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Abstract—The solution of linear least-squares problems is
at the heart of many scientific and engineering applications.
While any method able to minimize the backward error of
such problems is considered numerically stable, the theory states
that the forward error depends on the condition number of the
matrix in the system of equations. On the one hand, the QR
factorization is an efficient method to solve such problems, but
the solutions it produces may have large forward errors when
the matrix is deficient. On the other hand, QR with column
pivoting (QRCP) is able to produce smaller forward errors on
deficient matrices, but its cost is prohibitive compared to QR.
The aim of this paper is to propose PAQR, an alternative solution
method with the same cost (or smaller) as QR and as accurate
as QRCP in practical cases, for the solution of rank-deficient
linear least-squares problems. After presenting the algorithm and
its implementations on different architectures, we compare its
accuracy and performance results on a variety of application
problems.

Index Terms—Linear least-squares, QR factorization, QR de-
composition, deficient matrix, rank-deficient, low-rank

I. INTRODUCTION

a) Context: The solution of linear least-squares problems
is at the heart of many scientific and engineering fields [1].
Formally, the problem is defined as:

min
x
||Ax− b||2 (1)

where A is a (large) rectangular m-by-n matrix, b is the right-
hand side, and x is the solution of the system.

While several methods exist [1]–[3] [4, ch.5] to solve such a
problem, the QR factorization plays a key role. It corresponds
to the factorization of the matrix A into:

A = QR, (2)

where Q is an m-by-n orthonormal matrix, and R an upper
triangular n-by-n matrix. Given such a decomposition, the
solution x is obtained by multiplying the inverse of Q to b:

y = QT b (3)

then solving the triangular system of equations:

x = R−1y (4)

b) Challenge: The matrices arising in practical scientific
and engineering applications like Quantum Chemistry and
Weighted Least-squares (as studied in Section V-A1) present
multiple challenges. First, the increase in computational power
of modern computers has led to the increase in size of the
targeted matrices. This challenge has been addressed through
the development of numerical libraries that take advantage of
hardware accelerators, shared- and distributed-memory paral-
lelism [5]–[7].

Second, in practice, matrices are often rank-deficient and
low-rank [8]. In essence, some columns of the matrix are
redundant, or more precisely, they can be expressed as linear
combinations of other columns [9]. Moreover, the characteri-
zation of rank deficiency can be blurry because of numerical
round-off errors. This is due to the limited precision floating-
point arithmetic representation of real numbers. The implica-
tion is that, not a single, but an infinite number of potential
solutions to the least-squares problem may exist. In such cases,
although the QR factorization is a numerically stable operation
[10, p. 384], the calculated solutions can be arbitrarily far from
the true solution. This challenge has been addressed through
the development of more robust methods, such as QR with
column pivoting (QRCP) and Rank-Revealing QR (RRQR).
Unfortunately, they are very expensive and even unpractical
in large-scale settings.

c) Contribution: The two challenges mentioned above
have lead us to rethink the traditional methods to solve large-
scale deficient linear least-squares problems. We propose a
new variant of the QR factorization that we denote Pivoting
Avoiding QR factorization (PAQR). The guiding idea behind
PAQR is that linearly dependant columns of the matrix can
be detected and removed on the fly during the factorization
process. This new variant yields accurate solutions without
the expensive cost of column pivoting induced by QRCP.

The initial goal of PAQR was to be numerically more
stable than QR on challenging problems while remaining as
fast as QR. However, PAQR turns out to be at least as fast
as QR on full-rank problems, but faster than QR on rank-
deficient problems. Moreover, it can be empirically as accurate
as QRCP on practical rank-deficient least-squares problems.

d) Overview: This paper is organized as follows: Sec-
tion II describes the QR, SVD, QRCP and RRQR variants,
as well as new randomized variants. Section III describes



the PAQR algorithm together with its limitations. Section IV
describes sequential, batched GPU, distributed-memory imple-
mentations of PAQR, focusing on data layout, computation and
communication. Section V compares the numerical accuracy
of PAQR with that of QR and QRCP, together with the per-
formance of the methods on different computational settings.
Section VI summarizes the work and discusses extension of
this work that is currently being explored.

II. BACKGROUND

a) QR: For computing a QR factorization, Householder
orthogonalization is the standard implementation within the
current state-of-the-art linear algebra libraries, LAPACK,
ScaLAPACK for example. The overall flow of Householder
orthogonalization follows that of Algorithm 1.

Algorithm 1 QR factorization
Input A ∈ Rm×n

Output V ∈ Rm×n, R, τ

1: V,R← [0]
2: for i← 1 . . . n do
3: Vi:m,i, Ri,i, τi ← generate reflector(Ai:m,i)
4: R1:i−1,i ← A1:i−1,i

5: Ai:m,i+1:n = apply reflector(Ai:m,i+1:n, Vi:m,i, τi)
6: end for

First, the algorithm constructs a reflection (Line 3). There
are a variety of methods for computing a reflection, such
as Householder. Here, generate reflector takes as input the
column to be orthogonalized, and outputs the associated re-
flection V1:m,i, the diagonal element Ri,i and τi. Algorithm 1
shows a non-blocked variant, which is akin to that of a panel
factorization within a blocked scheme. In general, it is better
to block the factorization to take advantage of Level 3 BLAS
routines. In that instance, once a panel has been factorized, the
blocked variant updates the external trailing sub-matrix with
the newly constructed block reflector. Once complete with this
step, the algorithm would factorize the next panel and repeat.

b) QRCP: A plethora of variants of QR factorization
exist that include QR with Column Pivoting (QRCP). An
important one is Rank Revealing QR (RRQR) [11]–[16], as
it may be proven to guarantee numerical properties even for
rank-deficient matrices [17]. Rank-revealing is not limited to
the QR factorization and it is also possible with the LU
factorization [18], [19] and ULV decomposition [20].

Algorithm 2 presents a basic implementation of QRCP. It
follows that of Algorithm 1 but prior to computing the orthog-
onalization step, the algorithm compares the 2-norm of each
remaining column, pivoting the column with the remaining
largest norm to the current iterate position. Although this
algorithm is robust and can provide numerical accuracy (c.f.
Section III) far greater than QR for rank-deficient matrices, it
is far more expensive in terms of floating point operations, as
well as a truly blocked variant of QRCP is not possible [21].
Once a reflection has been constructed, the column norms of

Algorithm 2 QRCP factorization
Input A ∈ Rm×n

Output V ∈ Rm×n, R ∈ Rn×n, τ, π
1: V,R, P ← [0]
2: for i← 1 . . . n do
3: πi ← argmaxi≤j≤n ‖Ai:m,j‖2 . find largest column

norm
4: if πi > i then . found larger column norm
5: A:,i ↔ A:,πi

. swap columns
6: end if
7: Vi:m,i, Ri,i, τi ← generate reflector(Ai:m,i)
8: R1:i−1,i ← A1:i−1,i

9: Ai:m,i+1:n ← apply reflector(Ai:m,i+1:n, Vi:m,i, τi)
10: end for

the entire trailing matrix need to be updated so that the next
pivot step can be correctly evaluated.

