
Design, Optimization, and Benchmarking of Dense
Linear Algebra Algorithms on AMD GPUs

Cade Brown, Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra
Innovative Computing Laboratory

University of Tennessee
Knoxville, USA

cbrow216@vols.utk.edu, {ahmad,tomov,dongarra}@icl.utk.edu

Abstract—Dense linear algebra (DLA) has historically been in
the vanguard of software that must be adapted first to hardware
changes. This is because DLA is both critical to the accuracy and
performance of so many different types of applications, and be-
cause they have proved to be outstanding vehicles for finding and
implementing solutions to the problems that novel architectures
pose. Therefore, in this paper we investigate the portability of the
MAGMA DLA library to the latest AMD GPUs. We use auto tools
to convert the CUDA code in MAGMA to the Heterogeneous-
Computing Interface for Portability (HIP) language. MAGMA
provides LAPACK for GPUs and benchmarks for fundamental
DLA routines ranging from BLAS to dense factorizations, linear
systems and eigen-problem solvers. We port these routines to
HIP and quantify currently achievable performance through the
MAGMA benchmarks for the main workload algorithms on MI25
and MI50 AMD GPUs. Comparison with performance roofline
models and theoretical expectations are used to identify current
limitations and directions for future improvements.

Index Terms—Numerical Linear Algebra, HPC, GPU Comput-
ing, AMD GPUs, HIP Runtime, Portability

I. INTRODUCTION AND RELATED WORK

GPUs are quickly evolving. Traditionally used for graphics
rendering, requiring high data throughput, GPUs excelled in
delivering very high bandwidth that is fundamentally needed
in computations well beyond graphics. The latest A100 GPU
from Nvidia, for example, features an unprecedented theo-
retical bandwidth of 1.6 TB/s. Along with bandwidth, com-
pute capabilities have also grown, reaching an outstanding
19.5 Tflop/s peak in FP64 arithmetic for a single A100
GPU. A well developed memory hierarchy has enabled data
reuse that alleviates the gap between data transfer rates and
compute capabilities, allowing many applications, e.g., based
on matrix-matrix products, to reach performances close to
the peak. By covering the entire spectrum from bandwidth-
limited to compute-bound computations, GPUs have become
a commodity hardware that is widely used in HPC. Currently,
more than 20% of the Top500 supercomputers use GPUs [1],
and future plans point to a trend that GPUs are here to stay.
The Summit and Sierra supercomputers at Oak Ridge and
Livermore Lab respectively, are the top supercomputers in
USA and both feature Nvidia GPUs. The first two Exascale su-
percomputers, Frontier and Aurora at Oak Ridge and Argonne
Labs respectively, are slated to appear by the end of 2021
and be based on GPUs from AMD and Intel, respectively [2].
Another boost in the use of GPUs is AI and ML, which

have influenced current GPU designs to boost low-precision
calculations. For example, FP16 calculations are hardware
accelerated on the latest Nvidia GPUs using so called Tensor
Cores, and are able to reach 624 TFlop/s. These developments
have put pressure on developers to not only port their DLA on
different GPUs but also to support and update for the latest
GPU changes, e.g., most notably now with new capabilities
enabling the use of low-precision arithmetic in HPC.

The quickly evolving GPUs have posted challenges on how
to program and maintain functional and performance-portable
codes across different vendors and generations of GPUs. There
is a lack of well adopted standards on how to code them.
Indeed, while there are standards like OpenCL, OpenMP,
OpenACC, and SYCL, vendors prefer to push quickly with
proprietary innovations, e.g., as in CUDA from Nvidia, that
can percolate into the standards later. Software solutions, like
RAJA [3] or Kokkos [4] for example, provide “wrappers”
on top of the plethora of vendor solutions and standards in
an effort to provide unified programming environment, but in
general they are not a substitution for HPC libraries, and also
must be updated and supported on a case-by-case base.

There has been a lot of work on specific algorithms,
concentrated on particular GPUs, and programming model.
These range from matrix-vector [5]–[7], matrix-matrix [8]–
[11], and other BLAS operations to higher level routines, like
linear system, eigen-problems and SVD solvers, etc. In this
paper, we are interested to port an entire library that contains
all these DLA building blocks; benchmark the performance
obtained; and assess the library portability accros GPUs. We
do this for the MAGMA library [12], originally designed and
implemented to support Nvidia GPUs. MAGMA has been
ported before to OpenCL [13] and Intel Xeon Phi [14]. Here
we assess its portability to the AMD’s Radeon Open Compute
platforM (ROCm), using HIP [15].

