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Abstract

Expressing scientific computations in terms of BLAS, and in particular the

general dense matrix-matrix multiplication (GEMM), is of fundamental impor-

tance for obtaining high performance portability across architectures. However,

GEMMs for small matrices of sizes smaller than 32 are not sufficiently optimized

in existing libraries. We consider the computation of many small GEMMs and

its performance portability for a wide range of computer architectures, includ-

ing Intel CPUs, ARM, IBM, Intel Xeon Phi, and GPUs. These computations

often occur in applications like big data analytics, machine learning, high-order

finite element methods (FEM), and others. The GEMMs are grouped together

in a single batched routine. For these cases, we present algorithms and their op-

timization techniques that are specialized for the matrix sizes and architectures

of interest. We derive a performance model and show that the new develop-

ments can be tuned to obtain performance that is within 90% of the optimal

for any of the architectures of interest. For example, on a V100 GPU for square

matrices of size 32, we achieve an execution rate of about 1, 600 gigaFLOP/s in

double-precision arithmetic, which is 95% of the theoretically derived peak for

this computation on a V100 GPU. We also show that these results outperform
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currently available state-of-the-art implementations such as vendor-tuned math

libraries, including Intel MKL and NVIDIA CUBLAS, as well as open-source

libraries like OpenBLAS and Eigen.

Keywords: Matrix-matrix product, Batched GEMM, Small matrices, HPC,

Autotuning, Optimization

1. Introduction

The available parallelism to exploit in today’s computer architectures is

pervasive—not only in systems from large supercomputers to laptops, but also

in small portable devices like smartphones and watches. Along with parallelism,

the level of heterogeneity in modern computing systems is also gradually increas-5

ing. Multi-core CPUs are combined with discrete high-performance GPUs, or

even become integrated parts as a system-on-chip (SoC) like in the NVIDIA

Tegra mobile family of devices. Heterogeneity makes the parallel programming

for technical computing problems extremely challenging, especially in modern

applications that require fast linear algebra on many independent problems that10

are of size 100 and smaller. According to a recent survey among the Scalable

Linear Algebra PACKage (ScaLAPACK) and Matrix Algebra on GPU and Mul-

ticore Architectures (MAGMA) [1] users, 40% of the respondents needed this

functionality for applications in machine learning, big data analytics, signal

processing, batched operations for sparse preconditioners, algebraic multigrid,15

sparse direct multi-frontal solvers, QR types of factorizations on small problems,

astrophysics, and high-order finite element methods (FEM). At some point in

their execution, applications like these must perform a computation that is cu-

mulatively very large and which often needs to run on large-scale distributed

memory systems, but the individual parts of which are very small; when such20

operations are implemented naively using the typical approaches, they perform

poorly. To address these challenges, there are efforts in the community to ex-

tend the basic linear algebra subprograms (BLAS) standard to include API for

Hybrid Batched BLAS [2], as well as to develop innovative algorithms [3], data
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and task abstractions [4], and high-performance implementations based on the25

standard. Some of these efforts have been released as examples through the

MAGMA library since version 2.0 [5, 6]. Figure 1 illustrates how the need for

batched operations and new data types arises in areas like linear algebra (Left)

and machine learning (Right). The computational characteristics in these cases

are common to many applications where the overall computation is very large30

but is made of operations of interest that are generally small. The small op-

erations must be batched for efficiency and various transformations must be

explored to cast them to regular, and therefore efficient, to implement opera-

tions, like GEMMs. This is the case in a number of applications that are cur-

rently of great interest, like data analytics and machine learning, where tensor35

data structures and APIs are used to represent higher-dimension multi-linear

relations data; but still, for high performance and efficiency the computation

is flattened to linear algebra on two-dimensional matrix data through Batched

GEMMs [4].
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as a 4th-order tensor: 
 //Declare a 4th-order Tensor A on the GPU ︎
 Tensor<64, 64, 9, 8, gpu_t> A; ︎

// DSEL design using Einstein notation: repeated  
// index k means a summation/contraction. ︎
// Range of the other indices is full/range as︎
// given through the left assignment operand ︎
A(i, j, m:1..8, n:1..7) -= A(I,k,m,0) * A(k, j,0,n); ︎

A rank-64 update as tensor contraction on index k 
(for i = 0..63   for j = 0..63   for m = 1..8   for n = 1..7):  

i, j,m,nA − = i,k,m,0A k, j,0,nA
k
∑

Tensor contractions in machine learning  (Convolutional Neural Networks in computer vision)  
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Convolution of Filters Fi (feature detection) and input image D: 
•  For every filter Fn and every channel, the computation for 

every pixel value On,k  is a tensor contraction: 

 
•  Plenty of parallelism; small operations must be batched 
•  Data “reshape” to transform the computation into a  

batched GEMM (for efficiency; among other approaches) 
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Figure 1: Left: Example of a 4th-order tensor contractions design using Einstein summation

notation and a domain-specific embedded language (DSEL ). Right: Illustration of batched

computations needed in machine learning.