The RRQR factorization of a matrix A ∈ Rm×n represents

APc = QR = Q

[
R11 R12

0 R22

]
, (5)

where Q ∈ Rm×m orthonoromal, R11 ∈ Rk×k, R12 ∈
Rk×(n−k), and R22 ∈ R(m−k)×(n−k).

This factorization is said to be rank revealing [17], [22] if
the following condition is satisfied

σmin(R11) ≤
σk(A)

p(k, n)
, σmax(R22) ≤ σk+j(A)p(n, k) (6)

where p(n, k) is a low degree polynomial in k and n. This
algorithm can reveal the rank of A but may not be stable
enough because of the elements of R−1

11 R12. To address this
problem, a strong Rank Revealing QR factorization has been
developed by M. Gu in [23].

c) SVD: The Singular Value Decomposition (SVD) [24]
is an obvious method of choice for many numerical methods
focusing on the variants of the least-squares problem [4, p.
327]. Among its other uses, SVD directly reveals the numerical
rank of the matrix and allows selection of the cut-off threshold
to admit only a subset of singular values as representative
for the matrix. In least-squares problems specifically, SVD
benefits from numerical stability and has been a subject of
study that resulted in various algorithms that permit high levels
of parallelism [25].

d) CARRQR: In the context of distributed-memory en-
vironment, the QR factorization is well-known to be commu-
nication sub-optimal. To address this issue and improve the
performance, authors in [26] developed a Communication-
Avoiding (CA) variant of the algorithm named CAQR. The
idea is to process a panel in a different manner, which is to
split the panel into block of rows, call a local QR factorization
on each block and then uses a reduction tree to retrieve the
final R associated with the panel. The CA approach was later
extended to the RRQR algorithm to create the CARRQR
algorithm. The problem of RRQR is its sequential nature as
at each step, the column with the largest norm of the current



matrix has to be moved that leading position. To tackle this
problem, the authors in [27] use a tournament pivoting strategy
to find the best k pivots in a single step. Once the pivots are
moved to the leading position, the classical iteration of the
blocked QR factorization is applied. The tournament pivoting
is a reduction-tree operation. At each node, a matrix of 2k
columns is factorized using RRQR and only the first k pivots
are passed to the parent.

e) Approximate RRQR: The paper [13] by Bischof and
Quintana-Ortı́ summarizes prior work revolving RRQR, while
developing new blocked variants for computing an approxi-
mation of an RRQR factorization. The main idea is to apply
RRQR within panels instead of the entire matrix. This allows
for the use of efficient Level 3 BLAS routines. The approxima-
tion comes into play by being limited to scanning the column
norms only within the current panel. So the selected pivot
may not be of largest norm overall. If a column is rejected,
i.e identified as a linear combination of the previous columns,
it is pivoted to the end of the matrix. After computing an
R11 factor from all panels, the rejected columns need to be
reconsidered. Bischof and Quintana-Ortı́ choose to follow the
traditional pivoting strategy proposed by Golub for finishing
R11 on the rejected columns. Finally, R22 is constructed using
traditional QR.

Other interesting approximate algorithms [28]–[31] fol-
low the recent randomized linear algebra line of research.
These state-of-the-art algorithms on average exhibit great
improved performance compared to QRCP variants, while
their performance compared with QR varies. In general, for
full-factorization experiments, QR outperforms Randomized
QRCP (RQRCP). Going further, truncated variants are pro-
posed where experiments exhibit randomized methods out-
performing traditional QR [30]. However, they still rely on
actually pivoting columns.

III. PROPOSED ALGORITHM

Two main metrics exist for evaluating the numerical accu-
racy of algorithms that deal with linear systems of equations
and linear least-squares problems: forward error and backward
error. The forward error is defined as [32]:

efwd =
‖x− x̂‖p
‖x̂‖p

(7)

where x̂ is the true solution and x is the computed solution,
for a given p-norm. The backward error is defined as [33]:

ebwd =
‖Ax− b‖p

‖A‖p‖x‖p + ‖b‖p
. (8)

Even though numerically stable algorithms are able to
minimize the backward error on the residual, the forward error
remains bounded by the backward error magnified by the 2-
norm condition number κ2 of the input matrix [9]:

κ2(A) = ‖A‖2‖A+‖2 =
σmax
σmin

(9)

where ‖ · ‖2 represents the 2-norm, A+ is the pseudoinverse,
and σmax and σmin are the largest and smallest singular values
of A, respectively.

In finite-precision arithmetic, machine precision ε indicates
the attainable accuracy and unit round-off error [10]. Matrix
A is considered numerically rank-deficient iff:

κp(A) > ε−1 (10)

for a p-norm condition number.
The most accurate (but most expensive) way to solve a rank-

deficient least-squares problem is to compute the SVD of A
and truncate the smallest singular values, so as to avoid the
condition given in Equation (10). However, a more common
way to solve such problems is to use RRQR. Given the existing
error bounds [17] linking the singular values of a matrix with
the R matrix returned by RRQR, an early stopping criterion
exists allowing to terminate the factorization prematurely once
the remaining singular values of the trailing matrix are known
to degrade the conditioning of R. However, the cost of column
pivoting induced by this method makes it impractical at scale.

The intuition behind PAQR comes from the observation that
a reduction of the condition number of a rank-deficient matrix
can be achieved by detecting and removing on the fly columns
contributing to the numerical deficiency of the matrix, during
a standard QR factorization, without incurring any pivoting.
These skipped columns are linearly dependent to the already
processed columns on the left. They do not contribute to the
linearly independent columns whose count represents matrix
rank. For PAQR, we follow the convention used in [13] to
define a column as rejected when it is identified as a linear
combination of the previous columns. As the decision for
skipping the columns is made on-the-fly, PAQR is responsive
to the numerical properties of matrix data that change over the
course of the algorithm steps, which is superior to the passive
approach of the classic QR factorization,

The main difference between PAQR and all existing QRCP
variants (such as RRQR) is that PAQR completely avoids any
kind of pivoting, and thus, does not incur any additional data
movement. While QRCP variants focus on choosing columns
as pivots, PAQR instead focuses on flagging columns as
rejected. Note that, in its current development, PAQR does not
guarantee the same properties given by RRQR Equation (6).
Indeed, post-processing may be needed on the R matrix in
order to reveal the true rank of a matrix.

A. Algorithm details

PAQR is described in Algorithm 3. While its building
blocks are the same as those of QR, it differs in three ways.
First, at each iteration, PAQR computes a deficiency criterion
(Line 5) (cf. Section III-B) to decide whether to flag the
current column of A as rejected (Line 6). In which case, the
algorithm proceeds immediately to the next iteration. Second,
once columns are flagged as rejected, subsequent operations
need to account for them. This is done by updating the indices
of the trailing matrix (Line 9–10) using the index k instead of
the original loop index i. k is increased only when a column
is estimated to be linearly independent from previous ones
(Line 11). Consequently, the size of the output matrices V
and R will be smaller (Line 14–15).