Portability of DLA libraries, like LAPACK [16] and ScaLA-
PACK [17], has been achieved through the portability of the
BLAS standard [18]. The libraries are coded using BLAS,
and vendors or community provides high-performance BLAS
implementations for different architectures. Thus, BLAS is the
abstraction allowing these DLA libraries not to be developed
from scratch, while still being functionally and performance-
portable to new architectures. This is the design in MAGMA
for its high-level routines. However, MAGMA also provides

BLAS and auxiliary routines, e.g., to supplement vendor
BLAS and discover better performing building blocks, when
needed, and these require low-level programing. Fundamental
routines like matrix-matrix products (e.g., GEMM for general
matrices, etc.) have always been of high interest as many
algorithms use them, or modify them, e.g., fusing them with
other operations, to derive desired functionalities. Therefore,
it is important to have these in source code as well vs. just
a typical assembly implementation that can get close to peak
performance by bypassing compiler limitations.

II. THE SOFTWARE ARCHITECTURE OF HIPMAGMA

A. Overview

MAGMA has grown significantly over the years. While
LAPACK has approximately 320 functions, amounting to
about 1,300 routines when counting all precisions, MAGMA
provides most of these routines in LAPACK compliant inter-
face where both input and output matrices are on the CPU
memory, as well as in GPU interface, where both input and
outpus are on the GPU memory. Many of the routines also
have different versions, there are a number of main routines
for multi-GPUs [19], out-of-GPU-memory algorithms [20],
[21], and mixed-precision solvers [19], [22], [23]. In addition,
MAGMA also has batched routines [24], [25], and a sparse
linear algebra component [26]. BLAS itself, on the other hand,
has about 57 functions, or about 170 routines when counting
the precisions. This has created an enormous code base that
would be challenging to support and port across different
GPUs and programming models, unless properly designed and
maintained with portability in mind.

Figure 1 shows the MAGMA software stack. MAGMA
provides LAPACK interfaces, which are implemented using
BLAS. The BLAS implementations for specific hardware re-
side under the ‘BLAS’ layer. Thus, BLAS provides an abstrac-
tion layer that shields the top-level MAGMA routines from
platform-specific implementation details. The BLAS interface
is either implemented via the vendor libraries, e.g., cuBLAS or
hipBLAS, or by a custom (MAGMA) implementation. These
are the routines written in CUDA that we aim to port using
auto tools. The LAPACK layer is backend-independent and
remains unchanged (by design).

B. Translation & Generation

The HIP backend is automaticly generated using a modified
version of the ‘hipify-perl’ script provided by AMD [15] to
translate individual files from CUDA code (i.e., .cu files)
into HIP code (MAGMA uses the .hip.cpp extension to
distinguish from normal, non-HIP C++ code). Almost all
functions and data types in CUDA have a direct one-to-one
counterpart in HIP [15], and so text substitution works to
translate most CUDA code into compilable HIP code.

We found that this porting methodology worked very well,
providing both functional and performance portable code. A
few of the issues enountered came from:

• Deprecated CUDA and NVIDIA library APIs (which
typically do not exist at all in their HIP counterparts).

MAGMA

LAPACK

BLAS

CUDA (NVIDIA) HIP (AMD)
hipify

cuBLAS hipBLAS

Fig. 1. Software Architecture of MAGMA. Top layers are the most abstracted,
while lower-level layers are more hardware specific.

These must be either removed or updated to use a
currently supported API in CUDA.

• Oddities arising from the CUDA launch syntax (i.e.
kernel<<<blk, thd>>>(A, B, ...)) and expressions for
blk or thd; Expressions must be wrapped in more paren-
theses than neccessary, e.g., the CUDA code should read:
kernel<<<(blk), (thd)>>>(A, B, ...);

• CUDA’s method of dynamic shared memory
(extern __shared__ type_t ptr;) allows for some
declarations of ptr outside of a device function, residing
in the global scope. In HIP, all such declarations must
be made inside of and per each device function which
uses dynamic shared memory.

• Unimplemented functionality in HIP libraries and the
compiler itself. Most problems or bugs that have been
found while converting MAGMA have already been
fixed in a ROCm release, so only temporary adjustments
must be made in the meantime. For example, MAGMA
includes macro definitions for unimplemented functions,
so they may compile and run, but any program that uses
them will indicate the unreliability of the results.

These issues were corrected by amending the base code
to include blocks of code in #ifdef guards. So, in some
occurrences, HIP code is included in the base code, but is
never compiled on an NVIDIA platform due to the macros
defined. From there, a direct translation is performed, copying
directories of source code and then translating each file into
valid HIP code via the tools mentioned. The build system must
then be directed to compile the new, generated files instead
of original sources. Other than that, the new MAGMA build
system was largely unchanged.

