Using GPU's FP16 Tensor Cores Arithmetic to Accelerate Mixed-Precision
Iterative Refinement Solvers and Reduce Energy Consumption

Azzam Haidar, Stanimire Tomov, Ahmad Abdelfattah, Mawussi Zounon and Jack Dongarra

AbStraCt: The use of low-precision arithmetic in mixed-precision computing methods has been

a powerful tool to accelerate numerous scientific computing applications. Artificial intelligence (Al) in
particular has pushed this to current extremes, making use of half-precision floating-point arithmetic
(FP16) in approaches based on neural networks. We present an investigation showing that other HPC
applications can harness this power too, and in particular, the general HPC problem of solving Ax = b,
where A is a large dense matrix, and the solution is needed in FP64 accuracy. Our approach is based
on the mixed-precision (FP16->FP64) iterative refinement technique — we generalize and extend prior
advances into a framework, for which we develop architecture-specific algorithms and highly-tuned
implementations where we show how the use of FP16-TC (tensor cores) arithmetic can provide up to
4X speedup and improve the energy consumption by a factor of 5. This is due to the performance
boost that the FP16->64 (Tensor Cores) provide and to its better accuracy that outperforms the
classical FP16 because the GEMM accumulation occur in FP32-bit arithmetic. In addition, we will
highlight, for the first time, that a V100 GPU is able to deliver 74 Gflops/Watt. One can reproduce our
results as the developments will be made available through the MAGMA library.
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Study of the Matrix Matrix multiplication kernel on Nvidia V100
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ch: 1) Develop Ax=b solver in FP16

Study of the LU factorization algorithm on Nvidia V100
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proach: 2) Iterative refinement

Idea: use lower precision to compute the e F%enswe flops (LU O(n®)) and then iteratively
refine the solution in order to achieve the FP64 arithmetic

Iterative refinement for dense systems, Ax = b, can work this way.

= lu(A) lower precision O(n3)
x = U\(L\b) lower precnsuon o(n?)
r=b-Ax FP64 precision O(n®)

WHILE || r || not small enough

1. find a correction "z" to adjust x that satisfy Az=r
solving Az=r could be done by either:

» z = U\(L\r) Classical Iterative Refinement lower precision O(n?)
> GMRes preconditioned by the LU to solve Az=r Iterative Refinement using GMRes lower precision Oo(n?)
2. X=X+2 F O(n!)
3. r=b- Ax O(n?)

» Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
» Tt can be shown that using this approach we can compute the solution to 64-bit floating point precision.

Performance results on V100 Numerical behavior of FP16 on V100

Energy efficiency on V100
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» Convergence history of the iterative refinement » The FP32->64 algorithm converge as expected by theory and is able to

Convergence history for Iterative Refinement using GMRes
n = 10240, ko (A) = 2.6e+04

Convergence history for Iterative Refinement using GMRes
n = 10240, kx(A) = 2.6e+04

solver to achieve FP64 solution accuracy.
» Left graph shows the classical iterative refinement

method. >
» Right graph shows the iterative refinement using

GMRes. >
» Problem generated with an arlthmetlc dlstrlbutlon

of the singular values 0; = 1 — (=1 )(1— - >

achieve the FP64 solution accuracy in about 3-5 iterations for this types of

matrices.

The FP16->64 algorithm requires more iterations than FP32->64 because of

the lower prec1510n factorization.

The | outperforms the FP16->64 because the
during the FP16-TC GEMM (Schur update)

Iterative Refinement using GMRes (IRGM) is always preferred in order to

achieve FP64 accuracy.
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Performance of solving Ax=b Performance of solving Ax=b
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» Problem generated with an anthmetlc distribution of the : g , :
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eigenvalue (left) or general eigenvalue (right) provides sotution in accuracy.

s e > The FP16-TC solver requires less iterations than FP16 classic and thus
» solving Ax = b using FP32 LU and iterative refinement to provide better performance

achieve FP64 accuracy ]
> solving Ax = b using FP16 LU and iterative refinement to » For more difficult problem (right), the number of iterations of FP16 classic
\, achieve FP64 accuracy increases thus the performance drop down for that the performance of the
’ FP16 classic drop for difficult matrices (right figure).
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Convergence history of the iterative refinement solver to FP16-TC — FP64 dhgesv 1.0e+04 < £oo(4) < 1.0e+06
achieve FP64 solution accuracy for the three algorithms:
* FP16->64 (Tensor Cores)
* FP16->FP64
* FP32->FP64

Matrices types
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Analysis performed on 19 types of matrices [1] (vertical
view) for each of the algorithms. Types are ordered by
increased difficulty.
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FP16 — FP64 dhgesv 1.0e+04 < ko (A) < 1.0e+06

Graphs also illustrate the effect of the matrix sizes on
the convergence of each algorithm (horizontal view).
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The use of the most
of the problems, since it requires small number of
iterations.
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The FP16-64 is able to cope with many problem but may 2k 4k 6k 8k 10k 14k 16k 18k 22k 26k 30k 34k

fail for other, more difficult problems. FP32 —» FP64 dsgesv 1.004+04 < fao(A) < 1.0e-+06

The FP32->64 work as expected by theory for all the
problem considered.
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matrices can be accelerated by the usage of 2k 4k 6k 8k 10k 14k 16k ek 22k 26k 30k 34k
. o atrix size
the FP16-TC arithmetic.
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Results illustrate that different type of matrices

" . FP16-TC — FP64 dhgesv 1.0e+04 < koo (A) < 1.0e+06
Performance (reflecting time to solution) of the 5 (4)

iterative refinement solver to achieve FP64 solution
accuracy for the three algorithms:

* FP16->64 (Tensor Cores)

* FP16->FP64

* FP32->FP64
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Analysis performed on 19 types of matrices [1] (vertical
view) for each of the algorithms. Types are ordered by
increased difficulty. FP16 — FP64 dhgesv 1.0e+04 < k., (A) < 1.0e+06
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Graphs also illustrate the effect of the matrix sizes on
the performance of each algorithm (horizontal view).
The use of the : most
of the problems and provides up to 4X speedup over
the FP64 solver (24 Tflop/s versus 4.7 Tflop/s).

ypes

WWOONDOUTRWN -

_. Matrices t
OONOINBRWN=O

The FP16-64 is able to accelerate many problem 2k 4k 6k 8k 10k 14k 16k 18k 22k 26k 30k 34k
reaching about 3X speedup (16 Tflop/s versus 4.7

¢ FP32 — FP64 dsgesv 1.0e+04 < kx(A) < 1.0e+06
Tflop/s) but may fail to accelerate other problems. :
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The FP32->64 work as expected and provide around 2X
speedup (10 Tflop/s versus 4.7 Tflop/s).
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can be accelerated up to 4X by the usage of the 2k 4k 6k 8k 10k n1n4't(' 16k 18k 22k 26k 30k 34k
FP16-TC or, 2X using the FP32 arithmetic. Ll

Conclusion:

> We accelerated the solution of linear system Ax = b solver using hardware-accelerated

FP16 arithmetic on GPUs;

» We introduced a framework for exploiting mixed-precision FP16-FP32/FP64 iterative

refinement solvers and describe the path to draw high-performance and energy-aware GPU
implementations;

Our technique shows that a number of problems can be accelerated up to by the usage
of the or 2X using the FP32 arithmetic.

> We studled the energy-efficiency of our approach that showed incredible energy savings,

using the compared to the FP64 implementation.
» We illustrated a technique to use that achieves FP64 accuracy
at a highly efficient/accelerated performance equatmg to fl tt and
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