Algorithm 3 PAQR factorization
Input A ∈ Rm×n

Output V,R, τ, δ
1: V,R← [0]
2: k ← 1
3: for i = 1 . . .min{m,n} do
4: Vk:m,k, Rk,k, τk ← generate reflector(Ak:m,i)
5: if ith column of A is rejected then
6: δi ← TRUE(1) . skip the current column
7: else
8: δi ← FALSE(0) . include the current column
9: R1:k−1,k ← A1:k−1,i

10: Ak:m,i+1:n ← apply reflector(Ak:m,i+1:n, Vk:m,k, τk)

11: k ← k + 1
12: end if
13: end for
14: V ← V1:m,1:k−1

15: R← R1:k−1,1:k−1

Figure 1 shows an example of the result of the execution
of PAQR with the second and fourth columns skipped due to
the rank deficiency criterion.

The left matrix in Figure 1 represents the V and R matrices
returned by PAQR relatively to the original columns of A. In
most modern implementations, the QR factorization is done
in-place, which means that the output V and R overwrite the
original input A. The array of zeros and ones represent the
δ vector returned by PAQR. This vector stores the flagged
(rejected) columns of A.

The right matrix in Figure 1 represents a compressed
(whether explicit or implicit) representation of V and R, where
only the linearly independent columns are kept.

Fig. 1. Example of execution of PAQR factorization. Columns in grey are
flagged as rejected.

B. Deficiency criteria

The decision of flagging a column of A to be ignored is a
critical component of PAQR. In the literature, most criteria
are costly, as they relate the singular value spectrum of a
matrix. Hence, we present three criteria. The first criteria is
standard (chapter 2 page 89 in [1]), the second and third are
novel in that they are column-oriented. These last two do

not necessitate the potential costly a-priori estimation of the
largest singular value of the matrix, as proposed by criteria
one. They rely on the observation that the QR factorization
applies a series of well-chosen orthogonal projections, relative
to the previously factorized columns of A on the trailing
matrix. Thus, when we construct the associated Householder
reflector of a column, its norm represents the projection of the
corresponding original column of A on the space orthogonal
to the sub-space spanning the previously linearly independent
columns of A. If a vector is a linear combination of a set
of other vectors, it should be included in the space spanned
by these vectors. In practice, however, this condition can, and
should, be relaxed, due to the existence of round-off errors
with the limited precision arithmetic representation of the
matrix elements.

The first (most costly) deficiency criterion requires the
computation of the 2-norm of A.

|Rk,k| < α ∗ ‖A‖2 (11)

Here |Rk,k| is the norm of the Householder vector constructed
at iteration k (and stored on the kth diagonal of R), ‖A‖2 is
the 2-norm of A, known to be the largest singular value of
A (σ1). The critical parameter α is a priori chosen as an
input to the algorithm. Its value can be adjusted according to
the numerical arithmetic precision (e.g. α ≡ ε). Given that
the computation of this quantity can be expensive, a possible
alternative to Equation (11) is the following:

|Rk,k| < α× max
1≤j≤n

‖A:,j‖. (12)

As the column with the largest 2-norm of a matrix A is in
general a good approximation of σ1, the largest singular value
[13].

The second (more simple) deficiency criterion we propose
is:

|Rk,k| < α× ‖A:,k‖ (13)

where A:,k is the kth column of A. The cost induced by this
criterion corresponds to computing the norm of each column
of A which is performed only once (at the beginning of
the factorization). This is not the case for QRCP in which
this operation is required at each iteration to guarantee the
largest normed column is pivoted to the leading position. The
idea for this deficiency criterion is that, once the previous
Householder reflections have been applied, if the norm of the
new constructed Householder reflection is small relative to its
initial value, it is a linear combination of the previous k − 1
reflections and is thus rejected.

The third deficiency criterion we propose takes into account
how the QR factorization operates: at iteration k, the kth

column of A was the target of updates from only the columns
on the left. Computing the largest singular values spanning
the initial k columns of A is infeasible, we propose the
following criterion only in conjunction with the approximation
mentioned above:

|Rk,k| < α× max
1≤j≤k

‖A:,j‖. (14)



C. Limitations

Although in practical applications PAQR is able to reduce
the deficiency of a matrix enough to drastically improve the
forward error of a rank-deficient least-squares system, we
present a synthetic corner case on which PAQR does not detect
and remove any column but for which the forward error still
grows beyond control of our proposed criteria. We denote
this family of generated matrices as Cliff matrices, due to
the pattern of their singular value spectrum (mostly constant
until a suddenly dropping-off from a numerical “Cliff” for the
smallest singular values). We define them formally as:

Cliff(m,n, α)i,j =


√

1−(max(m,n)×α)2
j−1 if i < j

max(m,n)× α if i = j

0 if i > j

(15)

An example of this matrix in practical application corresponds
to the matrix Gks (see Section V)

Given the uniqueness of the QR decomposition of a matrix
(up to the signs of the diagonal elements of R), the product
of any orthonormal matrix by this Cliff matrix will generate
a QR factorization whose R factors are the Cliff matrices. By
construction, the norm of each column of a Cliff matrix is 1.
Moreover, deficiency criteria (13) and (11) are both violated
at every iteration of PAQR. This means that no column will
be flagged as rejected, and that the PAQR factorization will
be equivalent to the QR factorization. Unfortunately, from
the experimental point of view, the forward error grows with
n (the number of columns of a Cliff matrix) relative to
the least-squares solution. The accumulation of errors in the
computed solution from either QR or PAQR results in NaN
(Not-a-Number). Excluding such edge cases, PAQR seems to
deliver stable results with high numerical accuracy in practical
application cases, as we show in Section V.

IV. IMPLEMENTATIONS

We propose several implementations of PAQR, each of
which targeting a different computer architecture: sequential
implementation, designed in LAPACK (Section IV-A), batch
GPU implementation, designed in MAGMA (Section IV-B),
and distributed-memory implementation, designed in ScaLA-
PACK (Section IV-C). Note for the remaining of the paper, we
are going to use Householder orthogonalization as our method
for constructing reflectors.

A. LAPACK (sequential)

A current prerequisite of PAQR (compared to QR) is the
computations of the column norms of A. Future work can
benefit from randomized SVD or iterative methods to quickly
approximate the 2-norm of A (in O(n2) operations). As of
now however, we consider (regardless of the selected α) the
computation of the 2-norm of each column of A.

Modern linear algebra libraries rely on blocking strategies
to optimize their performance. While memory-bound Level
1 BLAS (scalar-based) and Level 2 BLAS (vector-based)

operations occur within limited size blocks (e.g., panels), the
majority of the operations is described through and carried out
by highly efficient computation-bound Level 3 BLAS (matrix-
based) operations.