III. BLAS DESIGN FOR AMD GPUS

MAGMA uses high level interfaces that abstract the vendor
supplied BLAS and LAPACK routines. Since MAGMA, in
general, develops hybrid CPU-GPU LAPACK algorithms, it
requires standard BLAS and LAPACK for executing work-
loads on the CPU (e.g., using MKL or OpenBLAS as back-
ends). A similar mode of operation exists on the GPU side,
using either cuBLAS or hipBLAS as backends. However,

MAGMA also provides its own set of BLAS routines, which
can replace specific vendor routines that lack optimization or
are missing. For NVIDIA GPUs, most of the BLAS required
by MAGMA exists in cuBLAS, and achieves very good
performance. However, few of these routines are slower than
the ones developed in MAGMA, e.g., the batch triangular
solve. For AMD GPUs, hipBLAS is still actively developed,
and some of its BLAS routines are either missing or trail the
corresponding MAGMA BLAS routines in performance.

This section highlights some of our BLAS designs and op-
timizations for AMD GPUs in order to complement hipBLAS.
Our strategy takes advantage of the well optimized routines in
hipBLAS, e.g., GEMM, to provide other BLAS functionalities
that leverage the GEMM performance. Some BLAS routines,
like matrix-vector products, cannot take advantage of the
GEMM performance, and therefore are developed based on
our experience with the CUDA backend.

A. Matrix Multiplication (GEMM)

The GEMM kernel is arguably the most important DLA
operation. Not surprisingly, it has been the focus of many
research efforts [9], [10]. Vendor libraries usually provide
highly optimized GEMM implementations that are written in a
low-level language [27] in order to overcome some limitations
imposed by the compiler and the hardware scheduler. As an
example, assembly implementations [28], [29] are available
today in cuBLAS, with the ability to achieve a performance
that is very close to the GPU’s theoretical peak.

0

1

2

3

4

5

6

7

 0 2 4 6 8 10 12 14 16 18 20

T
f
o
p
/s

Matrix size (x 1000)

 hipblas
 hipmagma

Theoretical FP64 peak performance

Fig. 2. Performance of the GEMM operation in double precision on the Mi50
GPU. Results are shown for square sizes using ROCm 3.5.

A similar behavior is observed on AMD GPUs. The hip-
BLAS library provides a high performance GEMM implemen-
tation that is written in a low level language that skips the
limitations imposed by the hipcc compiler. Therefore, the
hipBLAS GEMM routine outperforms the MAGMA kernel,
which is written using the HIP kernel language based on
the design by Nath et al. [10]. Figure 2 shows the DGEMM
performance on an Mi50 GPU. The hipBLAS routine is about
55% faster than MAGMA. While this illustrates functional and
performance portability, as the performance obtained is quite

reasonable, it is important analyze and put these results in
perspective with respect to the theoretical peak performance
and the corresponding performance on the CUDA backend.
While hipBLAS DGEMM is asymptotically at 72% of the the-
oretical peak of the Mi50 GPU, the cuBLAS GEMM routine is
about 93% of the peak on the V100 GPU. More importantly,
the MAGMA DGEMM kernel scores 63% of the hipBLAS
performance, while it usually scores 82% of the cuBLAS
performance on the V100 GPU. That means (1) the achievable
performance of compute-bound BLAS on AMD GPUs needs
to be improved, even for low-level implementations, and (2)
there are more overhead imposed by the HIP compiler/runtime
than the CUDA compiler/runtime.

0

100

200

300

400

500

600

700

800

900

 0 2 4 6 8 10 12 14 16 18 20

G
f
o
p
/s

Matrix size (x 1000)

 hipblas
 hipmagma

Theoretical FP64 peak performance

Fig. 3. Performance of the GEMM operation in double precision on the Mi25
GPU. Results are shown for square sizes using ROCm 3.5.

The MAGMA GEMM has been incorporated in cuBLAS
for GPUs when assembly was not yet needed in order to
get close to peak performance. The design features a few
levels of blocking for the different memory hierarchies of
the GPUs and is parametrized for subsequent autotuning [25],
[30], [31]. Theoretically the design allows for communication
and computations to be overlapped and the inner-most loops
are blocked to reduce data traffic to a level where the kernel is
compute-bound, and thus achieve close to peak performance.
This is illustrated for example on Figure 2 for the Mi25 GPU.
Here MAGMA HIP version actually outperforms the assebly
kernel in hipBLAS and reaches 94% of the theoretical peak.
These results, as well as discussions with AMD, lead us to
conlcude that:

• The HIP compiler (hipcc) can be further improved in
regards to register use, e.g., spilling or promoting local
2D arrays to registers. MAGMA uses register blocking to
reduce data trafic and the compiler is crucial in enabling
this to happen. Since the gap between bandwidth and
compute peak on the Mi50 is much higher than the one
for the Mi25, the difference between code in assembly
and compiler-dependent HIP is more prominent.

