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The  use  of batched  matrix  computations  recently  gained  a lot  of interest  for applications,  where  the
same  operation  is applied  to  many  small  independent  matrices.  The  batched  computational  pattern
is  frequently  encountered  in  applications  of  data  analytics,  direct/iterative  solvers  and  precondition-
ers,  computer  vision,  astrophysics,  and  more,  and often  requires  specific  designs  for vectorization  and
extreme  parallelism  to map  well  on  today’s  high-end  many-core  architectures.  This  has  led to the  devel-
opment  of optimized  software  for batch  computations,  and  to an ongoing  community  effort  to  develop
standard  interfaces  for  batched  linear  algebra  software.  Furthering  these  developments,  we  present  GPU
design  and  optimization  techniques  for high-performance  batched  one-sided  factorizations  of millions
of  tiny  matrices  (of  size  32  and  less).  We quantify  the  effects  and  relevance  of different  techniques  in
order  to  select  the best-performing  LU, QR,  and  Cholesky  factorization  designs.  While  we  adapt  common

optimization  techniques,  such  as  optimal  memory  traffic,  register  blocking,  and  concurrency  control,  we
also  show  that  a different  mindset  and  techniques  are  needed  when  matrices  are  tiny,  and  in particular,
sub-vector/warp  in size.  The  proposed  routines  are  part  of  the  MAGMA  library  and  deliver  significant
speedups  compared  to  their  counterparts  in  currently  available  vendor-optimized  libraries.  Notably,  we
tune  the  developments  for the  newest  V100  GPU  from  NVIDIA  to show  speedups  of  up  to 11.8×.

©  2018  Elsevier  B.V.  All  rights  reserved.
. Introduction

Batch computations apply the same numerical algorithm to a
airly large number of relatively small problems. The batched com-
uting workload is quite different than the common workload for

ust one, typically large, matrix. The latter is served well by many
oftware packages, including LAPACK [2], ScaLAPACK [3], PLASMA
4], and MAGMA  [5]. The former, however, is relatively recent,
nd gained a lot of attention in many scientific communities, e.g.,
uantum chemistry [6], sparse direct solvers [7], astrophysics [8],
nd signal processing [9]. Software libraries such as Intel’s MKL
10], NVIDIA’s cuBLAS [11], and MAGMA  recently started to pro-

ide highly optimized batched routines for many of the BLAS and
APACK operations.

� This is an extended version of our conference paper [1] that was  invited to the
oCS  special issue (https://doi.org/10.1016/j.procs.2017.05.250).
∗ Corresponding author.

E-mail addresses: ahmad@icl.utk.edu (A. Abdelfattah), haidar@icl.utk.edu
A. Haidar), tomov@icl.utk.edu (S. Tomov), dongarra@icl.utk.edu (J. Dongarra).

ttps://doi.org/10.1016/j.jocs.2018.01.005
877-7503/© 2018 Elsevier B.V. All rights reserved.
Existing numerical linear algebra software packages rarely
achieve good performance on matrices of small sizes, because most
of the optimization techniques that they carry out pay off only
on large matrices. For example, the hybrid lookahead technique in
MAGMA  [12] is used to overlap the panel factorization (on the CPU)
with the trailing matrix update (on the GPU). This design strategy
is not efficient for small sizes, since the updates are no longer com-
pute intensive, and therefore fail to overlap the panel factorization
and the CPU-GPU communication. This is why new developments
with different design strategies are needed.

While there have been new developments for GPU accelerated
batched computations, for example the work done by Haidar et al.
[13] and Abdelfattah et al. [14], there is still room for significant
improvements when the matrix sizes are tiny. For these extremely
small problems, the LAPACK-style blocking cannot achieve high
performance, even if it is carried out on the GPU solely. Since the
computation becomes memory bound on such small sizes, the cost

of writing the factorized panel and then reading it back to perform
the update becomes significant. Furthermore, the parallelization
(to achieve sufficiently high occupancy) and the vectorization (for
efficient warp use) become more challenging when sizes are less