Inside a panel, care must be taken during the computa-
tion of Householder vectors, as the LAPACK implementation
applies a post-processing in case the computed norm of
the Householder vector is smaller than a machine-related
precision threshold. For this reason, the PAQR deficiency
criterion is checked before the potential application of this
post-processing, as the computation of the Householder norm
may be artificially inflated by an appropriate adaptive scaling
factor.

Moreover, in the presence of previously detected rejected
columns, the number of effective Householder vectors com-
puted and stored is smaller than the current number of columns
of A in the panel. Hence, every new Householder vector would
need to be stored at a different location in memory than its
originally intended one. Traditionally, the computation of the
Householder vectors requires the loading of a sub-column
(of A) in registers, its scaling, then its storing at the same
location in memory (in V ). In our implementation, we avoid
an unnecessary copy of this vector to its final destination by
storing the result of its scaling at its final correct location right
away. This boils down to merging the xSCAL and xCOPY
Level 1 BLAS operations into a xSCALCOPY routine.

Outside a panel, because the Householder vectors are stored
contiguously in memory, the efficient xLARFT and xLARFB
routines can still be used to build the blocking factor T matrix
and update the trailing matrix, respectively. The potentially
smaller number of Householder vectors to be applied should
be the major source of speedup of PAQR over QR.

While the V matrix can be packed on the fly using the
above-mentioned optimization, the R matrix is sparse however.
Indeed, the rejected columns are flagged but remain present
inside the R matrix. Hence, two strategies may be applied to
use this sparse R matrix for the least-squares solution phase.
The first one is to compact R, either during the factorization,
or as a post-treatment. The drawback, however, is the extra
memory traffic of potentially the whole R matrix, even in the
presence of a single rejected column, for example, the second
column of A. The second strategy is to keep R sparse, but
develop a tailored xTRSM routine that can accommodate this
sparsity pattern.

Figure 1 depicts a representation of R at the end of a PAQR
factorization using the first strategy (right) and the second one
(left).

B. MAGMA (batched GPU)

For GPU architectures, a kernel is developed to operate on
a large set of relatively small matrices in parallel, which is
often called a batch setting. The kernel takes as input an array
of pointers that belong to independent matrices of the same
size. Each matrix A ∈ Rm×n is assumed to satisfy m ≥
n. The corresponding output is RVm×n̂ such that n̂ ≤ n.
Each RV matrix is condensed such that the n̂ columns are



adjacent to each other and aligned to the left of the matrix.
The input matrices must be of the same size, but can have
different degrees of rank deficiency. An additional output is
δ, the array of flags of each matrix that point to the column
indices that have been ignored during the factorization.

The batch PAQR implementation uses one kernel to perform
the whole factorization. Each matrix is assigned to one thread-
block. The main advantage of this approach is the optimal
memory traffic, since each matrix is read and written exactly
once. The implementation concerns small matrices that fit in
the GPU shared memory. While the register file provides a
faster data access, the shared memory is more flexible, and
is our choice for the kernel design. Since detecting rank
deficiency occurs at run time, it is non-trivial to maintain
constant compile-time indexing of the register file, which is
necessary to avoid register spilling. The kernel implements
Algorithm 3 in an unblocked manner, which means that the
application of the Householder reflectors are performed one
column at a time, thus eliminating the need for constructing
the T factor. The kernel works with any number of threads in
the range [n:m].

There are two main bottlenecks of the design. The first one
is computing the norm of the current column. The second is
the matrix-vector multiply (vTA) during the application of the
elementary Householder reflector (I−τvvT )A, which requires
a reduction across the columns of A. At each iteration, the
norm of the current column is computed using a standard tree
reduction in the shared memory of the GPU. If the computed
norm is less than a given threshold (defined by the user through
the kernel interface), the whole iteration is skipped and the
corresponding flag is set. Otherwise, the kernel proceeds with
the application of the Householder reflector to the trailing
submatrix. The update step begins with the computation of the
vTA product, for which threads re-organize themselves evenly
across the remaining columns of A, and an equivalent number
of independent tree reductions are executed all in parallel in
shared memory. The output of the product is scaled with τ and
stored in a shared memory vector Y , which is used to compute
the remaining rank-1 update (A = A−v×Y ). As an example,
if 64 threads are used to factorize a 128 × 8 matrix, the first
iteration begins with a tree reduction using all 64 threads to
compute the norm of 128-element vector. The 64 threads are
then reorganized into 7 groups of 9 threads, with one thread
remaining idle, to compute the vTA product. In this case, 7
independent tree reductions are performed, each one using 9
threads to reduce a 128-element vector. Out of each group,
one thread writes the corresponding element of Y . The rank-1
update is performed using one thread per row. If there are more
rows than threads, a round-robin scheme is used. The kernel
interface exposes two important tuning parameters to the user.
The first is α, the parameter used in the deficiency criteria,
which controls the numerical behavior, and also affects the
performance, of the batch PAQR kernel. The second is the
number of threads used in the factorization, which controls
the occupancy and the performance of the kernel as well.

C. ScaLAPACK (distributed-memory)

ScaLAPACK has a similar structure to that of LAPACK, in
the sense that the high-level routines resemble a sequential
implementation, while they rely on lower-level libraries to
handle inter-process communication seamlessly.

A first major difference of this distributed-memory imple-
mentation, compared to a sequential or shared-memory one,
is that A is distributed over the MPI processes following
a 2D-block-cyclic scheme as shown in Figure 2. Given the
characteristics of PAQR (some Householder vectors may con-
tain more rows than would have otherwise been the case in
QR), the communication pattern of the factorization might
differ. Indeed, now, some processes may be involved in the
communication and computation relative to a panel while
these processes would not have been involved otherwise.
However, this difference does not increase the overall volume
of communication and computation.

A second major difference is that the block of Householder
vectors computed within each panel is broadcast from the set
of processes mapped on it to the set of processes mapped
on the trailing matrix. While the number of vectors to be
communicated is deterministic in QR (corresponding to the
size of the panel) this number is dynamic in PAQR, as it
depends on the number of rejected columns encountered, and
should be communicated alongside the Householder vectors.
While the reduction in computation is the major source of
speedup of PAQR over QR in a shared-memory environment,
the reduction in communication volume of the Householder
vectors should be an important source of speedup as well in
a distributed-memory environment.

Figure 2 depicts a representation of R and V at the end of
a PAQR factorization.

Fig. 2. PAQR on a 2D-block cyclic matrix in distributed-memory environ-
ment. The dark colors correspond to R. The light colors correspond to V .
Every color (blue, red, green, yellow) correspond to a different process in the
grid. The dashed area corresponds to rejected columns in R. The grey areas
correspond to unused space freed-up by PAQR.



V. EXPERIMENTS

This section presents the experiments comparing PAQR with
QR and QRCP.

A. Experimental setting

1) Matrices: Three sets of matrices are used: (a) Test
matrices; (b) Weighted least-squares (WLS) matrices; (c)
Quantum many-body matrices.

a) Test matrices: The first set of matrices summarized
in Table I is the same as the test matrices used in [27] for
the validation of Communication Avoiding Rank Revealing QR
(CARRQR). The Rand and Vandermonde matrices are added,
while the Gks, H-C, Scale and Kahan matrices are missing.