• We intentionally did not find the optimal configuration
sizes for MAGMA’s kernels in order to illustrate the
performance of the direct auto port. Changing different

tuning parameters yields better performance, e.g., up to
3.5 Tflop/s on the Mi50. Further improvements will come
from the compiler and we plan to research this further at
a later ROCm release.

B. Symmetric Compute-bound BLAS

Unlike GEMM, some important BLAS routines involve
symmetric matrices as inputs or outputs. Such routines are
important for high level algorithms such as the Cholesky
factorization or the symmetric eigensolvers. Routines like the
symmetric rank-k and rank-2k updates (SYRK and SYR2K,
respectively) compute only the lower or the upper triangular
part of the output symmetric matrix. The SYRK operation is
defined as (C = αA×AT+βC) or (C = αAT×A+βC). The
SYR2K update is defined as (C = αA×BT +αB×AT +βC)
or (C = αAT×B+αBT×A+βC). Both α and β are scalars.
A and B are input matrices of size n×k or k×n, depending
on the transposition of the operation.

✕ =

n

k n

A

AT

C

nb

Fig. 4. Symmetric Rank-k Update using GEMM

A SYRK or SYR2K kernel can be written as a variation
of the MAGMA GEMM kernel. However, based on the
results of Figure 2, the performance of upper-bound for such
kernels would be at 3 Tflop/s. This is why we focus on a
more efficient approach that takes advantage of the hipBLAS
GEMM performance. Figure 4 shows how the non-transposed
SYRK operation can be implemented using a a sequence of
GEMM calls. In order to update the lower triangular part of C
using A×AT , the matrix AT is subdivided into block columns
of size nb. A sequence of GEMM calls then multiplies a
submatrix of A with the corresponding block-column of AT .
The submatrix of A shrinks by nb from the top at each call,
which avoids computing the upper off-diagonal blocks of C.
The drawback of using GEMM appears in performing extra
computations, which overwrite the upper triangular part of
the diagonal blocks of C. However, this is a small tradeoff
that leads to a high performance. The SYR2K operation can
be implemented using two calls to a customized SYRK that
accepts two different input matrices A and B instead of
one. The customized SYRK routine is used to implement the
standard SYRK operation, as well as the standard SYR2K
operation.

Figure 5 shows the performance of the DSYRK operation.
Thanks to a GEMM-based implementation, the DSYRK rou-
tines in MAGMA performs half the operation count of GEMM

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

 0 2 4 6 8 10 12 14 16 18 20

T
f
o
p
/s

Matrix size (x 1000)

 hipmagma
 hipblas

Fig. 5. Performance of the SYRK operation in double precision on the Mi50
GPU. Results are shown for square sizes using ROCm 3.5.

in half the time, which leads to nearly the same FLOP rate.
On the other hand, the DSYRK in hipBLAS is 14× slower,
which is one of the motivations to add symmetric BLAS to
hipMAGMA. The performance of the DSYR2K routine is
almost identical to Figure 5, and is, therefore, not shown.

Another important BLAS operation is the symmetric matrix-
multiply (SYMM), which is defined as C = αA×B+βC, or
C = αB ×A+ βC. The input matrix A is symmetric, while
B and C are assumed to be general matrices. Unfortunately,
there is no straightforward way to utilize GEMM out of the
box in the SYMM operation, since the symmetric matrix A is
now an input (like SYRK and SYR2K, which accept general
matrices and produce a symmetric output). This is why we
designed the SYMM kernel similarly to the GEMM, except for
the way the matrix A is read. Figure 6 shows the performance
of the DSYMM kernel against the corresponding routine from
the Intel MKL library, since hipBLAS does not yet provide
a SYMM routine. The DSYMM performance is within 70%
of the MAGMA GEMM kernel. This is because of a similar
design that takes care of the symmetry of A. The asymptotic
performance is about 45% faster than the MKL routine.

C. Triangular Matrix Multiplication (TRMM)

This routine is important for algorithms like the QR factor-
ization and the symmetric eigensolvers. The TRMM operation
is an in-place update, as per the standard BLAS definition. It
computes product B ← A×B or B ← B×A for a triangular
matrix A and a general matrix B. The in-place update imposes
certain challenges on a parallel implementation. For example,
GEMM is an out-of-place update that can be implemented as
a single kernel call with parallel independent thread-blocks.
This is not a suitable strategy for the TRMM operation.