There is a lack of sufficient optimizations on the Batched GEMMs that we40

target in this paper and that are needed in a number of applications. We show

that this is the case through a theoretical performance analysis and a com-

parison between the results from the techniques introduced in this paper and

vendor libraries like cuBLAS for NVIDIA GPUs, and MKL for Intel multi-core

CPUs, as well as comparison to the open-source library called Eigen [7]. Re-45
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lated work on GEMM and its use for tensor contractions [4] target only GPUs

and for very small sizes (16 and smaller). Batched GEMM for fixed and vari-

able sizes in the range of 1000 and smaller were developed in [8]. The main

target here is Batched GEMMs for multi-core CPUs, ARM, Intel Xeon Phi,

and GPU architectures on matrices of sizes up to 32. In a preliminary study50

[9], we have investigated this problem and have laid out some of the ideas on

algorithms and optimization techniques needed to accelerate them on modern

architectures. In this paper, we extend these preliminary results by completing

the algorithmic work, providing further details and extended functionalities, as

well as generalizing the approach and the portability of the developments. We55

design a generic framework that incorporates all developments: the framework

auto-generates kernels for every new architecture and autotunes them to find

the best performing kernels. While we produce a single tool, the best kernels

for different architectures and sizes are different, incorporating different opti-

mization techniques, algorithms, and tuning parameters, which we highlight60

and analyze in this paper. Performance results are updated and include IBM

Power8 processors and newer GPU architectures, e.g., the V100 GPU, We also

add results and analysis on the performance differences and comparison to the

Eigen library. A direct motivation for this work came from the need to accel-

erate large-scale, distributed-memory solvers in applications using high-order65

finite element discretizations, where tensor contraction computations are cast

as Batched GEMMs [4].

2. Main Contributions

The rapid advancements in semiconductor technologies today are dramati-

cally transforming the balance of future computer systems, producing unprece-70

dented changes at every level of the platform pyramid and the software stack.

There are three challenges that stand out for numerical libraries and the myr-

iad of applications that depend on them: (1) the need to exploit unprecedented

amounts of parallelism; (2) the need to maximize the use of data locality and
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vectorized operations; and (3) the need to cope with component heterogeneity75

and portability. Below, we highlight our main contributions related to the al-

gorithm’s design and optimization strategies for addressing these challenges on

multi-core CPU (Intel, ARM, IBM), Xeon Phi, and GPU architectures.

2.1. Algorithmic Designs to Exploit Parallelism and Vectorization:

As clock frequencies are expected to stay near their current levels, or even80

decrease to conserve power, the primary method of increasing computational

capability of a chip will be to dramatically increase the number of processing

units (cores). This in turn will require an increase of orders of magnitude

in the amount of concurrency that routines must be able to utilize. It will

also require increasing the computational capabilities of the floating-point units85

by extending them to the classical Streaming single instruction, multiple data

(SIMD) Extensions set (SSE-1, to SSE-4 in the early 2000s, and recently to

Advanced Vector Extensions AVX, AVX-2, AVX-512). We developed specific

optimization techniques that demonstrate how to use the many cores (currently,

10–20 multi-socket cores for the Haswell CPU, 4 cores for a Cortex A57 processor90

[NEON SIMD], 10 cores for the POWER8 processor [Altivex VMX SIMD], 68

cores for an Intel Knights Landing [KNL] 7250 and 56× 64 CUDA cores for the

Tesla P100 GPU) to get optimal performance.

2.2. Performance-Portable Framework for Batched GEMMs

We developed a performance-portable framework by binding the architecture-95

specific developments into a single generator that is combined with autotuning

to empirically find the best performing kernels, up to exploring a predefined

design search space. While this produces a single tool, the best kernels for dif-

ferent architectures and sizes are different, incorporating different optimization

techniques, algorithms, and tuning parameters. The optimization techniques,100

the algorithms, and the overall framework can be used to develop other batched

Level 3 BLAS kernels and to accelerate numerous applications that need linear

algebra on many independent problems.
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2.3. Hierarchical Communications that Maximize Data Locality and Reuse

Time per floating-point operation (FLOP), memory bandwidth, and com-105

munication latency are all improving, but at exponentially different rates [10].

Therefore, computations on very small matrices, which can be considered com-

pute bound on old processors, are becoming communication-bound today and in

the future—and will, consequently, depend more on the communication between

levels of the memory hierarchy. We demonstrate that performance is indeed110

harder to achieve on new many-core architectures unless hierarchical communi-

cations and optimized memory management are considered in the design. We

show that our implementations reach optimal performance only after we devel-

oped algorithmic designs that feature multi-level blocking of the computations

and use multi-level memory communications.115

2.4. Performance Analysis and Autotuning

We derive theoretical maximal performance bounds that could be reached

for computation on very small matrices. We studied various instructions and

performance counters, as well as proposed a template design with different tun-

able parameters in order to evaluate the effectiveness of our implementation and120

optimize it to reach the theoretical limit. The best for performance parameters

are architecture-specific and were derived through an empirical autotuning pro-

cess, yielding an approach to performance portability across the architectures

of interest.

3. Performance Model for Batched GEMMs125

To evaluate the efficiency of our algorithms, we derive theoretical bounds for

the maximum achievable performance Pmax = F/Tmin, where F is the number

of operations needed by the computation F = 2n3, and Tmin is the fastest time

to solution. For simplicity, consider C = αAB+βC on square matrices of size n.