No. Matrix Description
1 Rand rand function in MATLAB generating random matrices.
2 Vandermonde vander function in MATLAB generating Vandermonde matrices.
3 Baart Discretization of the 1st kind Fredholm integral equation [34].
4 Break-1 Break 1 distribution, matrix with prescribed singular values [35].
5 Break-9 Break 9 distribution, matrix with prescribed singular values [35].
6 Deriv2 Computation of second derivative [34].
7 Devil The devil’s stairs, a matrix with gaps in its singular values [36].
8 Exponential Exponential Distribution, σ1 = 1, σi = σi − 1

(i = 2, ..., n), α = 10− 1/11 [35].
9 Foxgood Severely ill-posed test problem [34].

10 Gks An upper-triangular matrix whose j-th diagonal element is
1/
√
j and whose i, j element is −1/

√
j, for j > i [37], [38].

11 Gravity 1D gravity surveying problem [34].
12 H-C Matrix with prescribed singular values,

see description in [39].
13 Heat Inverse heat equation [34].
14 Phillips Phillips’ famous test problem [34].
15 Random Random matrix A = 2× rand(n)− 1 [38].
16 Scale Scaled random matrix, a random matrix whose i-th row

is scaled by the factor θi/θ [38]. We choose θ = 10·.
17 Shaw 1D image restoration model [34].
18 Spikes Test problem with a “spiky” solution [34].
19 Stewart Matrix A = UΣV T + 0.1σ50× rand(n) [36].
20 Ursell Integral equation with no square integrable solution [34].
21 Wing Test problem with a discontinuous solution [34].
22 Kahan Kahan matrix.

TABLE I
TEST MATRICES USED IN SECTION V

b) Weighted least-squares (WLS) matrices: The second
set of matrices consists of Vandermonde-like matrices that
can be used for interpolating 3D polynomials from scattered
data using an application of the weighted least-squares (WLS)
algorithm [40]. These WLS interpolation matrices are derived
from finite-volume discretizations on irregular meshes, where
m cells, each with n geometric moments, are used to calculate
“stencils” X that determine polynomial coefficients:

W AX ≈W I . (16)

Note that this is a least-squares system with multiple solutions
X ∈ Rn×n for multiple right-hand sides with W ∈ Rm×m

being a diagonal weight matrix. The weight matrix is designed
to decay rapidly to emphasize closer values over distant
ones in the interpolation, which can create very small row
scaling. This results in least-squares systems that can have
very poor conditioning, due to small weights and cells being
arbitrarily small or close together, which can create matrix
entries beyond the limits of floating point precision: O(γm),
for any γ > 0. If there are insufficient or co-linear cells, this
may also prevent determination of some of the coefficients,
making the interpolation matrix A rank-deficient. Finally, to

maintain uniform matrix size for the entire batch, missing
interpolation data are replaced with zero-padded rows, which
may occur in any part of the matrix.

c) Quantum many-body matrices: The third set of matri-
ces relates to quantum many-body problems. Fundamentally,
solution of these problems for molecular systems requires
manipulation of a high-dimensional tensor which describes
the interactions between electrons: the Coulomb tensor, gpq,rs,
p, q, r, s ∈ [0, n). The Coulomb tensor is leveraged in vir-
tually all quantum chemistry methods, ranging from mean-
field, single-body methods such as Hartree-Fock and density
functional theory, to highly accurate many-body methods
such as coupled cluster theory, Møller-Plesset perturbation
theory, and configuration interaction to name a few. De-
spite it’s large dimension, which grows O(N2

A) with system
size (NA), the Coulomb tensor is inherently low-rank, and
can be straightforwardly shown to exhibit a matrix rank
which grows O(NA) with system size when expressed in an
atom-centered basis. This low-rank character has sparked n
enormous research effort dedicated to the construction and
manipulation of data-sparse representations of the Coulomb
tensor, ranging from approximate projection methods such
as density fitting (DF) and resolution of the identity (RI),
grid-based methods, local-orbital methods, and more recently,
formal matrix methods such as the Cholesky factorization and
hierarchical decompositions [41]. Projection, grid, and local
orbital methods have the benefit of exhibiting a relatively low
communication overhead but do not produce the most compact
representations. Matrix factorizations generally produce much
more compact representations, but are accompanied by a
much higher computational complexity and communication
requirement which often complicates their usage on massively
parallel architectures. Here, we examine the application of
PAQR to produce low-rank representations of a representative
set of Coulomb tensors generated from a range of molecular
systems.

The Coulomb tensor has a natural matrization in Rn2×n2

by
combining adjacent indices gpq,rs → gi,j , i, j ∈ [0, N) with
N = n2. For real basis discretizations, the column rank of the
g matrization is bounded from above by n

2 (n− 1) due to the
fact that gpq,rs = gpq,sr. We have applied our methodology
to three molecular test cases, all calculations were carried out
within the NWChemEx program using either the 6-31G [42],
[43] or 6-31G(d) [44] atom-centered Gaussian basis set. These
cases are: a Uracil trimer (36 atoms, N = 57, 600 within 6-
31G), 5-mer (60 atoms, N = 160, 000 within 6-31G), and
the Beta Carotene molecule (96 atoms, N = 506, 944 within
6-31G(d)).

B. Experimental results

1) Accuracy: Table II summarizes the numerical accuracy
results of PAQR compared to that of QR and QRCP. These
results are obtained with our MATLAB implementation of
PAQR using the set of Test matrices Table I. The QR and
QRCP implementations are the MATLAB’s own version of the
corresponding algorithms and were invoked as [q,r] = qr(A)



TABLE II
ACCURACY RESULTS COMPARING PAQR WITH QR AND RRQR BASED ON FORWARD, BACKWARD, AND ORTHOGONALITY ERRORS ON THE SET OF TEST

MATRICES. FOR DOUBLE PRECISION ARITHMETIC, ERROR SHOULD BE AROUND 10−16 .