Instead, we adopt a recursive implementation [32] that takes
advantage of the hipBLAS GEMM routine. We begin by a
“small TRMM” kernel, which works only on small triangular
matrices that fit in the GPU shared memory. Independent
thread-blocks read the small A matrix in shared memory, and
perform the in-place update for independent sublocks of the
B matrix. These sub-blocks are also cached in registers to be

0.0

0.5

1.0

1.5

2.0

2.5

 0 2 4 6 8 10 12 14 16 18 20

T
f
o
p
/s

Matrix size (x 1000)

 hipmagma
 mkl

Fig. 6. Performance of the SYMM operation in double precision on the Mi50
GPU. Results are shown for square sizes using ROCm 3.5 against the MKL
library. The CPU is an Intel Skylake processor (2× 18-core Intel Xeon Gold
6140, running at 2.3 GHz)

updated in-place. This kernel is invoked only if the size of A
is ≤ nb, which is a tuning parameter.

B00 = A00×B00 B10 = A10×B00 + A11×B10

B01 = A00×B01

B11 = A10×B01 + A11×B11

B00 B01

B10 B11

A00

A10 A11

B00 B01

B10 B11

=

2GEMM 1TRMM 3TRMM

m2

m1

m1 m2

m1

m2

n

(1)[B10 B11] = A11× [B10 B11](recursive TRMM)

(2)[B10 B11]+= A10× [B00 B01](GEMM)

(3)[B00 B01] = A00× [B00 B01](recursive TRMM)

Fig. 7. The recursive TRMM design.

The recursive implementation is shown in Figure 7. It
subdivides A as shown in the figure until the size of the
triangular submatrix is ≤ nb, where the small TRMM kernel
is called. The high-level TRMM begins by calling itself
recursively with respect to A11, and updates B1x in-place (step
1). Then it calls the hipBLAS GEMM routine to compute the
remaining portion for B1x (step 2). The final step is to invoke
the recursive TRMM routine with respect to A00 and update
B0x in-place. Note that these three steps must be performed
in the specified order.

Figure 8 shows the performance of the DTRMM routine.
The figure shows a huge asymptotic speedup that exceeds 60×
in favor of hipMAGMA. Our profiling of the hipBLAS TRMM
kernel shows a sequence of calls to matrix-vector product
kernels, which are memory bound. This explains the huge
performance gap with respect to hipMAGMA, which leverages
the high performance of the DGEMM kernel.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

 0 2 4 6 8 10 12 14 16 18 20

T
f
o
p
/s

Matrix size (x 1000)

 hipmagma
 hipblas

Fig. 8. Performance of the TRMM operation in double precision on the Mi50
GPU. Results are shown for square sizes using ROCm 3.5

D. Memory-bound BLAS

Matrix vector product (GEMV) and its symmetric variant
(SYMV) are perhaps the most important memory-bound ker-
nels in BLAS. The latter is a crucial component in the tridiag-
onal reduction stage of the symmetric eigensolver (DSYEVD),
which we highlight later in this paper. Unlike compute-
bound codes which provide a reasonable performance but
seem to relatively underperform (e.g., the MAGMA GEMM
and HEMM kernels in Figures 2 and 6, respectively), the
hipified GEMV kernel achieves close to peak performance.
As shown in Figure 9, the MAGMA kernel reaches up to 187
Gflop/s, which translates to achieving 748 GB/s of memory
bandwidth. This is about 89% of the peak memory bandwidth
scored by a STREAM benchmark (≈ 840 GB/s). The more
complicated SYMV kernel uses the symmetry to reduce data
trafic in half (vs. GEMV), making it about 5× faster than the
hipBLAS kernel (Figure 10), which seems to underperform.
The effective asymptotic bandwidth of the kernel is 516 GB/s,
which is 61% of the sustained peak bandwidth. To put these
numbers in more perspective, the same GEMV and SYMV
implementations reach about 97% and 89.5% of the peak
bandwidth on the V100 GPU, respectively.

0
20
40
60
80
100
120
140
160
180
200

 0 2 4 6 8 10 12 14 16 18 20

G
f
o
p
/s

Matrix size (x 1000)

 hipmagma
 hipblas

Fig. 9. Performance of the GEMV operation in double precision on the Mi50
GPU. Results are shown for square sizes using ROCm 3.5

So far, the memory-bound hipified kernels (e.g., GEMV)
perform close to peak. The other, compute-bound kernels
shown here (e.g., GEMM, SYMM), give reasonable perfor-
mance but seem to relatively underperform. Among the four
kernels discussed, the GEMV implementation is the only
one that does not require register blocking. The rest require
caching blocks of the matrix. SYMV transposes the cached
off-diagonal blocks of the matrix to account for the untouched
triangular part of the matrix. Kernels like GEMM and SYMM
cache two blocks of A and B at a time in shared memory,
where their product is accumulated to a block of C in registers.