https://doi.org/10.1016/j.jocs.2018.01.005
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han 32, and must, for example, be done across matrices. Therefore,
ther design, parallelization, and vectorization strategies must be
iscovered in order to resolve the aforementioned issues regarding
emory traffic and parallelization.
This paper presents highly optimized GPU kernels for batched

ne-sided factorizations. The paper extends the previous work by
he authors for batched LU factorization and matrix inversion [1],
nd applies the same design principles to the QR,  and Cholesky fac-
orizations. In terms of the workload size, we consider one million

atrices of tiny sizes, typically from 1 up to 32. In addition to the
pplications already mentioned, these factorizations are of partic-
lar importance to sparse direct solvers, such as the multifrontal
olvers that can be found in SuiteSparse [15]. We  adopt a step-by-
tep methodology, where incremental improvements in the kernel
esign lead to incremental performance gains. Such a methodol-
gy automatically justifies all of our design choices. While all the
ernels share the same optimization techniques, our design for the
U factorization adopts a unique lazy swap strategy, which elimi-
ates the expensive intermediate row interchanges, thus leading to

 much faster kernel, but that is still numerically equivalent to an
APACK-style LU-factorization. The performance results show sig-
ificant speedups against the vendor-supplied cuBLAS kernels on

 Pascal P100 GPU, as well as on the new Volta V100 GPU.

. Related Work

The design of high performance dense linear algebra (DLA) soft-
are for GPUs was originally motivated by the high performance
PUs can achieve in embarrassingly parallel, compute intensive

asks, most notably on the matrix-matrix multiplication (GEMM)
16–18]. The high performance GEMM enabled the development of
igh performance DLA in libraries like MAGMA  [5], where many of
he LAPACK numerical algorithms are designed in a hybrid style to
ake advantage of both CPUs and GPUs [12].

The growing demand for high performance dense linear algebra
n large batches of small matrices has led to early developments for
atch matrix multiplication [19,20], which were then followed by
ore optimized kernels being available in cuBLAS, starting with

ersion 8.0. The development of the batched GEMM in MAGMA
nabled the development of batched one-sided factorizations rou-
ines based on the LAPACK-style blocking [13], but on a smaller
cale. For example, while non-batched routines use a large blocking
ize (e.g., 512 to 1024) to get asymptotically optimal performance,
atched routines block by much smaller sizes (e.g., 8 to 32), and rely
n batched GEMM that is specifically tuned for small sizes in order
o extract performance [21][22]. The developments for extremely
mall matrices, however, are more challenging. An approach that
elies on separate panel/update stages [13] leads to redundant
emory traffic. This cost can be affordable for medium sizes (e.g.,

4 up to 256), but becomes significant for smaller sizes.
This is why other research efforts followed a one-kernel

pproach, where all computations are fused into a single GPU ker-
el. For example, Wang et al. [23] introduced FPGA-based parallel
U factorization of large sparse matrices, where the algorithm is
educed to factorizing many small matrices concurrently. Villa et al.
24] developed a GPU-based batched LU factorization, which has
een used in subsurface transport simulation, where many chem-

cal and microbiological reactions in a flow path are simulated in
arallel [25]. Kurzak et al. [26] developed batched Cholesky factor-

zation in single precision for sizes up to 100 × 100, which was used
n an Alternating Least Squares (ALS) solver. Masliah et al. devel-

ped batched GEMM for very small sizes for both CPUs and GPUs
27]. Batched matrix inversion has been also introduced in the con-
ext of generating block-Jacobi preconditioners [28]. Batched QR
actorization is of particular importance to H-matrix computation,
tional Science 26 (2018) 226–236 227

as highlighted by Akbudak et al. [29], and by Boukaram et al. [30].
Kim et al. also introduced batched GEMM, triangular solve, and LU
(no pivoting) for CPUs and Intel’s Xeon Phi architectures based on
a compact interleaved data layout [31].

This paper follows the same one-kernel approach to improve
the MAGMA  performance on very small sizes. It complements the
work by Haidar et al. [13], which outperforms cuBLAS for medium
and large sizes, but trails it for the sizes we  focus on (up to 32).

3. Contributions

Below is a list of contributions for this paper.

1. Highly optimized GPU kernels for one-sided factorization on
batch workloads. The developed kernels significantly outper-
form the state of the art designs from the vendor provided
software. We  typically consider single-node workloads that
involve millions of extremely small matrices.