Matrix κ2(A) Forward error Backward error Orthogonality error Rncol rank(R)
QR PAQR QRCP QR PAQR QRCP QR PAQR QRCP PAQR PAQR SVD

Random∗ 10+03 10−14 10−13 10−14 10−16 10−15 10−16 10−14 10−14 10−14 1000 1000 1000
Rand∗ 10+04 10−13 10−12 10−12 10−16 10−15 10−16 10−15 10−16 10−15 1000 1000 1000
Deriv2 10+06 10−09 10−08 10−10 10−15 10−14 10−16 10−15 10−15 10−14 1000 1000 1000
Stewart∗ 10+06 10−11 10−10 10−11 10−16 10−16 10−16 10−15 10−15 10−15 1000 1000 1000
Phillips 10+10 10−07 10−06 10−06 10−16 10−15 10−16 10−15 10−15 10−14 1000 1000 1000
Break-1∗ 10+11 10−05 10−04 10−05 10−16 10−15 10−16 10−14 10−14 10−14 1000 1000 1000
Break-9∗ 10+11 10−05 10−04 10−04 10−16 10−15 10−16 10−14 10−14 10−14 1000 1000 1000
Ursell 10+13 10−03 10−03 10−01 10−16 10−15 10−15 10−15 10−14 10−15 1000 999 999
H-C∗ 10+13 10−04 10−03 10−01 10−16 10−15 10−14 10−15 10−16 10−14 1000 999 999
Scale∗ 10+17 10−12 10+00 10+00 10−16 10−16 10−14 10−14 10−14 10−14 914 794 802
Kahan 10+17 10+01 10−02 10−02 10−16 10−14 10−16 10−14 10−14 10−15 999 999 999
Baart 10+19 10+02 10+01 10+01 10−17 10−15 10−14 10−14 10−15 10−14 163 16 13
Devil∗ 10+19 10+01 10+00 10+00 10−16 10−15 10−14 10−14 10−14 10−14 469 421 440
Exponential∗ 10+19 10+02 10+00 10+00 10−17 10−15 10−14 10−14 10−15 10−14 152 136 140
Foxgood 10+21 10+03 10+00 10+00 10−17 10−16 10−14 10−13 10−14 10−11 71 31 30
Gks 10+21 10+280 10+280 10−02 10−19 10−19 10−15 10+262 10+262 10−15 1000 999 999
Gravity 10+20 10+03 10+00 10+00 10−18 10−16 10−15 10−14 10−14 10−12 152 44 45
Shaw 10+20 10+03 10+00 10+00 10−18 10−17 10−16 10−13 10−15 10−12 77 19 20
Spikes 10+20 10+03 10+02 10+01 10−18 10−14 10−14 10−14 10−14 10−14 56 31 31
Wing 10+21 10+05 10+01 10+01 10−20 10−16 10−15 10−13 10−14 10−12 32 8 8
Vandermonde 10+22 10+70 10+00 10+00 10−18 10−15 10−15 10+54 10−15 10−11 103 42 43
Heat 10+232 10+215 10+00 10+00 10−230 10−15 10−14 10−15 10−15 10−13 987 588 588

and [q,r,p] = qr(A), respectively. All matrices are generated
of size 1000 × 1000. For each matrix A, random solution
vectors x̂ are generated. The corresponding right-hand sides b
are computed as b = Ax. This ensures the existence of a valid
solution to the systems of equations Ax = b. The triangular
solve routine (xTRSM) is used on the R factors returned by the
three variants. While QR returns a full R factor, PAQR and
QRCP return a truncated R factor, that is supposed to only
capture the rank (as well as possible).

The forward and backward errors are already defined in
Equation (7) and Equation (8), respectively. The orthogonality
error corresponds to:

||AT (Ax− b)||2
||A||22

(17)

This metric is more suited to least-squares problems on
deficient matrices compared to the backward error which is
more appropriate for systems of linear equations.

Among the 22 test matrices, seven are full-rank (Rand,
Break-1, Break-9, Deriv2, Phillips, Random, Stewart), while
the others involve varying degrees of rank deficiency.

From our preliminary tests, we notice that all the deficiency
criteria presented in Section III-B give us similar numerical
results except for the GKS matrix. Therefore, in the remaining
of the paper we use the deficiency criterion from Equation (13)
and, unless otherwise mentioned, we set α = m× ε, where m
is the row-space dimension of the matrix.

First, all methods on all matrices have a backward error of
the order of (or smaller than) the machine precision ε. This
means that all methods correctly minimize the least-squares
error of the system.

Second, on the set of full-rank matrices, all methods have
similar forward errors. We note a slight discrepancy of no
more than an order of magnitude in disfavor of PAQR. This is
attributed to the fact that our MATLAB PAQR implementation
differs from the MATLAB QR and QRCP implementations.
For instance, we notice a similar order of magnitude difference
when switching between different variants of Householder
vector computation.

Third, the key result of this paper, on the set of rank-
deficient matrices, PAQR exhibits a much more stable be-
haviour than QR and similar behavior than QRCP in terms
of forward error. For instance, we can observe stark differ-
ences between PAQR and QR on the Vandermonde and heat
matrices.

Fourth, as expected, PAQR does not remove any column
from R when A is full-rank. More importantly, when A is
rank-deficient, the number of retained (non-flagged) columns
remains greater than the rank of A. For instance, in the case of
the heat matrix, PAQR only flags 13 columns, while the true
rank of the matrix is 588. Nevertheless, the removal of these
few columns is still enough to lead to an accurate solution
(forward error of 1.01 compared to 1.40× 10+215 with QR).

Among these matrices, we want to discuss two that are of
interest: Gks, and Scale. The Gks matrix is an example of
the patholigical cases presented in Section III-C. The rank
of this matrix is 999 and its spectrum reveals that the first
n − 1 singular values range from 26.1 and 0.041 while the
smallest singular value is equal to 6.6 × 10−20. In that case,
as expected PAQR is not able to detect the single column that
QRCP permutes at the end and then is removed before the
call to TRSM. Note that when using the criterion one (more
strict), PAQR gives similar results as QRCP. The Scale matrix



is a perfect illustration that in some cases QRCP can fail to
reveal the rank. Here, the spectrum does not have a gap and
so the numerical rank 802 is more sensitive to small roundoff
errors and approximations. Therefore, the truncation based on
the diagonal elements of R causes both PAQR and QRCP to
fail, whereas the classical QR factorization does not.

Post-treatment: One might think that the linearly de-
pendent columns identified by PAQR (namely δPAQR) could
be retrieved by a posteriori applying the PAQR deficiency
criterion on the diagonal elements of R (namely δQR). To
verify this statement, we compare the forward errors obtained
after performing a QR factorization on A when: keeping all
columns of A; discarding δPAQR; or discarding δQR. Table III
shows that while the above mentioned statement holds true in
the case of the heat matrix, it is incorrect for the two other
matrices. Indeed, it does improves the forward error compared
to no post-treatment but it does not reach the same numerical
stability brought by PAQR. This is due to the post-treatment
removing too many columns from A as displayed by Rncol.
For example, in the case of the Vandermonde matrix, the
number of non-rejected columns is reduced to 16 while its
rank is 43.

The advantage of PAQR over QR is that the additional post-
treatment is not necessary for PAQR for the solution of least-
squares problems, while it is in the case of QR. Moreover, in a
rank-revealing scenario, even if a post-treatment is needed in
both methods, the fact that some columns have already been
removed from the R of PAQR lead to less computation than
QR for the post-treatment.

qr(A) qr(A(:,∼ δPAQR)) qr(A(:,∼ δQR))

Matrix efwd efwd Rncol efwd Rncol

Vandermonde 10+74 10+00 143 10+13 6
Heat 10+214 10+00 988 10+00 988
Spikes 10+03 10+01 76 10+10 35

TABLE III
COMPARISON OF THE FORWARD ERROR WHEN COLUMNS OF A ARE

REMOVED EITHER FROM PAQR OR FROM A POST-TREATMENT OF THE R
MATRIX RETURNED BY THE CLASSICAL QR FACTORIZATION WITH THE

FORWARD ERROR OBTAINED WHEN USING THE CLASSICAL QR
FACTORIZATION.