In an ideal case, where we assume that there is overlap between computation

and communication, the Tmin becomes,

Tmin = max(TRead(A,B,C) + TWrite(C), TCompute(C))
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Let β define the maximum achievable bandwidth in bytes/second and Ppeak

the peak performance that the system can provide. We have to read three

matrices, A, B, and C and write back C—that’s 4n2 elements (ρ4n2, where ρ

is the precision size in bytes), or 8× 4n2 bytes for double precision (DP). As a

consequence, in double precision, after dividing by β, TRead(A,B,C) + TWrite(C)

is equal to 32n2/β. The time to perform the computation TCompute(C) can be

defined by TCompute(C) = 2n3

Ppeak
. Since on most of today’s machines the ratio

of the peak performance to the bandwidth is very large— > 30 for most of

today’s CPUs or GPUs—we can easily deduce that TCompute(C) → 0 compared

to 32n2/β and thus Tmin ≈ 32n2/β in double precision. Note that this is the

theoretically achievable peak performance if the computation totally overlaps

the data transfer and does not disrupt the maximum rate B of read/write to

the GPU memory. Thus,

Pmax =
2n3β

32n2
=
nβ

16
in DP.

The achievable bandwidth can be obtained by benchmarks. For our measure-

ments, we used the Sustainable Memory Bandwidth in High Performance Com-

puters (STREAM) benchmark [11] and the Intel Memory Latency Checker 3.0

tool for CPU. We also used NVIDIA’s bandwidthTest and a set of microbench-

marks that we developed for GPU. For example, our tests show that the best130

practical CPU bandwidth we are able to achieve on a 10-core Intel Xeon E5-2650

v3 processor (Haswell) using different benchmarks is about 44 GB/s per socket.

On the Intel Xeon Phi KNL 7250 system, the maximal achievable bandwidth

is 92 GB/s when the data is allocated in the DDR4 and about 420 GB/s for

data allocated in the MCDRAM. On the IBM POWER8 system (one socket),135

the measured bandwidth from the benchmark was about 85 GB/s, while on the

ARM Cortex A51 it was measured about 26 GB/s (one socket of 4 cores). On

the Tesla P100 GPU, the peak is 600 GB/s. The curves representing these the-

oretical maximal limits for the different architectures are denoted by the “upper

bound” lines in our performance graphs, e.g., see Figures 8 and 18a.140
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Figure 2: Memory hierarchies of the experimental CPU and GPU hardware.

4. Experimental Hardware

All experiments are done on an Intel multi-core system with two 10-core

Intel Xeon E5-2650 v3 (Haswell) CPUs, a 4-core Cortex A57 ARM CPU, two

10-core IBM Power8 CPUs, a 68-core Intel Knights Landing CPU 7250 and

a Pascal Generation Tesla P100 GPU, and the newest Volta V100 GPU. De-145

tails about the hardware are illustrated in Figure 2. We used GNU Compiler

Collection (GCC) compiler 5.3 for our Xeon code (with options -std=c++14

-O3 -mavx2 -mfma), as well as the icc compiler from the Intel suite 2018, and

the BLAS implementation from the Math Kernel Library (MKL) [12]. We

used the XLC compiler 13.01 for our PowerPC code and the Engineering and150

Scientific Subroutine Library (ESSL) BLAS library from IBM. On the ARM

processor, we used an OpenBLAS version optimized for the Cortex A57 with

GCC 5.3. We used CUDA Toolkit 8.0 for the GPU. For the CPU comparison

with the MKL library we used two implementations: (1) An Open Multi Pro-

cessing (OpenMP) loop statically or dynamically unrolled among the cores (we155

choose the best results), where each core computes one matrix-matrix product

at a time using the optimized sequential MKL dgemm routine, using the option

-DMKL DIRECT CALL SEQ and (2) The batched dgemm routine that has

been recently added to the MKL library.
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5. The Kernel Auto-Generation and Autotuning Process160

The dgemm kernel is parameterized and implemented using C++ features,

including templates and overloaded functions. The kernel design for small ma-

trix sizes is illustrated in Figure 3a. The matrix C is split into blocks Cij of size

BLKM ×BLKN that can be computed in parallel. The idea is that since C is

where the computations are accumulated and the final result written, it is bet-165

ter to keep as large a part of C as possible in registers during the accumulation

of the multiplication. Note that this one-level design of blocking is especially

designed for small matrices; for larger matrices, a design with multiple levels of

blocking may be better in order to account for blocking on the possibly multiple

levels of the architecture’s memory hierarchy layers. Any particular block Cij170

of C will be held in registers for either the CPU or GPU case. The number of

rows in Cij is better to be multiple of the vector length for CPUs, or multiple

of the number of threads in the “x” dimension for GPUs. Also, the number

of columns will be dependent on the available registers (CPUs or GPUs) and

on the number of threads in the “y” dimension for the GPU case. There is a175

sliding window of size BLKM × BLKK that reads data of the matrix A and,

similarly, a sliding window of size BLKK × BLKN that reads data from the

matrix B. This data can be read into register or into cache (shared memory

or register in case of the GPU kernel). The innermost loop will multiply the

green portion of A and B and will accumulate the result into the green portion180

of C. Note that the blue portion of A and B corresponds to the prefetching

when it is enabled by the kernel generator (the kernel generator will generate

two kernels w/o prefetching). The windows of A and B slide horizontally and

vertically, respectively, and once finished, the block of C contains the final re-

sults of A × B. This result is multiplied by α (when α is not equal to one)185

and added to the corresponding block of the matrix C (loaded from the main

memory and multiplied by β—when β is not equal to one—before the addition,

and the result is stored back into the main memory). If β is zero, the results of

the multiplication are directly stored into the main memory.
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(a) Parameterized C++ dgemm kernel design