2. A set of unified design techniques that are oblivious to the three
algorithms considered (LU, QR,  and Cholesky factorizations). The
paper manages to find a common ground among the three algo-
rithms to achieve high performance.

3. The paper presents a detailed study of the different choices for
every aspect of the kernel design, including thread configuration,
matrix storage, occupancy, and others. The paper justifies the
final design choice by showing intermediate performance results
for different choices. Such a detailed study can be considered as
a guide for designing other algorithms on similar workloads.

4. Background

This section introduces the computational steps for the LU,  QR,
and Cholesky factorizations on square matrices of size N×N. The
description follows the LAPACK notations in double precision arith-
metic.

The LU factorization computes the L and U factors of a general
matrix A, such that A = P×L×U, where P is a permutation matrix
that reflects the row interchanges required for pivoting. The matrix
L is unit lower triangular, while U is upper triangular. The permu-
tation matrix P is stored in a compact format using a pivot vector
(IPIV), such that for i ∈ {1, 2, · · ·,  N}, row i has been swapped with
row IPIV(i).

There are four main steps in performing the unblocked LU factor-
ization. Namely, these are: (1) locate the maximum absolute value
in the current column (IDAMAX); (2) swap current row with the row
with maximum absolute value in the current column (DLASWP); (3)
scale the current column (DSCAL); and (4) rank − 1 update (DGER).
Algorithm 1 shows the factorization using the four steps. Accord-
ing to LAPACK working notes [32], the LU factorization of a square
matrix performs ( 2N3

3 − N2

2 + 5N
6 ) floating point operations (FLOPs).

Algorithm 1. Unblocked LU factorization.
While the LU factorization is able to factorize symmetric posi-
tive definite (SPD) matrices, the Cholesky factorization, shown in
Algorithm 2, introduces a much faster algorithm for such matri-
ces. The algorithm factorizes an SPD matrix A = LLT, where L is a
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ower triangular matrix. In each iteration, the algorithm (1) com-
utes the square root of the current diagonal element (A[i,i]), (2)
cales all the elements below that element (A[i+1:N,i]), and (3)
pplies a symmetric rank − 1 update to the lower triangular part of
he trailing matrix (A[i+1:N,i+1:N]). The Cholesky factorization
lgorithm performs ( N3

3 + N2

2 + N
6 ) FLOPs.

lgorithm 2. Unblocked Cholesky factorization.

The third algorithm that we consider is the QR factorization,
here a matrix A is represented as the product Q×R, where Q is an

rthogonal matrix, and R is an upper triangular matrix. Following
he LAPACK implementation of the algorithm, the Q matrix is not
omputed explicitly. It is rather represented as a product of ele-
entary Householder reflectors, namely Q = H(1) H(2) · · · H(N),
here H(i) = I − �vvT. Considering the reflector H(i), the corre-

ponding vector v has v[1 : i − 1] = 0, v[i] = 1, which is not explicitly
tored, and v[i + 1 : N], which is stored in A[i + 1 : N, i]. Algorithm 3
hows the basic steps of the QR factorization: (1) generate an ele-
entary reflector (H(i)) by computing v and � (the DLARFG routine);

nd (2) apply H(i) to the trailing submatrix. The QR factorization
equires ( 4N3

3 + 2N2 + 14N
3 ) FLOPs.

lgorithm 3. Unblocked QR factorization

As pointed out before, there is no need to use LAPACK-style
locking techniques, which is the strategy adopted for LU,  QR,  and
holesky factorizations in the DGETRF, DGEQRF, and DPOTRF rou-
ines, respectively. The reason is that a very small matrix can be
ept in registers or shared memory during the entire factorization.
his means that it makes no difference if (additional) blocking is
sed or not, since all the data is blocked and accessed from fast
emory until the factorization is complete.

