is illustrated in Fig. 5 (orange curve). With respect
to hardware constraints, the maximum number of TBs per

Fig. 3. left-looking Cholesky factorization.

Fig. 4. The amount of shared memory (in KB) required by the SH-MEM
design (left y-axis) and the amount of registers per thread required by
the REG-v1 design (right y-axis) for the LU factorization in double preci-
sion for matrices ranging from 2� 2 to 32� 32 on an NVIDIA P100 GPU.
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SMX is 32 (depicted in grey). Consequently, any efficient
implementation of the SH-MEM design would need to set
the TBs per SMX ratio based on the minimum of the hard-
ware constraint (i.e., 32) and the estimate obtained from the
algorithm analysis. The SH-MEM design is implemented,
with the results illustrated by the blue curve of Fig. 4, where
the executed number of TBs per SMX were measured using
the NVIDIA profiler tools. The effectiveness of our design is
illustrated by the fact that the measured data matches the
model estimations. However, our objective is not limited to
determining the optimal TBs per SMX but rather to deduce
the possible performance peak based on the number of TBs
per SMX and to figure out the best implementation to opti-
mize (i.e., SH-MEM versus REG-v1). To this end, we did the
same study for the REG-v1 design and presented (Fig. 6) the
number of optimal TBs per SMX (orange curve) computed
from data on Fig. 4. Similarly, we also measured the exe-
cuted TBs per SMX during a real run of the code (blue
curve) to assess our prediction. A comparison between
Figs. 5 and. 6 reveals that both versions allow and use the
same number of TBs per SMX for matrices up to 20� 20,
above which the REG-v1 design allows a higher number of
TBs per SMX. Consequently, for matrices ranging from
2� 2 to 20� 20, the same performance can be expected
from both designs. However, for matrices beyond 20� 20,
the REG-v1 design should be preferred.

Fig. 7 shows the performance obtained (in gigaFLOP/s)
using the two designs. This experimental result is consistent

with our analysis (i.e., for matrices ranging from 2� 2 to
20� 20, the SH-MEM design and the REG-v1 design exhibit
similar performance). Also, as expected, for matrices larger
than 20� 20, the REG-v1 design outperformed the SH-
MEM design. Such consistency should be of a great interest
to the community, and the proposed model is an excellent
tool for understanding and analyzing the design of algo-
rithms prior to implementation. The model also allows us to
understand our code and let us find the correct optimization
path in order to achieve performance close to the theoretical
upper bound.

A further comparison of data from Figs. 5 and. 6, reveals
that the hardware constraint of the maximal number of TBs
per SMX was reached for matrices smaller than 12� 12. Fol-
lowing up, we focused on REG-v1, because it provided bet-
ter performance. The hard constraint we found for the
optimization was that we could not go beyond 32 TBs per
SMX. However, for matrices smaller than 12� 12, the TBs
used less than 32 threads; consequently, they were using a
sub-optimal amount of bandwidth. A higher bandwidth
could be achieved by increasing the number of working
threads. This was possible by revisiting our design and allo-
cating a 2-D grid of threads, where each 1-D grid operated
on an independent matrix. This workaround allowed us to
reach the maximal ratio of TBs per SMX. Now, one TB
would operate on Dim:y matrices. For example, we could
assign 128 threads (32� 4) to a TB and make it operate on
four independent matrices. This configuration increased the
total number of registers per SMX (4� in this example).

Using data from Fig. 4, we computed the number of TBs
per SMX, as illustrated in Fig. 6 (purple curve). The informa-
tion depicted in Figs. 1 and 6 has been decisive in evaluating
the optimal configuration of 2-D threads for matrices
smaller than 16� 16. With this in mind, we can say confi-
dently that the 32� 4 threads configuration would help
achieve even better performance. However, for matrices
larger than 16� 16, the new version of the register design
(REG-v2) will be more likely to run less than 6 TBs per
SMX, leading to an upper bandwidth of less than 10 TBs per
SMX of 32 threads each; consequently, the performance will
be lower when compared to REG-v1. This is not surprising
since REG-v2 is designed specifically for matrices smaller
than 16� 16.