!�
!for pk=0; pk<BLK_K; pk++); �
!{�
! !BCAST B(k,0)-->rb_0; �
! !LOAD  A(0,k)-->ra_0; �
! !FMA   rC_0_0 += ra_0 * rb_0; �
! !LOAD  A(1,k)-->ra_1; �
! !FMA   rC_1_0 += ra_1 * rb_0; �
! !BCAST B(k,1)-->rb_1; �
! !FMA   rC_0_1 += ra_0 * rb_1; �
! !FMA   rC_1_1 += ra_1 * rb_1; �
! !BCAST B(k,2)-->rb_2; �
! !FMA   rC_0_2 += ra_0 * rb_2; �
! !FMA   rC_1_2 += ra_1 * rb_2; �
! !BCAST B(k,3)-->rb_3; �
! !FMA   rC_0_3 += ra_0 * rb_3; �
! !FMA   rC_1_3 += ra_1 * rb_3; �
! !BCAST B(k,4)-->rb_0; �
! !FMA   rC_0_4 += ra_0 * rb_0; �
! !FMA   rC_1_4 += ra_1 * rb_0; �
! !BCAST B(k,5)-->rb_1; �
! !FMA   rC_0_5 += ra_0 * rb_1; �
! !FMA   rC_1_5 += ra_1 * rb_1; �
!}�

�
�
�
�

�
!for pk=0; pk<BLK_K; pk++); �
!{�
! !LOAD  A(0,k+0)-->ra_0; �
! !BCAST B(k+0,0)-->rb_0; �
! !FMA   rC_0_0 += ra_0 * rb_0; �
! !BCAST B(k+0,1)-->rb_1; �
! !FMA   rC_0_1 += ra_0 * rb_1; �
! !BCAST B(k+0,2)-->rb_2; �
! !FMA   rC_0_2 += ra_0 * rb_2; �
! !BCAST B(k+0,3)-->rb_3; �
! !FMA   rC_0_3 += ra_0 * rb_3; �
! !BCAST B(k+0,4)-->rb_0; �
! !FMA   rC_0_4 += ra_0 * rb_0; �
! !BCAST B(k+0,5)-->rb_1; �
! !FMA   rC_0_5 += ra_0 * rb_1; �
! !LOAD  A(1,k+0)-->ra_1; �
! !BCAST B(k+0,0)-->rb_0; �
! !FMA   rC_1_0 += ra_1 * rb_0; �
! !BCAST B(k+0,1)-->rb_1; �
! !FMA   rC_1_1 += ra_1 * rb_1; �
! !FMA   rC_1_2 += ra_1 * rb_2; �
! !FMA   rC_1_3 += ra_1 * rb_3; �
! !BCAST B(k+0,4)-->rb_0; �
! !FMA   rC_1_4 += ra_1 * rb_0; �
! !BCAST B(k+0,5)-->rb_1; �
! !FMA   rC_1_5 += ra_1 * rb_1; �
!}�

column-wise row-wise 

(b) Auto-generated code for the dgemm kernel

for the same configuration but with two differ-

ent inner loop order.

Figure 3: Design and auto-generation of the dgemm kernel.

The same methodology applies when any of the matrices is transposed,190

and the code generation is always handled automatically. Cij is always of size

BLKM×BLKN and the reading of A and B always happens following the block

design (e.g., contiguous block of the size BLKM×BLKK and BLKK×BLKN ,

resp., for the Non-Transpose). As a result, the transpose is implicitly coded

through the innermost loop when the data is already in cache. Moreover, the195

description here was provided for square matrices, but the same applies for rect-

angular matrices as well. The matrix C is always split over blocks, and therefore

the case of rectangular matrices can be generalized to follow the same method-

ology. This is also valid for the GPU implementation. We also note that, since

the read/store happens by block, a matrix stored in row-major format can also200

be handled by the same techniques. In this case, the window slides vertically on

A and horizontally on B. It can also be handled by flipping the operations from

non-transpose to transpose. For example, if the matrix A is the only matrix

stored in row-major and the operation is C = A×B, then this can be computed

by the C = AT ×B kernel where A is considered stored in column-major format.205

The ultimate goal is to explore all possible kernel configurations, called “the
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autotuning search space,” and provide a clear description of the kernel generation

and the autotuning process to be performed in order to get the best performance.

As described above, for every architecture, there might be a very large number210

of possibilities for designing the matrix-matrix multiplication kernel. If we take

for example an 8×8 matrix, on a hardware that has 16 256-bit AVX-2 registers,

we can decide to hold all of B in registers and keep loading/reloading A and C,

or we can decide to use only 8 registers to hold a portion of B and minimize

the number of loads/reloads on A and C, and so on. The same scenario will be215

applicable to C and to A. Thus, the decision of how many registers we must

dedicate to each array (e.g., A, B, and C) can generate many configurations

(about a thousand). Furthermore, one configuration might be good for one

matrix size but bad for other matrix sizes. In addition to that, there is the

loop order: should the innermost loop go “row-wise” or “column-wise,” should220

we implement the ijk, ikj, kij, or other loop orders? Thus, for every loop order

configuration, since we have about one thousand configurations for the registers,

one might end up with about ten thousand configurations. This is what makes

up the search space. Then, in order to exploit such a large search space of

possibility in the shortest time, we apply an aggressive pruning technique to225

reduce it. A condition of the pruning is that only the kernel configurations that

have absolutely no chance of achieving good performance be eliminated.