. System setup

We  illustrate our findings on two systems accelerated with high-
nd NVIDIA GPUs. The first system is equipped with two  10-core
ntel Haswell processors (E5-2650 v3, running at 2.3 GHz) and a
ascal GPU (Tesla P100). The GPU has 56 streaming multiproces-
ors, with a base clock of 1.189 GHz. The second system is equipped
ith an identical CPU, but the GPU is a Volta V100, which features

0 multiprocessors, running at 1.38 GHz. Both GPUs have 16GB
f CoWoS Stacked HBM2 memory, and are attached to the host
PU through a PCIE interconnect. All results are obtained using

he CUDA 9.0RC toolkit. We  point out that to quantify the effect
f our techniques, and to justify design choices, we  show incre-
ental results on the P100 GPU only, while the final performance

esults are shown on both GPUs.
tional Science 26 (2018) 226–236

6. General design criteria

All the kernels discussed in this paper have some common
design aspects.

First, each matrix is factorized using exactly one CUDA thread
block (TB). Upon launch, the kernel is configured with as many TBs
as the number of matrices, i.e., the batch size (batchCount). The
kernel grid in CUDA is, in general, a three dimensional array (gx,
gy,  gz).  We  use the gx dimension only to launch a 1D array of TBs.
The maximum value for gx is 231 − 1, which means that our kernels
can solve billions of matrices in a single kernel launch.

Second, we adopt an optimal memory traffic strategy. Each
matrix will be read and written exactly once. Since the computa-
tion is memory bound on such small sizes, it is an important design
choice to keep the entire matrix cached in a fast memory level in
order to avoid any redundant memory traffic.

Third, we  use C++ templates to generate fully unrolled codes.
Since the sizes of interest are finite, the size of the input matrix
is passed as a template parameter. For such a range of very small
sizes, this is a crucial decision. Fully unrolled loops get rid of integer
and branch instructions, which can be quite an overhead [27].

Finally, all kernels use unblocked computations. There is no need
to factorize a panel of width nb > 1 so that the trailing updates use L3
BLAS operations that are rich in data reuse. As pointed out earlier,
each matrix is entirely kept in registers or shared memory, which
means that data reuse is preserved anyway. Every kernel factorizes
one column at a time and carries out the required transformation
to the trailing matrix.

7. Design choice 1: thread configuration

For most linear algebra kernels, the configuration of TBs can be
1D or 2D, which is one of our design parameters. A 2D configuration
simplifies the coding effort. To use an N × N thread configuration to
factorize an N × N matrix, each thread is responsible for one element
of the matrix. Thus, reading and writing the entire matrix can be
done through one line of code each. In addition, the trailing matrix
update is fully parallelized among threads. On the other hand, read-
ing, writing, and updating the matrix will be written in loops if a
1D configuration of N threads is used. Our analysis shows that there
are multiple reasons to reject the 2D configuration in favor of the
1D alternative. In batch workloads, it is important to optimize the
throughput of the processed matrices, which is achieved by max-
imizing the number of resident TBs per multiprocessor. Using a
2D configuration, the occupancy level of each multiprocessor are
far from optimal, and thus resulting in more limited parallelism,
which is likely to produce a very poor performance. For example,
the 2D configuration requires 256 threads for a 16 × 16 matrix. This
limits the number of resident TBs per multiprocessor to 8, which
can host a maximum of 2048 threads. A modern Kepler GPU  can
have up to 16 resident TBs per multiprocessor, while later genera-
tions can host up to 32. This means that the occupancy at size 16
is brought down by a factor of 2 on a Kepler GPU, and by a factor
of 4 on later GPUs. Using a 1D configuration, the occupancy is no
longer limited by the number of threads, but rather by the amount
of memory resources required by each TB.

Another motivation to abandon the 2D configuration is syn-
chronization. The use of N2 threads is likely to produce too many
barriers in the kernel. At each iteration, for example, threads pos-
sessing the trailing matrix always wait for the threads performing
the factorization of the current column, and threads performing

the factorization in the next iteration have to wait for the update
to finish. On the contrary, a 1D design can be free of synchroniza-
tion points. Even with the use of the new syncwarp() function
introduced in CUDA 9.0, we observe that this function is obviously
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Fig. 1. Performance comparison between the 1D configuration and the 2D configuration of the Cholesky factorization kernel. Results are for 1M matrices on a Pascal P100
GPU.
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ig. 2. Performance comparison between the 1D configuration and the 2D configur

ore lightweight than the legacy syncthreads() function. In
ddition, a 1D design assigns more work per thread, which results
n a better instruction-level parallelism (ILP).