0

50

100

150

200

250

300

 0 2 4 6 8 10 12 14 16 18 20

G
f
o
p
/s

Matrix size (x 1000)

 hipmagma
 hipblas

Fig. 10. Performance of the SYMV operation in double precision on the
Mi50 GPU. Results are shown for square sizes using ROCm 3.5

IV. IMPACT ON HIGH-LEVEL ALGORITHMS

Here we illustrate the portability of the high-level MAGMA
routines, which are independent of the BLAS backend, and
therefore remain unchanged in the port. Still, we show the
impact of the optimized BLAS routines, and in this case we
highlight the symmetric eigenvalue problem. The MAGMA
implementation is hybrid CPU-GPU that uses the GPU to
first reduce the input matrix to a tridiagonal form. Next, the
tridiagonal matrix is sent to the CPU to find the eigenvalues.
The computation of the eigenvectors, if required, is done of
the GPU, since it mostly consists of level-3 BLAS routines.

Figures 11 and 12 show the impact of three BLAS routines
(SYMV, SYR2K, and TRMM) on the performance of the
DSYEVD solver. The solver also requires the SYMM routines,
but since hipBLAS does not provide one, we always use
MAGMA as the provider of this routine. In other words, any
difference in performance will be due to the improvement in
the SYMV, SYR2K, and TRMM kernels.

If no eigenvectors are required (Figure 11), then the
magmablas backend provides a substantial speedup over the
hipblas backend. In fact, the magmablas backend reduces
the time-to-solution by factors between 13% to 73%. If the
eigenvectors are required, the speedup is even more. Since
the back transformations required to compute the eigenvectors
rely on the TRMM routine, the time-to-solution is reduced by
at least 58%, and goes up to 75%. This performance level is
very reasonable.

0

20

40

60

80

100

120

140

160

 0 2 4 6 8 10 12 14 16 18 20

T
im
e

 (
s
)

Matrix size (x 1000)

 dsyevd + magmablas
 dsyevd + hipblas

Fig. 11. Performance of the single stage symmetric eigensolver in double
precision (DSYEVD). Results are shown for solving the eigenvalues only
using the Mi50 GPU and ROCm 3.5

0

50

100

150

200

250

300

 0 2 4 6 8 10 12 14 16 18 20

T
im
e

 (
s
)

Matrix size (x 1000)

 dsyevd + magmablas
 dsyevd + hipblas

Fig. 12. Performance of the single stage symmetric eigensolver in double
precision (DSYEVD). Results are shown for solving the eigenvalues and the
eigenvectors using the Mi50 GPU and ROCm 3.5

V. CONCLUSION AND FUTURE WORK

We investigated the portability of high-performance DLA to
AMD GPUs using the HIP programming model. By allowing
MAGMA to use different backends of BLAS routines and
auto-source translation tools, we were able to easily pro-
vide an almost complete functional as well as performance
portable port (of about 2,000 routines) to AMD GPUs. The
developments are open source and are currently available
though the hipMAGMA v1.o release [33]. However, we also
identified a few areas that can be further improved. The HIP
framework is under continuous improvements, and we expect
future ROCm version will further improve both BLAS and
the HIP compiler. Thanks to a flexible backend switching in
MAGMA, we are able to selectively exclude the currently slow
BLAS routines and replace them with MAGMA’s own BLAS
kernels. The improved BLAS has a significant impact on high-
level algorithms, like the dense symmetric eigensolver that
we choose to highlight, whose time-to-solution is reduced by
up to 75%. Future directions include continuous improvement
of other high-level algorithms, and performing comprehensive
tuning sweeps for the hipified kernels to achieve their best
performances across AMD GPUs.

ACKNOWLEDGEMENT

This research was supported by AMD and the Exascale
Computing Project (ECP), Project Number: 17-SC-20-SC, a
collaborative effort of two DOE organizations (the Office of
Science and the National Nuclear Security Administration)
responsible for the planning and preparation of a capable ex-
ascale ecosystem, including software, applications, hardware,
advanced system engineering, and early testbed platforms, in
support of the nation’s exascale computing imperative.

REFERENCES

[1] “TOP500,” https://www.top500.org/.
[2] T. Trader, “Cray, AMD to Extend DOEs Exascale Frontier,” https://www.

hpcwire.com/2019/05/07/cray-amd-exascale-frontier-at-oak-ridge/.
[3] “RAJA Performance Portability Layer,” https://github.com/LLNL/RAJA.
[4] H. Edwards, C. R. Trott, and D. Sunderland, “Kokkos,” J. Parallel

Distrib. Comput., vol. 74, no. 12, pp. 3202–3216, Dec. 2014. [Online].
Available: https://doi.org/10.1016/j.jpdc.2014.07.003

[5] H. H. B. Sørensen, “High-performance matrix-vector multiplication on
the gpu,” in Euro-Par 2011: Parallel Processing Workshops. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 377–386.