A commonly used technique by performance engineers is to apply some rule

of thumb constraints when tuning or designing kernels. For example, when

designing how many registers to reserve for C or B, one can let the possibility230

always be an even value, e.g., to correlate it to the hardware specifications. In

our work, we want to replace these kinds of rules with a set of derived constraints

that have a direct relation to performance. Based on our analysis, we can define

many of these constraints. One of the best examples is the occupancy of the

computational unit, which is a function of multiple variables. For example, for235

CPUs it includes: the instruction order, the vectorized instruction, the amount

of reuse, the contiguous vs. noncontiguous read/store of data from/to the cache.

The occupancy of the computational unit is also an important factor in the

11



autotuning and the kernel generation phase for GPUs as well. It also depends

on many variables such as the number of threads in a block, the number of240

registers required by each thread and the amount of shared memory required

by each block. More details on the autotuning process for GPU are described

in the next section. Occupancy threshold is a very effective and safe pruning

constraint, as most kernels have no chance of achieving good performance at low

occupancy levels. One example is if a kernel uses only 3 or 4 registers of the 16245

available registers. Another very important factor for very small computations

is the way data is loaded or prefetched from the main memory into the cache. In

particular, transferring data without using vectorized load/store instructions is

going to dramatically affect the performance. As studied in Section 3, working

with small matrices is strongly correlated to the transfer of the data between250

the cache levels and the main memory. Thus, having vectorized load/store

instruction is a major factor in the design, and thus any configuration that

does not exploit vectorized load/store instructions is considered to lead to low

performance and, as a result, can be dropped from the search space. These

constraints, along with others, have been integrated into our pruning process,255

which happens during the configuration generation of the autotuner and kernel

design phase.

In Figure 4, we show the tuning results on 10-core Intel Xeon E5-2650 v3

processors. On the left, in Figure 4a, we illustrate the performance obtained

from each of these kernels on a matrix of size 32× 32. There were about 1,812260

kernels generated. It can be observed that there are two small sets of kernel

configurations that provided performance around 85 gigaFLOP/s, while most of

the other kernels provided performances somewhere in between 30 gigaFLOP/s

and 75 gigaFLOP/s. When we checked the configuration details of these two

sets, we found that they are very similar in terms of the blocking sizes (BLKM ,265

BLKN , and BLKK) and the outer loop order, while the difference was only

of using +/- 1 or 2 registers on the reading of A and B, or a slightly different

order of the fused multiply–add (FMA) instructions in the generated code.

In order to emphasize the benefit of the automated tuning and the pruning
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(a) Tuning of the dgemm kernel using the ag-

gressive pruning strategy.
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(b) Tuning of the dgemm kernel using the basic

hardware constraint pruning.

Figure 4: Auto-generation and tuning process of the dgemm kernel on 10 cores Intel Xeon

E5-2650 v3 processors.

process, we deactivated the aggressive pruning and only left the hardware con-270

straints. This increased the number of possible configurations by about 2,500.

We ordered these extra configurations at the end of the previous configura-

tions and wanted to verify that our pruning process was safe and accurate. We

represent the performance obtained by the tuning process of this new list of

configurations with basic pruning in Figure 4b. As can be seen, all the extra275

configurations provided very low performance, ranging from 5 gigaFLOP/s to 35

gigaFLOP/s (see kernels with IDs in the range from 1,812 to 4,326). This high-

lights the advantage of our pruning process and the importance of the analysis

that we outlined above.

We mention that a similar pattern has been observed for tuning on other280

architectures such as the IBM POWER8, the KNL or the GPUs. We also

indicate that the entire generation and tuning process is automated and requires

dozens of hours per architecture to finish.

Because our design is parameterized, once all the possible and acceptable

configurations are created, the kernel generator creates one or many kernels for285

every configuration. For every configuration, the difference between the kernels

can be the fashion of the innermost loop, e.g., “row-wise” or “column-wise,”

the whole nested loop order (e.g., ijk, ikj, kij, etc.), the instruction order, etc.
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For example, a configuration specifies the blocking sizes (BLKM , BLKN , and

BLKK) and the number of registers allocated for each variable A, B, and C.290

Then, the generator creates many possible kernels for this configuration. An

example of two CPU generated kernels for the same configuration (2 registers

for A, 4 registers for B, and 6 registers for C) is depicted in Figure 3b.

This new flexible and automated design for code and configuration genera-

tion enables us to easily design kernels for any architecture and to tune them295

and find the best kernel for each. This automated design did not exist in our

previous work where we had to have different code snippets for every architec-

ture and then tune it. Furthermore, we were able to extract from this tuning

process the best configuration for these small sizes and write a parameterized

C++ code for prefetch and loop unrolling on CPUs, which we describe next.300

6. Programming Model, Performance Analysis, and Optimization for

CPUs

The overall design fits the general description given in Section 5. However,

there are specifics for the CPU and GPU cases. Here we provide in more detail

the specifics for our CPU considerations, design, and optimizations.305

In order to design a framework that has better code re-usability and adapt-

ability, our overall designs and software construction choices include the use of

new features of C++. By using advanced template techniques we can create

high-level interfaces [13] without adding any cost, even for small matrix-matrix

products. To do so, we designed a batch structure which contains a C++ vec-310

tor for the data and static dimensions. By using the C++ constexpr keyword

and integral constants we developed a generic batched code that dispatches at

compile time the correct version depending on the size of matrices. We use this

environment for each code sequence that we generate.