We conducted a performance test for both design choices to
uantify the differences in the two techniques and to verify our
nalysis. For every algorithm, we designed two kernels based on
oth configurations. The matrix is stored in shared memory in
oth situations. Figs. 1–3 show the performance for the three fac-
orizations using both single and double precision arithmetic. All
erformance graphs show a clear advantage for the 1D configura-
ion over the 2D configuration. Fig. 1 shows speedups of 10.5×/9.6×
n single/double precision against the 2D configuration for the
holesky factorization. A similar 9× (or more) speedup is obtained

or the LU factorization in both precisions (Fig. 2). Fig. 3 also shows
imilar significant speedups for the QR factorization. It is clear that,
egardless of the numerical algorithm, the 1D configuration is the
inning strategy for batch workloads of small sizes. From now on,
e continue to carry out further enhancements on the 1D configu-

ation.

. Design choice 2: matrix storage

The second design parameter is the matrix storage in fast mem-

ry, which can be either the register file, or the shared memory. In
eneral, the access time of registers is faster than shared memory,
ut the latter provides more flexible access patterns. In either case,
he 1D array of threads reads the matrix column by column from the

ig. 3. Performance comparison between the 1D configuration and the 2D configuration 
of the LU factorization kernel. Results are for 1M matrices on a Pascal P100 GPU.

global memory to preserve a coalesced memory access. If threads
read into registers, each thread has direct access to an entire row
of the matrix. In order to access other elements, communication
among threads is required, either by using shuffle operations, or
through shared memory. All three factorization algorithms require
accessing data from other threads, e.g., as in the row interchanges
in the LU factorization, and the rank − 1 updates in all algorithms.
On the other hand, if the threads read the matrix into shared mem-
ory, any thread has access to the entire matrix. This comes at the
cost of synchronization points (recall that CUDA now deprecates
implicit warp synchronous codes, especially on the Volta GPUs). In
addition, shared memory is slower than registers, and its capac-
ity is smaller than the register file (e.g., 64KB on the P100 GPU vs. a
256KB register file). The capacity of the chosen storage is important,
since it directly impacts the occupancy on the multiprocessor. Since
there is a tradeoff between the two  design choices, we developed
two versions for each factorization algorithm to better understand
the consequences of each choice per algorithm and matrix size.
The first version uses shared memory for storage and communica-
tion among threads. The second uses registers for storage and warp
shuffle operations for communication.

First, we consider the Cholesky factorization algorithm. The
shared memory version loads the matrix into shared memory

column-by-column to respect coalesced global memory access. At
each iteration i, all threads compute the square root of A[i,i],
scale the column A[i+1:N,i] accordingly in shared memory, and
then use the result to update the lower triangular part of the trailing

of the QR factorization kernel. Results are for 1M matrices on a Pascal P100 GPU.
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Fig. 4. Performance comparison between performing the Cholesky factorization in regist
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a hybrid storage design,  which means to use registers as the main
Fig. 5. Butterfly shuffle operation in CUDA among eight threads.

atrix A[i+1:N, i+1:N] in shared memory, column by column.
oth the scale and the update phases are fenced by synchroniza-
ion points (i.e. syncwarp()). On the other hand, the register
ersion must start by a shuffle operation to broadcast A[i,i] to
ll threads. After computing the square root, each thread scales
ts respective element in the current column. Before the update
akes place, threads must perform shuffle operations to share the
lements A[i+1:N,i] among all threads. Afterwards, each thread
uns independently to update its respective row. It is clear that syn-
hronization points in the shared memory version are replaced by
huffle operation in the register version. Fig. 4 shows the results for
he two versions on the Cholesky factorization algorithm. For both
recisions, the shared memory version fails to keep up the same
erformance with the register version. As the sizes become larger,
he shared memory capacity and bandwidth become a bottleneck,
hich gives the advantage to the register version.

