Using GPU's FP16 Tensor Cores Arithmetic to Accelerate Mixed-Precision
Iterative Refinement Solvers and Reduce Energy Consumption

Azzam Haidar, Stanimire Tomov, Ahmad Abdelfattah, Mawussi Zounon and Jack Dongarra

AbStraCt: The use of low-precision arithmetic in mixed-precision computing methods has been

a powerful tool to accelerate numerous scientific computing applications. Artificial intelligence (Al) in
particular has pushed this to current extremes, making use of half-precision floating-point arithmetic
(FP16) in approaches based on neural networks. We present an investigation showing that other HPC
applications can harness this power too, and in particular, the general HPC problem of solving Ax = b,
where A is a large dense matrix, and the solution is needed in FP64 accuracy. Our approach is based
on the mixed-precision (FP16->FP64) iterative refinement technique — we generalize and extend prior
advances into a framework, for which we develop architecture-specific algorithms and highly-tuned
implementations where we show how the use of FP16-TC (tensor cores) arithmetic can provide up to
4X speedup and improve the energy consumption by a factor of 5. This is due to the performance
boost that the FP16->64 (Tensor Cores) provide and to its better accuracy that outperforms the
classical FP16 because the GEMM accumulation occur in FP32-bit arithmetic. In addition, we will
highlight, for the first time, that a V100 GPU is able to deliver 74 Gflops/Watt. One can reproduce our
results as the developments will be made available through the MAGMA library.

I_'—w Tk

e

Motivation: Le

Study of the Matrix Matrix multiplication kernel on Nvidia V100

FP16 TC sq'uare'*FN 6 square -“FP32'squa‘re ' «)(<FP64 square  dgemm achieve about 6.4 Tflop/s
QQ " " FP16TCk=256 == FP16k=256 == FP32k=256 == FP64 k=256 « sgemm achieve about 14 Tflop/s

 hgemm achieve about 27 Tflop/s
« Tensor cores gemm reach about 85 Tflop/s

~12X

| | 1 1 | | | | | |

Matrix matrix multiplication GEMM

“ Ny AR -IIIIIIIIIII

C =a| A B +B &

T T ! T T I I T T T T I I I T T T T

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k
m=n

. I

ch: 1) Develop Ax=b solver in FP16

Study of the LU factorization algorithm on Nvidia V100

26 [-©-FP16-TC (Tensor Cores) hgetrf LU | ' )X * LU factorization is used to solve a
24! EE; g hge:rrff IES | linear system Ax=b B
22 |.5¢-FP64 dgetrf LU ! * A | X=b
20 B =) n
18 =
16 - Ul |
(Y — X _—
Sl -
8+ _ | \i YV = ;l
21 L then = B
0 ; | | ! I I | I L Ux = Yy X g y
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k - =

matrix size

[

proach: 2) Iterative refinement

Idea: use lower precision to compute the e F%enswe flops (LU O(n®)) and then iteratively
refine the solution in order to achieve the FP64 arithmetic

Iterative refinement for dense systems, Ax = b, can work this way.

= lu(A) lower precision O(n3)
x = U\(L\b) lower precnsuon o(n?)
r=b-Ax FP64 precision O(n®)

WHILE || r || not small enough

1. find a correction "z" to adjust x that satisfy Az=r
solving Az=r could be done by either:

» z = U\(L\r) Classical Iterative Refinement lower precision O(n?)
> GMRes preconditioned by the LU to solve Az=r Iterative Refinement using GMRes lower precision Oo(n?)
2. X=X+2 F O(n!)
3. r=b- Ax O(n?)

» Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
» Tt can be shown that using this approach we can compute the solution to 64-bit floating point precision.

Performance results on V100 Numerical behavior of FP16 on V100

Energy efficiency on V100

. —

= .100 _<>“... -
A‘ v, b, ", ) 6
5 10'5 . “‘ e ., -
© © “ 10 “a,
= = . <>..
:g . :g 10 L r ....
20T A g
10715} a
FP16-TC-->FP64 IR (Tensor Cores) FP16-TC-->FP64 IRGM (Tensor Cores)
20| FP16-->FP64 IR l -20 | FP16-->FP64 IRGM i
10 FP32-->FP64 IR 10 FP32-->FP64 IRGM
0 3 6 9 12 15 18 21 24 27 30 33 36 0 2 4 6 8 10 12 14 16 18 20 22 24 26
# iterations # iterations
» Convergence history of the iterative refinement » The FP32->64 algorithm converge as expected by theory and is able to

Convergence history for Iterative Refinement using GMRes
n = 10240, ko (A) = 2.6e+04

Convergence history for Iterative Refinement using GMRes
n = 10240, kx(A) = 2.6e+04

solver to achieve FP64 solution accuracy.
» Left graph shows the classical iterative refinement

method. >
» Right graph shows the iterative refinement using

GMRes. >
» Problem generated with an arlthmetlc dlstrlbutlon

of the singular values 0; = 1 — (=1 )(1— - >

achieve the FP64 solution accuracy in about 3-5 iterations for this types of

matrices.