6.1. Programming Techniques Using C++14315

The development of programming languages and their use have dramatically

changed in recent years, leading to continuous evolution. C++ is an example
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of such a programming language. The cause of these changes is the need for

higher-level language that provides better idioms for generic and generative

programming and support for parallel computing. Here we discuss the new fea-320

tures of the C++14 standard that we use to develop our matrix-matrix product.

The first feature of the C++14 language that we discuss is auto [14]. Con-

sider the following declaration in Listing 1:
325

// x i s the type o f 7 : i n t

auto x = 7 ;

Listing 1: C++ auto

Here x will have the type int because it is the type of its initializer. In general,

we can write the code in Listing 2330

// x i s o f the type o f expre s s i on

auto x = expre s s i on ;

Listing 2: C++ generic auto

and x will be of the type from the value expression in Listing 2. For any335

variable, auto specifies that the type of the variable that is being declared will

be automatically deduced from its initializer. This allows us to write high-level,

complex code without having the burden of complex types that can appear. We

can apply the auto keyword on several features of the C++ language.

Another important feature of the C++14 standard is the constexpr key-340

word [15]. The constexpr keyword provides a mechanism that can guarantee

that an initialization is done at compile time. It also allows constant expressions

involving user-defined types.

In Listing 3, the Fibonacci function is guaranteed to be executed at compile

time if the value passed x is available at compile time.345

constexpr long long f i b ona c c i ( const i n t x )

{

return x <= 1 ? 1 : f i b ona c c i ( x − 1) + f i b ona c c i ( x − 2) ;

}350

Listing 3: C++ constexpr
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Using constexpr and the features described previously also allow for integral

constants. Integral constants are part of the C++ standard and wrap a static

constant of a specific type in a class.
355

// This i s t rue i f the CPU i s an I n t e l Processor

#i f x 8 6 6 4 && AVX

// Def ines the load operat ion f o r 256−b i t simd

i n l i n e auto load ( double const∗ ptr , std : : i n t e g r a l c on s t an t <unsigned long ,256> )360

{

return mm256 loadu pd ( ptr ) ;

}

#i f AVX512F365

// Def ines the load operat ion f o r 512−b i t simd on KNL

i n l i n e auto load ( double const∗ ptr , std : : i n t e g r a l c on s t an t <unsigned long ,512> )

{

return mm512 loadu pd ( ptr ) ;

}370

#end i f

#end i f

// This i s t rue i f the CPU i s an ARM64 Processor

#i f a a r ch64375

i n l i n e auto load ( double const∗ ptr , std : : i n t e g r a l c on s t an t <unsigned long ,128>)

{

return v ld1q f64 ( ptr ) ;

}380

#end i f

// This i s t rue i f the CPU i s an IMB64 Processor

#i f de f ined ( powerpc64 ) | | de f ined ( ppc64 )

i n l i n e auto load ( const double ∗ ptr , std : : i n t e g r a l c on s t an t <unsigned long ,128>)385

{

return ve c v sx l d (0 , ptr ) ;

}

#end i f390

Listing 4: C++ SIMD load

This allows us to easily support different SIMD extensions (Intel SSE, AVX2,

AVX512, ARM AArch64 and, IBM VMX) while using a generic function for each

call (see Listing 4).
395

us ing s imd s i z e = std : : i n t e g r a l c on s t an t <unsigned long ,512>

// Propagate the value at A[ iA∗N] in the 512 SIMD r e g i s t e r tmp

auto tmp = se t ( A[ iA∗N] , s imd s i z e {} ) ;

// Load B[ i ] . . B[ i+s imd s i z e ] and mult ip ly

auto C = tmp ∗ load(&B[ i ] , s imd s i z e {}) ;400

Listing 5: C++ multiply operation

If we then want to do a multiplication using SIMD instructions, we can
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simply use the standard operator with our overloaded functions (see Listing 5).

These programming techniques allow us to have a single source file of around

400 lines for small size matrix products on CPUs that support Intel, ARM and405

IBM processors. They are also very simple to extend.

We have also designed two models for batched computing (Listing 6). The

first one is based on allocating a single memory block for all the matrices to

improve data locality and additional information overhead (e.g., matrix size),

while the other is a group of same-size matrices.410

// Create a batch that w i l l conta in 15 matr ices o f s i z e 5 ,5

constexpr auto batch<f l o a t , cpu > b = make batch ( o f s i z e (5 c , 5 c ) , 15) ;

// Access ing a matrix from the batch re turns a view on i t

constexpr auto view b = b (0) ;415

// Create a grouping o f matr ices

constexpr auto group<f l o a t , cpu > g ( o f s i z e (5 c , 5 c ) ) ;

// Add a matrix to the group

constexpr auto matrix<f l o a t , cpu > d t s ( o f s i z e (5 c , 5 c ) ) ;

g . push back ( d t s ) ;420

Listing 6: Batched matrices

Once we have defined these functions, we can call the kernel to compute a

batched dgemm.

constexpr auto batch<f l o a t , cpu > b = make batch ( o f s i z e (5 c , 5 c ) , 15) ;425

constexpr auto batch<f l o a t , cpu > b1 = make batch ( o f s i z e (5 c , 5 c ) , 15) ;

// Product o f two batched matr ices us ing C++ operator

constexpr auto c = b ∗ b1 ;

// Product us ing the batch dgemm funct i on that can be s p e c i a l i z e d depending on

parameters430

constexpr auto c = batch gemm(b , b1 ) ;

Listing 7: Batched Operations

We also provide a simple C interface with pointers for our matrix product

function on CPUs.