2) Efficiency:
a) LAPACK: We now compare the performance of PAQR

with QR and QRCP in the LAPACK implementation. Given
that this implementation is sequential, we want to highlight
the importance of the location of the rejected columns in the
matrix. To this end, we generate random matrices of size
10, 000 × 10, 000 with the following characteristics: Afull,
full-rank; Abeg , where the first 5000 columns are set to zero;
Amid, where the middle 5000 columns are set to zero; Aend,
where the last 5000 columns are set to zero.

Table IV summarizes the runtimes on one core of a DGX
A100 [45] server. We use: 1 AMD EPYC 7742 CPU core; MKL
2019.0.3 library as the Level i BLAS mplementation; GCC
7.3.0 compiler. As expected, the runtime of PAQR is similar
to that of QR on the full-rank matrix. Moreover, on the rank-

deficient matrices, on matrices of same size and same amount
of rejected columns, the performance of PAQR improves with
more rejected columns appearing at the beginning of the
matrix.

Method Time (seconds)
Afull Abeg Amid Aend

QR 138
PAQR 138 129 89 43
QRCP 163 211 209 211

TABLE IV
LAPACK PERFORMANCE. IMPACT OF THE LOCATION OF REJECTED

COLUMNS ON PAQR FACTORIZATION PERFORMANCE.

b) Batch PAQR factorization on GPUs: We tested the
GPU-based batch PAQR factorization on two sets of the set
of WLS matrices. Since the current kernel design caches the
entire matrix in the shared memory of the GPU, we show
only two matrix sizes which satisfy this condition. For each
set, 1000 matrices of the same size, but different ranks, were
tested. Figure 3 shows the corresponding histograms of the
number of non-flagged columns as detected by the batch PAQR
kernel. Table V shows the performance of the batch PAQR
factorization on an NVIDIA Tesla A100 GPU and on the AMD
Instinct MI100 GPU. The results correspond to experiments
conducted in double precision. We use cuBLAS and hipBLAS
as the two reference implementations for a standard batch QR
factorization. The performance of these two libraries does not
take advantage of any rank deficiency in the matrices, so their
performance is oblivious to this property. We show the timings
of a regular QR kernel of our design qr gpu for full rank
matrices that are randomly generated, and then the paqr gpu
kernel timing on the WLS set of matrices. The paqr gpu kernel
is superior to the reference kernels in every test case.

The following results are obtained for the 27 × 20 and
125 × 56 matrices, respectively. On the A100 GPU, the
speedups against cuBLAS increase from 2.7× (resp. 2.2×) for
qr gpu to 2.9× (resp. 2.3×) for paqr gpu. Note that varying
timings for paqr gpu could be observed based on the pattern
of rank deficiency, but it should never be slower than qr gpu.
On the MI100 GPU, the speedups against hipBLAS increase
from 7.8× (resp. 1.3×) for qr gpu to 8.7× (resp. 1.4×) for
paqr gpu. In order to justify the significant speedups against
the vendor libraries for the full rank case, we profiled cuBLAS
and hipBLAS for the aforementioned experiments. cuBLAS
launches one kernel to perform the whole QR factorization,
which is similar to our batch qr gpu code. However, it uses
only 63 thread-blocks for 1000 matrices of size 27×20, and
125 thread-blocks for 1000 matrices of size 125×56. Using
fewer thread-blocks indicates that one thread-block processes
multiple matrices, which affects the kernel’s overall occupancy
on the GPU. hipBLAS launches several kernels to perform
the factorization, which causes serious overhead in terms
of unnecessary global memory traffic. We also observe a
significant drop in the performance gain for the set of 125×56
matrices on the MI100 GPU. We believe this is mainly due to
the relatively small shared memory on the MI100 (64KB),
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Fig. 3. Histograms of the actual ranks detected by the batch PAQR kernel
for the tested two sets of WLS set of matrices.

compared to the A100 (192KB). paqr gpu requires about
57KB for the larger matrix set, which means that each compute
unit in the MI100 GPU can host only one matrix at a time. On
the A100, assuming that the CUDA runtime takes the correct
scheduling decision, three matrices can be factorized on the
same multiprocessor simultaneously.

Size Ref. (µs) qr gpu (µs) paqr gpu (µs)

A100 27×20 294.13 109.33 (2.7×) 100.46 (2.9×)
125×56 6215.2 2852.4 (2.2×) 2692.2 (2.3×)

MI100 27×20 1508.7 194.31 (7.8×) 174.21 (8.7×)
125×56 11057.85 8561.13 (1.3×) 8039.02 (1.4×)

TABLE V
PERFORMANCE OF THE BATCH PAQR IN DOUBLE PRECISION ON THE

A100 GPU USING CUDA-11.6, AND ON THE MI100 GPU USING
ROCM-5.0. RESULTS ARE SHOWN FOR TWO DIFFERENT SIZES OF THE

WLS SET OF MATRICES. THE Ref. ENTRY REFERS TO CUBLAS OR
HIPBLAS.

c) ScaLAPACK: In this section we present results gath-
ered using the ScaLAPACK implementation of PAQR. We
compare the time to factorization for QR, QRCP and PAQR
using matrices discussed in Section V-A1 regarding the Quan-
tum many-body matrices. A brief discussion of the related
performance of each algorithm is presented as well as a
comparison for the columns deemed “rejected” according to
PAQR.

#Nodes Method Matrix size

57 600 160 000
Time(s) #Def cols Time(s) #Def cols

1 PAQR ε 160 45180
PAQR 10−8 117 52073
QR 336
RRQR 4042

2 PAQR ε 109 45217
PAQR 10−8 75 52073
QR 243
RRQR 2087

4 PAQR ε 54 44792 563 135583
PAQR 10−8 41 52073 454 150673
QR 100 1779
RRQR 1050 *

8 PAQR ε 38 44300 411 134036
PAQR 10−8 30 52073 220 150673
QR 63 919
RRQR 556 *

16 PAQR ε 31 43996 191 133930
PAQR 10−8 25 52073 136 150673
QR 44 498
RRQR 304 *

32 PAQR ε 23 43644 138 133005
PAQR 10−8 20 52073 96 150673
QR 32 355
RRQR 174 2086

64 PAQR ε - 78 132636
PAQR 10−8 - 62 150673
QR - 162
RRQR - 1103

TABLE VI
TIME TO FACTORIZATION RESULTS GATHERED ON SUMMIT FOR QR,

QRCP, AND PAQR. BLANK CELLS CORRESPOND TO RUNS THAT DO NOT
FIT IN MEMORY. ∗ CORRESPONDS TO IRRELEVANT RUNS. − CORRESPONDS

TO SKIPPED RUNS. ε CORRESPONDS TO DOUBLE-PRECISION.