The FP16->64 algorithm requires more iterations than FP32->64 because of

the lower prec1510n factorization.

The | outperforms the FP16->64 because the
during the FP16-TC GEMM (Schur update)

Iterative Refinement using GMRes (IRGM) is always preferred in order to

achieve FP64 accuracy.

.

Performance of solving Ax=b Performance of solving Ax=b
9 4usmg FP64 or IR with GMRes to achleve FP64 accuracy 2 0usmg FP64 or IR with GMRes to achleve FP64 accuracy
292 FP1 6-TC >64 dhgesv : ] 10* FP1 6-TC->64 dhgesv |
"|=©=FP16->64 dhgesv : 18 +=©=FP16->64 dhgesv ]

20 - [=FP32->64 dsgesv FP32->64 dsgesv e 110°

18 =9¢-FP64 dgesv 16 |9FP64dgesv | @ ]

16} {10
w14+ 1 _}
- ‘ <
S12t 110°
F10; 8 I 5

8 & 110

6 1 ]

4 10’

2 | 2 |

o 1 1 1 1 1 L | 1 1 1 00 0 L 1 1 1 1 1 1 1 1 1 00

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k 2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size Matrix size

» Problem generated with an anthmetlc distribution of the : g , :

singular values 0; = 1 — (=4)(1— L) and either positive # EIg d iution 5 szgihleves abous QYT I REet SotverAnd

eigenvalue (left) or general eigenvalue (right) provides sotution in accuracy.

s e > The FP16-TC solver requires less iterations than FP16 classic and thus
» solving Ax = b using FP32 LU and iterative refinement to provide better performance

achieve FP64 accuracy ]
> solving Ax = b using FP16 LU and iterative refinement to » For more difficult problem (right), the number of iterations of FP16 classic
\, achieve FP64 accuracy increases thus the performance drop down for that the performance of the
’ FP16 classic drop for difficult matrices (right figure).

P Owe r awar e ne S S Mixed precision techniques can provide
a large gain in energy efficiency
; Solvmg Ax_b on Nwdla V1 00
460 F W ——— =T * Power consumption of the FP64 algorithm to
ggg - AN A\L N T —~A A~ \/W/spU: Nvﬁ,‘f;e\?mo' * solve Ax-b for a matrix of size 34K |t achleve
m - il ) sand requures about 2021 joules
ﬁ ggg i FP64 solver dges prowdmg about 14 Gflops/Watts.
i — v v
Eggg B - FP32-->64 solver dsgesv . : ¢
2 390 | - FP16-->64 solver dhgesv » Power consumption of the mixed precision
?5 300 | FP16-->64 solver dhgesv (TC) FP32->64 algorithm to solve Ax=b for a
+ 280 |- matrix of size 34K, it achieve 10.7 Tflop/s and
E %gg - ! requires about 1041 joules providing about
Oa99p L | 30 Gflops/Watts.
@ 200 -
E }gg i : » Power consumption of the mixed precision
g 140 - | FP16->64 algorithm to solve Ax=b for a
g}%g JE - matrix of size 34K, it achieve 16.8 Tflop/s and
o 80 T 16.8 10.7 5 Performance requires about 609 joules providing about
Z 28 . = = = '(:f;rﬂ p/s " 48 Gflops/Watts.
I~ (o] atis
200 . , , 609 1041 , 2021 Joul »  Power consumption of the mixed precision
0 1 2 3 4 5 6 7 '
Time (sec) to solve Ax=b for a matrix of size 34K, lt
. . . . —— . achieve 24 and requires
Matrices generated with positive A and arithmetic distribution of its singular values providing about
=1-(:3)(1 - -;) and where its condition number is equal to 102,

Acknowledgement: This work was supported by the Exascale Computing Project, a collaborative
effort of the U.S. Department of Energy Office of Science and the National Nuclear Security

Administration. This work was also partially supported by the National Science Foundation under
Grant OAC-1740250 and NVIDIA.

https://arxiv.org/

Results illustrate that different type of

———————————— ‘« THE UNIVERSITY OF

TENNESSEE

Q KNOXVILLE

T

Convergence history of the iterative refinement solver to FP16-TC — FP64 dhgesv 1.0e+04 < £oo(4) < 1.0e+06
achieve FP64 solution accuracy for the three algorithms:
* FP16->64 (Tensor Cores)
* FP16->FP64
* FP32->FP64

Matrices types

[ o R e v g g ey vy

Analysis performed on 19 types of matrices [1] (vertical
view) for each of the algorithms. Types are ordered by
increased difficulty.