6.2. Optimizations for CPUs435

The CPU implementation of a matrix-matrix product kernel for very small

matrices requires specific design and optimizations, as we have seen previously.

Here we will describe our C++ templated code based on our tuning approach

described in Section 5. Because we can store three double-precision matrices

of size up to 32 × 32 in the L1 cache on any modern CPU hardware (such as440
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Intel Xeon, AMD, IBM POWER8, ARM Cortex A57, etc.), one can expect

that any implementation will not suffer from data cache misses. This can be

seen in Figures 8b and 8c, where the performance of an ijk implementation—

which is not cache-aware and cannot be vectorized—is pretty close to the ikj

one. The ijk and ikj implementations correspond to the simple matrix product445

implementation using for loops. The ikj version is cache-friendly as data is

accessed in a continuous fashion, which also gives the possibility to the compiler

for vectorization. In the ijk version, the data is not accessed contiguously, but

we can minimize the number of store operations by computing one value of C for

each iteration of the innermost loop. For smaller sizes, the ijk implementation is450

more efficient than the ikj one, as it optimizes the number of stores (Figure 7a).

for(int i=0 ; i < N ; ++i){

for(int j = 0 ; j < N ; ++j){

double c = 0.;

for(int k = 0 ; k < N ; ++k){

c += A[i*N + k ] * B[k*N + j ] ;

}

C[i*N + j] = beta*C[i*N + j] + alpha*c;

}

}

Listing 8: ijk loop

for(int i=0 ; i < N ; ++i){

for(int k = 0 ; k < N ; ++k){

for(int j = 0 ; j < N ; ++j){

tmp[j] = A[i*N + k ] * B[k*N + j];

}

}

for(int j = 0 ; j < N ; ++j){

C[i*N + j] = beta*C[i*N + j] + alpha*tmp[j];

}

Listing 9: ikj loop

To obtain a near-optimal performance, we conduct an extensive study on

the performance counters using the Performance Application Programming In-

terface (PAPI) [16] tools. Our analysis concludes that in order to achieve an455

efficient execution for such computations, we need to maximize the CPU occu-

pancy and minimize the data traffic while respecting the underlying hierarchi-

cal memory design. Unfortunately, today’s compilers cannot introduce highly

sophisticated cache- or register-based loop transformations without indications

and, consequently, this kind of optimization should be studied and implemented460

by the software developer [17]. This includes techniques like reordering the data

so that it can be easily vectorized, reducing the number of instructions so that

the processor spends less time in decoding them, prefetching the data that will

be reused in registers, and using an optimal blocking strategy.
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6.3. Data Access Optimizations and Loop Transformation Techniques465

In our design, we propose to order the iterations of the nested loops such that

we increase locality and expose more parallelism for vectorization. The matrix-

matrix product is an example of perfectly nested loops, which means that all

the assignment statements are in the innermost loop. Thus, loop unrolling, loop

peeling, and loop interchange can be useful techniques for such algorithms [18,470

19]. These transformations improve the locality and help to reduce the stride

of an array-based computation. In our approach, we propose to unroll the two

innermost loops so that the accesses to matrix B are independent from the loop

order, which also allows us to reorder the computations for continuous access

and improved vectorization. This technique enables us to prefetch and hold475

some of the data of B into the SIMD registers.

Figure 5: Computing the first row of C in a 4-by-4 matrix product using SIMD.

Here, we manage to take advantage of the knowledge of the algorithm (see

Figure 5, 6), and, based on the principle of locality in reference [20], optimize

both the temporal and spatial data locality. In Figure 5, we can see that to

compute one line of the matrix C we actually need to load the full matrix B480

into the L1 cache. Also, for each subsequent line of C that we compute, we will

also need the matrix B (see Figure 6). Therefore, the more values of B that we

can pre-load and keep in the L1 cache, the fewer memory accesses will have to

be done.

6.4. Register Data Reuse and Locality485

Similarly to the blocking strategies for better cache reuse in numerically

intensive operations (e.g., large matrix-matrix products), we focus on register
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Figure 6: Example of a 4-by-4 matrix product using SIMD.

blocking to increase performance. Our study concludes that register reuse and

minimizing store operations on the C matrix ends up being the key factors for

performance. The idea is that when data is loaded into an SIMD register, it will490

be reused as much as possible before its replacement by new data. The amount

of data that can be kept in registers becomes an important tuning parameter.

For example, on a system with an AVX-2 register, an 8 × 8 matrix requires

16 256-bit AVX-2 registers to be completely loaded. If the targeted hardware

consists of only 16 256-bit AVX-2 registers, one can expect that loading the495

entire B will not be optimal, as we will have to reload the vectors for A and

C. However, if we load only 8 registers for B, which is equal to 4 rows, we

can compute a row of C at each iteration and reuse these 8 registers for each

iteration. This reduces the number of loads, stores, and total instructions from

O(n2) to O(n), compared to a classical ijk or ikj implementation as depicted500

in Figures 7a, 7b, and 8a, respectively. Similarly, if we had a CPU with at

least 32 registers of 256-bit, we could fit the full matrix B in the registers and

never reload it during the computation. The Intel KNL and IBM POWER8

architectures correspond to this case.