The LU factorization requires a pivot search at each iteration i.
n shared memory, this can be done by a linear search on the ele-
ents of the column A[i:N,i].  In the register version, this step

s done through a binary search, which can be implemented using
he butterfly warp shuffle operations shown in Fig. 5. While this
peration requires just log2(N) steps, it must be carried out by a
umber of threads that is equal to power of 2. Another limitation is
hat shuffle operations support only 32 bit exchanges, which means

hat shuffles on double precision is twice the cost of single preci-
ion. Once the pivot is found, the swap operation can be done using
hared memory or using shuffle operations. The scale and update

Fig. 6. Performance comparison between performing the LU factorization in registe
ers and in shared memory. Results are for 1M matrices on a Pascal P100 GPU.

operations of the LU algorithm are similar to that of the Cholesky
algorithm except that the update requires communication of the
pivot row A[i,i+1:N], and that all the trailing matrix is updated.
Fig. 6 shows the performance of the two  LU versions. We  observe a
similar to the Cholesky factorization case advantage for the register
version over the shared memory version.

Finally, for the QR factorization, we  begin by discussing the
results first, which are shown in Fig. 7. Unlike the Cholesky and LU
factorizations, we  observe that the shared memory version is faster
than the register version, which is the opposite of our initial expec-
tations. The explanation of this finding requires a deeper analysis
for the QR factorization. As explained in Algorithm 3, the DLARFG
routine in the ith iteration begins with a reduction operation to
compute the norm of the current column A[i:N,i].  The reduction
step can be done in exactly the same two ways as the pivot search
in the LU algorithm. The main difference, however, for the QR fac-
torization comes in the update phase, where an extra matrix-vector
multiplication is required before the rank-1 update. The multipli-
cation computes y = vTC, where C = A[i:N, i+1:N]. Assuming
that C has a size of P×Q, the multiplication costs 2PQ FLOPs. How-
ever, there becomes a difference in the number of reduction steps
required compute y depending on the storage type. If registers and
butterfly shuffle operations are used, then all threads collaborate to
compute one element of y at a time. Therefore, assuming that Np2
is the nearest power of 2 larger than or equal to N, the total number
of reduction steps is Q×log2(Np2), and not Q×log2(P). Recall that
shuffle operations require that the number of matrices is always
equal to a power of 2. On the other hand, shared memory seems to
provide a better alternative. If both v and C are in shared memory,
we can assign each element of y to a single thread. Since threads
are totally parallel, and using Q threads, it would take only P steps
to find the entire vector y. This means that it requires much fewer
steps to compute y in shared memory. Since the computation of y
is at the innermost loop of the kernel, the shared memory version
can be faster than the register version.

The results of the QR factorization in Fig. 7 motivated us to try
storage for the matrix, but use shared memory (instead of shuffle
operations) for communication among threads. Another motiva-
tion for this strategy is that CUDA 9.0 deprecates all the previous

rs and in shared memory. Results are for 1M matrices on a Pascal P100 GPU.
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Fig. 7. Performance comparison between performing the QR factorization in registers and in shared memory. Results are for 1M matrices on a Pascal P100 GPU.

Fig. 8. Performance comparison between performing the QR factorization using hybrid storage and using shared memory only. Results are for 1M matrices on a Pascal P100
GPU.
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Fig. 9. Concurrency control

huffle operations, and replaces them by new ones that are rela-
ively slower (significantly slower on the Volta GPU). Fig. 8 shows
hat the register version with shared memory communication beats
he pure shared memory implementation. We  tried the same tech-
ique with Cholesky and LU factorization, and barely found any

mpact on performance.

. Design choice 3: concurrency control

The general design strategy in Section 6 states that a matrix is
rocessed using exactly one TB. However, it does not restrict the
umber of matrices assigned to the same TB. In fact, we can assign
ultiple matrices to the same TB to be factorized concurrently.

he motivation behind this strategy is the 1D configuration of TBs,
hich brings very low occupancy if the matrix size is small, and in
articular, if smaller than the warp size, which is the case at hand.
or example, a batch of 8 × 8 matrices requires a TB configuration
f (8, 1) threads. Such configuration does not use a full warp, which
bviously wastes resources. The second issue is that such a con-

guration makes the CUDA runtime in full control of the number
f concurrent TBs per multiprocessor. Even if the runtime does the
ptimal decision, it will not be able to schedule more than 32 TBs
er multiprocessor, which is the hardware limit on modern GPUs.
 kernel grid configuration.