DORNONDWN D LRV N

2k 4k 6k 8k 10k 14k 16k 18k 22k 26k 30k 34k

FP16 — FP64 dhgesv 1.0e+04 < ko (A) < 1.0e+06

Graphs also illustrate the effect of the matrix sizes on
the convergence of each algorithm (horizontal view).

ypes

The use of the most
of the problems, since it requires small number of
iterations.

.. Matrices t

CRNNN DW= LCRNONBWN -

The FP16-64 is able to cope with many problem but may 2k 4k 6k 8k 10k 14k 16k 18k 22k 26k 30k 34k

fail for other, more difficult problems. FP32 —» FP64 dsgesv 1.004+04 < fao(A) < 1.0e-+06

The FP32->64 work as expected by theory for all the
problem considered.

ypes

__ Matrices t

CRNNNDWRAOLENANHWN -

matrices can be accelerated by the usage of 2k 4k 6k 8k 10k 14k 16k ek 22k 26k 30k 34k
. o atrix size
the FP16-TC arithmetic.

400
350
300 2
250 %
200
150 =
100 5
50

400
350
300 2
2502
200 &
150 =
100 &
50

400
350
300 2

250%
200 5
150 =

100 5
50

Results illustrate that different type of matrices

" . FP16-TC — FP64 dhgesv 1.0e+04 < koo (A) < 1.0e+06
Performance (reflecting time to solution) of the 5 (4)

iterative refinement solver to achieve FP64 solution
accuracy for the three algorithms:

* FP16->64 (Tensor Cores)

* FP16->FP64

* FP32->FP64

types

OOONDUTHRWN -

.
Matrices

PR L bl

OONOINRWN=O

Analysis performed on 19 types of matrices [1] (vertical
view) for each of the algorithms. Types are ordered by
increased difficulty. FP16 — FP64 dhgesv 1.0e+04 < k., (A) < 1.0e+06

2k 4k 6k 8k 10k 14k 16k 18k 22k 26k 30k 34k

Graphs also illustrate the effect of the matrix sizes on
the performance of each algorithm (horizontal view).
The use of the : most
of the problems and provides up to 4X speedup over
the FP64 solver (24 Tflop/s versus 4.7 Tflop/s).

ypes

WWOONDOUTRWN -

_. Matrices t
OONOINBRWN=O

The FP16-64 is able to accelerate many problem 2k 4k 6k 8k 10k 14k 16k 18k 22k 26k 30k 34k
reaching about 3X speedup (16 Tflop/s versus 4.7

¢ FP32 — FP64 dsgesv 1.0e+04 < kx(A) < 1.0e+06
Tflop/s) but may fail to accelerate other problems. :

types

The FP32->64 work as expected and provide around 2X
speedup (10 Tflop/s versus 4.7 Tflop/s).

OONDOUTAWN -

.

Matrices
SO ek oo
DONDNBONAO

can be accelerated up to 4X by the usage of the 2k 4k 6k 8k 10k n1n4't(' 16k 18k 22k 26k 30k 34k
FP16-TC or, 2X using the FP32 arithmetic. Ll

Conclusion:

> We accelerated the solution of linear system Ax = b solver using hardware-accelerated

FP16 arithmetic on GPUs;

» We introduced a framework for exploiting mixed-precision FP16-FP32/FP64 iterative

refinement solvers and describe the path to draw high-performance and energy-aware GPU
implementations;

Our technique shows that a number of problems can be accelerated up to by the usage
of the or 2X using the FP32 arithmetic.

> We studled the energy-efficiency of our approach that showed incredible energy savings,

using the compared to the FP64 implementation.
» We illustrated a technique to use that achieves FP64 accuracy
at a highly efficient/accelerated performance equatmg to fl tt and

1

REFERENCES: [1] A. Haidar, P. Wu, S. Tomov, J. Dongarra, Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers,
SC-17, ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ACM, Denver, Colorado, November 12-17, 2017.
[2] A. Haidar, P. Wu, S. Tomov, J. Dongarra, Harnessing GPU's Tensor Cores Fast FP16 Arithmetic to Speedup Mixed-Precision Iterative Refinement Solvers,