[6] R. Nath, S. Tomov, T. Dong, and J. J. Dongarra, “Optimizing symmetric
dense matrix-vector multiplication on GPUs,” in Conference on High
Performance Computing Networking, Storage and Analysis, SC 2011,
Seattle, WA, USA, November 12-18, 2011, 2011, pp. 6:1–6:10. [Online].
Available: http://doi.acm.org/10.1145/2063384.2063392

[7] A. Abdelfattah, D. Keyes, and H. Ltaief, “Kblas: An optimized library
for dense matrix-vector multiplication on gpu accelerators,” ACM
Trans. Math. Softw., vol. 42, no. 3, May 2016. [Online]. Available:
https://doi.org/10.1145/2818311

[8] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the
efficiency of gpu algorithms for matrix-matrix multiplication,” in
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference
on Graphics Hardware, ser. HWWS 04. New York, NY, USA:
Association for Computing Machinery, 2004, p. 133137. [Online].
Available: https://doi.org/10.1145/1058129.1058148

[9] V. Volkov and J. Demmel, “Benchmarking GPUs to tune dense
linear algebra,” in Proceedings of the ACM/IEEE Conference
on High Performance Computing, SC 2008, November 15-21,
2008, Austin, Texas, USA, 2008, p. 31. [Online]. Available: http:
//doi.acm.org/10.1145/1413370.1413402

[10] R. Nath, S. Tomov, and J. Dongarra, “An Improved Magma Gemm For
Fermi Graphics Processing Units,” The International Journal of High
Performance Computing Applications, vol. 24, no. 4, pp. 511–515,
2010. [Online]. Available: https://doi.org/10.1177/1094342010385729

[11] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou,
and J. J. Dongarra, “High-Performance Matrix-Matrix Multiplications
of Very Small Matrices,” in Euro-Par 2016: Parallel Processing -
22nd International Conference on Parallel and Distributed Computing,
Grenoble, France, August 24-26, 2016, Proceedings, 2016, pp. 659–671.
[Online]. Available: https://doi.org/10.1007/978-3-319-43659-3 48

[12] S. Tomov, J. J. Dongarra, and M. Baboulin, “Towards dense linear
algebra for hybrid GPU accelerated manycore systems,” Parallel
Computing, vol. 36, no. 5-6, pp. 232–240, 2010. [Online]. Available:
https://doi.org/10.1016/j.parco.2009.12.005

[13] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and
J. Dongarra, “From CUDA to OpenCL: Towards a Performance-
portable Solution for Multi-platform GPU Programming,” Parallel
Comput., vol. 38, no. 8, pp. 391–407, Aug. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2011.10.002

[14] A. Haidar, J. Dongarra, K. Kabir, M. Gates, P. Luszczek, S. Tomov,
and Y. Jia, “Hpc programming on intel many-integrated-core hardware
with magma port to xeon phi,” Scientific Programming, vol. 23, 01-2015
2015.

[15] AMD, AMD ROCm Platform, 2020. [Online]. Available: https:
//rocmdocs.amd.com/en/latest/index.html

[16] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. D. J. Dongarra, J. D.
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK Users’ Guide, 3rd ed. Philadelphia, Pennsylvania, USA:
SIAM, 1999.

[17] L. S. Blackford, J. Choi, A. Cleary, E. DAzeuedo, J. Demmel, I. Dhillon,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. C.
Whaley, and J. J. Dongarra, ScaLAPACK Users Guide. USA: Society
for Industrial and Applied Mathematics, 1997.

[18] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al.,
“An updated set of basic linear algebra subprograms (blas),” ACM
Transactions on Mathematical Software, vol. 28, no. 2, pp. 135–151,
2002.

[19] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra
solvers for multicore with GPU accelerators,” in Proc. of the IEEE
IPDPS’10. Atlanta, GA: IEEE Computer Society, April 19-23 2010,
pp. 1–8, DOI: 10.1109/IPDPSW.2010.5470941.

[20] I. Yamazaki, S. Tomov, and J. Dongarra, “One-sided dense matrix
factorizations on a multicore with multiple gpu accelerators,” in in Proc.
of the 2012 International Conference on Computational Science, 2012.

[21] A. Haidar, K. Kabir, D. Fayad, S. Tomov, and J. Dongarra, “Out of
memory svd solver for big data,” in 2017 IEEE High Performance
Extreme Computing Conference (HPEC), 2017, pp. 1–7.

[22] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing GPU
Tensor Cores for Fast FP16 Arithmetic to Speed Up Mixed-precision
Iterative Refinement Solvers,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage,
and Analysis, ser. SC ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp.
47:1–47:11. [Online]. Available: https://doi.org/10.1109/SC.2018.00050

[23] A. Abdelfattah, S. Tomov, and J. Dongarra, “Investigating the benefit
of fp16-enabled mixed-precision solvers for symmetric positive definite
matrices using gpus,” in Computational Science – ICCS 2020. Cham:
Springer International Publishing, 2020, pp. 237–250.