Instead, we  adopt a different configuration that aggregates multiple
TBs into one, thus using an (8, nFTB) TB configuration, where nFTB

controls the number of concurrent factorizations per TB. Assum-
ing an optimal runtime behavior with nFTB = 4, the 32 TBs will
be able to factorize 128 matrices per multiprocessor instead of 32,
thus achieving a 4× speedup. This example assumes that there is
enough memory resources to host 128 matrices of size 8 × 8, which
is a valid assumption for double precision if the register file is used
for storage. The nFTB value is a tuning parameter, with an optimal
value that depends on many factors, including the matrix size and
the storage type.

Fig. 9 shows the general idea of concurrency control. In general,

a batch of size BC can be factorized using
⌈

BC
nF<ce:inf>TB</ce:inf>

⌉
, so

that each TB handles nFTB matrices. The value of the tuning parame-
ter nFTB does not need to be known at compile time. We  conducted
an autotuning experiment that performs a full sweep over values
of nFTB from 1 to 16. We  observe that after this range, there is no
gain in performance. Figs. 10–12 show the impact of concurrency
control on the three factorization algorithms in single and double

precision.

We observe that a tunable nFTB does not affect the performance
for sizes larger than 16. For such range, the hardware rounds up
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Fig. 10. The impact of concurrency control on the Cholesky factorization kernel. Results are for 1M matrices on a Pascal P100 GPU.

Fig. 11. The impact of concurrency control on the LU factorization kernel. Results are for 1M matrices on a Pascal P100 GPU.
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Fig. 12. The impact of concurrency control on the QR factor

he number of threads to use a full warp anyway, which means that
here are no wasted resources in the TB configuration. It also means
hat, as long as full warps are used, the runtime is able to sched-
le TBs efficiently among the multiprocessors. For sizes 1 through
6, we observe performance gains in both single and double preci-
ion. The smaller the sizes, the more the speedups. For example, the
holesky factorization has speedups that range from 1.2× to 4.3×

n single precision and from 1.2× to 3.9× in double precision. The
mpact is more apparent in the LU and QR factorizations, with the
U factorization enjoying speedups that range from 2.0× to 3.5× in
ingle precision, and from 1.8× to 3.7× in double precision. Simi-
arly, the QR factorization performance is enhanced by factors that
ange from 2.0× to 3.8× in single precision, and from 1.8× to 3.8×
n double precision.

0. Lazy swapping for LU Factorization

The LU factorization has a unique step that is necessary for
ts numerical stability. At each iteration, two rows potentially
xchange their positions in the matrix. This is an expensive step
ith pure data movement, and zero arithmetic intensity. Originally,

he exchange occurs at each iteration in a greedy style. While the
reedy swap is necessary for general sizes, we can take advantage

f the small sizes of interest and introduce a lazy swap technique,
here all the interchanges are carried once just before writing the
atrix back into the global memory. Instead of explicitly changing

ositions in registers, each thread keeps track of the final position
n kernel. Results are for 1M matrices on a Pascal P100 GPU.

of its row. A row that has been pivoted in a previous iteration is
marked with a flag so that it is excluded from the trailing matrix
update, as shown in Fig. 13. Pivoted rows are also excluded from
the pivot searches in the following factorization steps. Fig. 14 shows
the performance gains of the lazy swap technique, that are up to
21% and 32% in single and double precision, respectively.

11. Final performance results

In this section, we show the final performance results of the
three algorithms against the competitive routines from the vendor
library (cuBLAS). All kernels are tuned and scheduled for the next
release of the MAGMA  library. The cuBLAS library provides batched
routines for the LU and QR factorizations, but not for the batched
Cholesky factorization. Therefore, the results for the Cholesky fac-
torization use the cuBLAS batched LU routine instead, which is still a
valid option (though suboptimal) to factorize SPD matrices. We  also
include a reference batched CPU implementation that we devel-
oped using sequential calls to the factorizations in the MKL  library
(version 11.3.0) from within an OpenMP parallel for loop. The
number of OpenMP threads is set to 20, which is equivalent to the
core count of the CPU.