In Fig. 8, we show the previous register design (REG-v1)
and the latest register design (REG-v3), where we used the

Fig. 5. Analysis of the number of TBs per SMX estimated. Real run for
the SH-MEM design of the LU factorization on an NVIDIA P100.

Fig. 6. Analysis of the number of TBs per SMX estimated. Real run for
the REG-v1 design of the LU factorization on an NVIDIA P100.

Fig. 7. Performance comparison of SH-MEM versus REG-v1 for the LU
factorization on an NVIDIA P100.
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2-D grid for matrices smaller than 16� 16 and kept the
REG-v1 design for matrices larger than 16� 16. We also
compared our implementation to the cuBLAS 8.0 batched
LU solver. The first observation is that the results match the
expectations of our analysis. The second point is related to
the efficiency of our implementation since it outperforms the
cuBLAS batched LU solver by about 3� on 32� 32matrices.

This paper does not aim to provide details on the
advancement of the LU factorization algorithm. However,
we would like to mention that it is possible to improve the
performance by delaying the algorithm’s swapping process,
as reported in [40]. This optimization does not affect the
number of registers or shared memory required and can
improve performance by 10 percent (purple curve of Fig. 8).

Finally, after all possible algorithm analysis and optimiza-
tion, we found it reasonable to apply autotuning strategies.
The autotuning experiments showed that an improvement
of only about 5 percent could be obtained on top of our
algorithm analysis.

4.5 The Interleaved Data Layout

We also investigated alternatives to conventional data stor-
age to assess possible improvements. Based on the analysis
outlined in this work, we believe that there may be a little
performance gain for matrices smaller than 20� 20.

When the matrices are very small, it becomes more chal-
lenging to have a coalesced memory read, and as the dimen-
sions of the matrices become smaller, it eventually becomes
impossible to have any coalesced reads at all for matrices
smaller than 16� 16. The easiest andmost basic way to solve
this problem is to reorder the dimensions in an interleaved
fashion (e.g., the first element of Matrix1 will be followed by
the first element of Matrix2 and so on, eventually moving
through all elements of every matrix). In this case, one warp
reads 32 elements, with the same row and column index in
32 consecutive matrices. It is true that data is now 128-byte
aligned, but this kind of storagewill not allow for an efficient
implementation on a GPU for matrices larger than 16� 16 in
double precision and for matrices larger than 32� 32 in sin-
gle precision. The reason being: 32 threads will be working
on 32 different matrices, thereby making it impossible to
hold data in shared memory or in the registers. On the P100
for example, this will limit the amount of shared memory
available for the panel of the Cholesky factorization to 2 KB.

This results in bad performance except for the sizes men-
tioned above, where the performance obtained from such a
design was close to that obtained with the standard design.
This kind of design might be interesting for a GEMV or
TRSV type of operation, where the matrix is read only once.
Recent studies on optimized batched BLAS kernels designed
for multicore architectures have shown promising results
over the classical approach of solving one problem per core
at a time [41], [42].

5 CONCLUSION AND FUTURE REMARKS

This paper presented a model and an analysis on how to
design GPU kernels for very small matrix computations. We
provided a detailed study of the optimization process, and
we also demonstrated how a detailed performance analysis
could help considerably reduce developer efforts and man
hours required to design an efficient GPU kernel. The pro-
posed work will also simplify the autotuning process,
where—instead of generating, running, and analyzing tens of
thousands of configurations—one can dramatically decrease
this number to a small subset. We showed a Cholesky factori-
zation and an LU factorization as case studies and showed
how we were able to reach the theoretical peak performance
of these kernels. The model is designed specifically for very
small matrices, where the computation is memory-bound,
and high performance can be achieved through a set of opti-
mizations different from those used in the more standard
large matrix computations. Future directions include study-
ing other algorithms of interest to the scientific community
and discoveringmore detailed optimization techniques in the
area of deep learning, where little research has been con-
ducted from this perspective.
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