[24] J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling,
N. J. Higham, J. Hogg, P. Valero-Lara, S. D. Relton, S. Tomov,
and M. Zounon, “A Proposed API for Batched Basic Linear
Algebra Subprograms,” Manchester Institute for Mathematical Sciences,
Tech. Rep., April 2016, [MIMS Preprint]. [Online]. Available:
http://eprints.maths.manchester.ac.uk/id/eprint/2464

[25] A. Abdelfattah, A. Haidar, S. Tomov, and J. J. Dongarra,
“Performance, design, and autotuning of batched GEMM for
gpus,” in High Performance Computing - 31st International
Conference, ISC High Performance 2016, Frankfurt, Germany,
June 19-23, 2016, Proceedings, 2016, pp. 21–38. [Online]. Available:
https://doi.org/10.1007/978-3-319-41321-1 2

[26] H. Anzt, W. Sawyer, S. Tomov, P. Luszczek, I. Yamazaki, and J. Don-
garra, “Optimizing krylov subspace solvers on graphics processing
units,” in Fourth International Workshop on Accelerators and Hybrid
Exascale Systems (AsHES), IPDPS 2014, IEEE. Phoenix, AZ: IEEE,
05-2014 2014.

[27] G. Tan, L. Li, S. Triechle, E. H. Phillips, Y. Bao, and N. Sun,
“Fast implementation of DGEMM on Fermi GPU,” in Conference on
High Performance Computing Networking, Storage and Analysis, SC
2011, Seattle, WA, USA, November 12-18, 2011, 2011, pp. 35:1–35:11.
[Online]. Available: http://doi.acm.org/10.1145/2063384.2063431

[28] J. Lai and A. Seznec, “Performance Upper Bound Analysis and
Optimization of SGEMM on Fermi and Kepler GPUs,” in Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), ser. CGO ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/CGO.2013.6494986

[29] S. Gray, “A full walk through of the SGEMM implementation,”
https://github.com/NervanaSystems/maxas/wiki/SGEMM, 2015.

[30] Y. Li, J. Dongarra, and S. Tomov, “A Note on Auto-tuning GEMM for
GPUs,” in Computational Science – ICCS 2009. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 884–892.

[31] J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMM Kernels
for the Fermi GPU,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 11, pp. 2045–2057, Nov 2012.

[32] A. Charara, H. Ltaief, and D. E. Keyes, “Redesigning Triangular Dense
Matrix Computations on GPUs,” in Euro-Par 2016: Parallel Processing
- 22nd International Conference on Parallel and Distributed Computing,
Grenoble, France, August 24-26, 2016, Proceedings, 2016, pp. 477–489.

[33] C. Brown, A. Abdelfattah, S. Tomov, and J. Dongarra,
“hipMAGMA v1.0,” Mar. 2020. [Online]. Available: https:
//doi.org/10.5281/zenodo.3908549

 https://www.top500.org/
https://www.hpcwire.com/2019/05/07/cray-amd-exascale-frontier-at-oak-ridge/
https://www.hpcwire.com/2019/05/07/cray-amd-exascale-frontier-at-oak-ridge/
https://github.com/LLNL/RAJA
https://doi.org/10.1016/j.jpdc.2014.07.003
http://doi.acm.org/10.1145/2063384.2063392
https://doi.org/10.1145/2818311
https://doi.org/10.1145/1058129.1058148
http://doi.acm.org/10.1145/1413370.1413402
http://doi.acm.org/10.1145/1413370.1413402
https://doi.org/10.1177/1094342010385729
https://doi.org/10.1007/978-3-319-43659-3_48
https://doi.org/10.1016/j.parco.2009.12.005
http://dx.doi.org/10.1016/j.parco.2011.10.002
https://rocmdocs.amd.com/en/latest/index.html
https://rocmdocs.amd.com/en/latest/index.html
https://doi.org/10.1109/SC.2018.00050
http://eprints.maths.manchester.ac.uk/id/eprint/2464
https://doi.org/10.1007/978-3-319-41321-1_2
http://doi.acm.org/10.1145/2063384.2063431
http://dx.doi.org/10.1109/CGO.2013.6494986
https://doi.org/10.5281/zenodo.3908549
https://doi.org/10.5281/zenodo.3908549

	Introduction and Related Work
	The Software Architecture of hipMAGMA
	Overview
	Translation & Generation

	BLAS Design for AMD GPUs
	Matrix Multiplication (GEMM)
	Symmetric Compute-bound BLAS
	Triangular Matrix Multiplication (TRMM)
	Memory-bound BLAS

	Impact on High-level Algorithms
	Conclusion and Future Work
	References