A normal behavior that we observe in most performance graphs

are the spikes at sizes that are power of 2, and the drops that come
right after those sizes. This is a normal behavior in GPUs, which
always execute threads in groups of 32 (warps). A size that is a
power of 2 allows the hardware to use full warps (especially when
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Fig. 13. Trailing matrix updates in LU factorization with/without swapping.

Fig. 14. The impact of the lazy swap on the LU factorization. Results are for 1M matrices on a Pascal P100 GPU.
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Fig. 15. Final performance of the Cholesky fa

sing the concurrency control technique discussed in Section 9).
or other sizes, a round up to the nearest power of 2 is imposed
ither by the kernel configuration, or implicitly by the hardware.
ven on the Volta V100 GPU, which has separate program counters
nd stacks for every thread, the same behavior is still observed.

Fig. 15 shows the performance of the Cholesky factorization on
he P100 GPU. The MAGMA  kernels are significantly faster than
uBLAS (which uses the LU algorithm), scoring speedups that are
p to 8.8× in single precision, and 8.2× in double precision. Against
he reference CPU implementation, MAGMA  is at least 9.3× faster in
oth precisions. The performance of the Cholesky factorization on
he V100 GPU is also summarized in Fig. 16, where we  observe up
o 5.7×/4.1× speedups against cuBLAS in single/double precision.
he MAGMA  performance numbers on the V100 GPU are at least
3.2× faster than the CPU performance.

Considering the results for the LU factorization on the P100
PU, which are summarized in Fig. 17, the MAGMA  kernel is faster

han cuBLAS by up to 4.8× in single precision, and 5.2× in double

recision. It is at least 14.3× faster than the CPU reference imple-
entation. Looking into the results on the V100 GPU, MAGMA  is

till faster than cuBLAS, scoring speedups that are up to 3.8× in
ation on the P100 GPU (batchCount = 1M).

single precision, and up to 2.9× in double precision. The MAGMA
performance on the V100 GPU is at least 22× faster than the CPU
performance.

The performance gains in the QR factorization results are
also significant. Considering the P100 GPU (Fig. 19), MAGMA  is
2.1×–11.04× faster than cuBLAS in single precision. It is also 2.9× to
9.4× faster in double precision. The speedup against the reference
implementation is at least 16.1×. We observe a kind of stagna-
tion in the double precision performance for MAGMA. Recall that
this kernel uses both registers and shared memory to achieve the
best performance. The shared memory requirements for this ker-
nel (N×N) seem to limit the multiprocessor occupancy. The results
in single precision support this explanation, since we observe no
stagnation for the single precision results, as the shared memory
requirements are almost half of what is needed in double preci-
sion. Considering the results on the V100 GPU (Fig. 20), MAGMA  is
up to 11.8× faster than cuBLAS in single precision. It is also up to
10.8× faster in double precision. The minimum speedup obtained

against the CPU reference implementation is 32.95× across both
precisions.
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Fig. 16. Final performance of the Cholesky factorization on the V100 GPU (batchCount = 1M).

Fig. 17. Final performance of the LU factorization on the P100 GPU (batchCount = 1M).

Fig. 18. Final performance of the LU factorization on the V100 GPU (batchCount = 1M).

Fig. 19. Final performance of the QR factorization on the P100 GPU (batchCount = 1M).
Fig. 20. Final performance of the QR factorizati
on on the V100 GPU (batchCount = 1M).
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A. Abdelfattah et al. / Journal of Co

2. Conclusion and future work

This paper introduced a progressive design methodology for
ptimizing batched one-sided factorizations using GPUs. The paper
ainly addresses extremely small matrix sizes, and introduces

esign techniques that are different from those used for larger
atrices. Significant performance gains were achieved against

he vendor library. The proposed work is of great importance
or scientific applications, including astronomy, sparse multi-
rontal solvers, and preconditioners. Future directions include
ariable size batched workloads, developing an autotuning frame-
ork for such kernels, and integration with scientific applications
here high performance batched routines have a great impact on
erformance.
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