Table VI presents time to factorization results gathered
on the Oak Ridge National Laboratory Summit Supercom-
puter [46]. We use: 42 Power9 CPU cores per node, and do
not rely on the GPUs, as ScaLAPACK is not compatioble
with their use; ESSL 6.3.0 library as the Level i BLAS
mplementation; Spectrum 10.4.0.3 as the MPI library; GCC
9.1.0 compiler. The QR and QRCP implementation used are
the ScaLAPACKPDGEQRF and PDGEQPF rourines. PAQR
was implemented baed on the PDGEQRF routine. For the
two problem sizes, we vary the number of nodes used for the
factorization and compare the speedups between the different
implementations. Whenever a data point is not expressed on
Table VI, this is due to either the run being too expensive for
us to compute in a reasonable amount of time, or the problem
size did not warrant the use of that many nodes.

The results gathered are done with two different matrix
sizes. For case (1) we experiment with the dimension m =
n = 57, 600 corresponding to the basis set discussed in
Section V-A1. For case (2), the size is m = n = 160, 000.
Given the differences to both case problem sizes, experiments
are run using a varying number of nodes. Case (1) is run using
from 1 to 32 nodes on Summit (we do not use 64 nodes for



this experiment because the time to factorization is already
reduced significantly from the factorization on 1 node and as
we increase the number of nodes we begin to move from the
compute bound spectrum to being communication bound). For
case (2), the results are gathered using 4 nodes to 64 nodes
on Summit. For this problem size, QRCP does not have a
data point for 4, 8 and 16 nodes as the time to factorization
exceeded our allocated time to factorize, meaning it is too
expensive to compute for that number of nodes.

For PAQR, two thresholds are analyzed to test factorization
times under the assumption, with a stricter threshold we desire
a lower-rank approximation compared to that of a less strict
threshold. In each experiment, we compare against using a
tolerance of machine-precision (ε) relative to the double pre-
cision, or setting the deficiency criteria to 10−8. Section V-A1
discusses that on average, one expects the rank of these
matrices to be at most half of their dimension. The column
“Def cols” in Table VI shows the number of rejected columns
detected by PAQR given the input tolerance given. In every
case, PAQR removes a significant number of columns from
the factorization. With a more strict threshold, the number of
columns dropped is deterministic, regardless of the number
of nodes being used. Whereas, when the tolerance is close
to that of machine precision, there is a little variation to the
number of columns dropped by PAQR. Many of the entries
within these input matrices have values that are zero or very
close to that, and depending on the setup of the factorization,
the algorithm can have varying noise accumulation with these
values. Which is why we see some variation for the different
ways of breaking up the factorization in accordance to the
rejected columns.

As one reviews Table VI, there are two performance com-
parisons to consider:

1) For each factorization, for a particular number of nodes,
we can compare the improvement of PAQR to that of
its algorithmic counterparts;

2) One can compare the strong scalability when increasing
the number of nodes.

For the problem size of 57,600, PAQR can achieve an overall
speedup greater than 3x compared to traditional QR. When
we compare the time to factorization of PAQR to that of
QRCP, on one node, PAQR is almost 40x faster. This is a
significant speedup where for this problem, PAQR removes
52,073 rejected columns. For the problem size of 160,000, we
see PAQR can achieve similar results. PAQR on 32 nodes is
over 20x faster than QRCP and almost 3.5x faster than QR.
For this case, the deficiency criteria is defined as 10−8, PAQR
removes 150,673 columns which corresponds to 94% of the
number of columns of the input matrix.

Finally, we were able to carry out a PAQR factorization
of the third problem from the Quantum many-body matrix
set (Beta Carotene) of size 506, 944 on 128 nodes of the
Summit supercomputer. The runtime obtained is 1155 seconds.
PAQR was able to flag and remove 393, 805 columns. This
corresponds to the theoretical expected amount of rejected
columns of the matrix. This stunning achievement of PAQR

would not be possible to obtain with QRCP in any reasonable
amount of time.

VI. CONCLUSION

A. Summary

This paper presents PAQR, an algorithm for the factor-
ization of rank-deficient matrices arising from linear least-
squares problems. It is particularly well suited for large-
scale problems. Indeed, PAQR is faster than QR and appears
to be as numerically stable as QRCP. This technique can
be implemented using different criteria to flag potentially
rejected columns in rank-deficient matrices. These criteria are
adaptable as they can be conveniently adjusted according to the
type of arithmetic precision used and the type of application
at hand.

Preliminary tests have revealed the efficiency of the pro-
posed algorithm and its robustness vis-à-vis a variety of cases.
Indeed, PAQR was implemented on three types of architec-
tures: sequential, GPU and distributed-memory. It was applied
on various matrices of various sizes and arising from various
application fields. Further examination of the behaviour of the
algorithm will strengthen these results.

B. Future work

The work in this paper has opened up exciting perspectives.
First, the limitations mentioned in Section III-C together

with the experimental results described in Section V-B1 re-
vealed that PAQR oftentimes identifies more columns as non-
rejected compared to the true rank of a matrix. From the
numerical accuracy perspective, it can lead to edge cases where
the numerical stability is compromised. From a performance
perspective, we believe that there may still be room for
improvement, especially at large-scale. This aspect needs to be
studied more formally in order to improve our understanding
of the pathological cases and to derive improved deficiency
criteria.

Second, our preliminary results have shown the impact the
parameter α can have on the efficiency of PAQR. Specifically,
the number of rejected columns flagged by PAQR can vary
widely depending on its value. The default value of α used
in this paper was purposefully conservative. This is because
we want to avoid the risk of wrongly flagging a column as
rejected when it actually does contribute to the rank of the
matrix. However, the α parameter can in fact be user-defined
to speed-up PAQR by taking advantage of user knowledge.
This will allow PAQR to safely remove more columns than
it otherwise would have. An application-centric study can be
done to evaluate the appropriate value of α.

Third, the initial purpose of solving a least-squares prob-
lem involving rank-deficient matrices naturally leads us to
consider PAQR for low-rank compression purposes. Several
applications rely on RRQR and SVD for this purpose but the
scalability of such methods is a major bottleneck that PAQR
does not suffer from. It becomes possible to construct a low-
rank representation that can be used as a preconditioner.



One avenue of interest is the use of PAQR as a first coarse-
grain pass of compression on a large matrix, followed by an
SVD as a second finer-grain compression scheme on a much
smaller matrix.

Fourth, communication avoiding techniques have been suc-
cessfully applied to QR and RRQR in the CAQR and CAR-
RQR algorithms. PAQR can benefit from such techniques in
a very similar way in a CPAQR variant.

Another future direction is to provide a high performance
GPU solution for a single PAQR factorization. The algorithmic
adaptation and optimizations for one relatively large matrix are
different from a batch of small matrices, which requires further
investigation.
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