6.5. Algorithmic Advancements505

Algorithm 1 is an example of our methodology for a matrix-matrix product

of 16 × 16 matrices with an AVX2 instruction set and 16 registers. In this

pseudocode, we start by loading four 256-bit AVX-2 registers with values of

B which correspond to the first row. These registers are reused throughout

the algorithm. In the main loop (Lines 4–14), we start by computing the first510

values of every multiplication (stored into a register named M=A×B) based on
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the prefetched register in line 1. Then, we iterate on the remaining rows (Lines

7–11) loading B, multiplying each B by a value of A, and adding the result

into M. Once the iteration over a row is accomplished, the value of M is the

final result of A×B; and thus, we can load the initial values of C, multiply by515

α and β, and store it back before moving toward the next iteration in such a

way that minimizes the load/store, as shown in Figure 7. Each C ends up being

loaded/stored once. We apply this strategy to matrix sizes ranging from 8 to

32 because the matrices can fit in the L1 cache for these small sizes. Different

blocking strategies (square versus rectangular) have been studied through our520

autotuning process in order to achieve the best performance. We generate each

matrix-matrix product function at compile time with C++ templates. The

matrix size is passed as a function parameter using C++ integral constants.

1: Load rB00, rB01, rB02, rB03 . load first row of B

2: Load α, β

3: S = 16

4: for i = 0, 1, ... , S-1 do

5: rA ← Load A[i*S] . load one value of A

6: rCi0 = rA * rB00; ... rCi3 = rA * rB03

7: for u = 1, 2, ... , S-1 do

8: rA ← Load A[i*S + u]

9: Load rBu0, rBu1, rBu2, rBu3 . load row “u” of B

10: rCi0 += rA * rBu0; ... rCi3 += rA * rBu3

11: end for

12: rCi0 = α rCi0 + β (Load Ci0); ... rCi3 = α rCi3 + β (Load Ci3)

13: Store rCi0, rCi1, rCi2, rCi3 . store row “i” of C

14: end for

Algorithm 1: Generic matrix-matrix product applied to a matrix of size 16×16

with 16 256-bit registers

In the following subsections, we will compare on different architectures the

performance of our MAGMA code to the vendor-tuned matrix-matrix product525
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and a simple implementation without any optimization.
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Figure 7: CPU Performance counters measurement of the memory accesses on Intel Xeon

E5-2650 v3 processor (e.g., Haswell).

6.6. Application to an Intel Haswell Processor

As described above, operating on matrices of very small sizes is a memory-

bound problem—thus, increasing the number of CPU cores may not always

increase the performance since it will be limited by the bandwidth, which can530

be saturated by a few cores. We performed a set of experiments to clarify

this behaviour and illustrate our findings in Figure 9a. As shown, the notion of

perfect speed-up does not exist for a memory-bound algorithm, and adding more

cores increases the performance slightly. We performed a bandwidth evaluation

when varying the number of cores to find that a single core can achieve about535

18 GB/s while 6 and 8 cores (over the available 10 cores) can reach about 88%

and 93% of the practical peak bandwidth, which is about 44 GB/s.

In Figure 8, we compare the performance on a single node of our MAGMA

code with an MKL, Eigen, ikj and ijk code. Our implementation, based on a

different variation of blocking and unrolling, reaches better performance than540

Eigen or MKL, which are very similar in performance. We have seen in Figure 7a

that our solution is very similar in terms of the number of load operations.

However, our blocking strategies for these small sizes allow us to more efficiently
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Figure 8: Experimental results of the matrix-matrix multiplication on Haswell.

reduce the number of load operations on B and C store operations (Figure 7).

This reduces the total number of operations and instructions which alleviates545

the instruction cache. The small performance gap between Eigen and MKL can

be attributed to a difference in the size used for the blocking strategy. Different

versions of MKL may also have small variations in performance due to a change

in blocking strategy (ie MKL 2017 and MKL 2018 versions). As both Eigen

and MKL do not minimize the number of stores operations, the performance550

reached is lower than our MAGMA code. The performance of libxsmm [21],

another library from Intel with highly tuned BLAS, was better than older MKL

versions but similar to the newest MKL 2018, and therefore we do not explicitly
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include it in our comparison.
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Figure 9: CPU Performance analysis on Haswell.

We also studied non-uniform memory access (NUMA) [22] using a node with555

two Xeon CPUs as seen in Figure 9b. A standard memory allocation puts all of

the data in the memory slot associated with the first socket until it gets filled,

then starts filling the second socket. Since the problem size we are targeting

is very small, most of the data is allocated on one socket, and thus using the

second socket’s extra 10 cores will not increase the performance. This is due to560

the fact that the data required by the cores of the second socket goes through

the memory bus of the first socket, and is thus limited by the bandwidth of

one socket (44 GB/s). There are ways to overcome this issue. By using NUMA

with the interleave=all option, which spreads the allocation over the two sockets

via memory pages, we can improve the overall performance. However, for very565

small sizes, we observe that such a solution remains far from the optimal bound

since data is spread out over the memory of the two sockets without any rules

dictating that cores from socket 0 should only access data on socket 0, and

vice versa. To further improve performance, we use a specific NUMA memory

allocation, which allows us to allocate half of the matrices on each socket. As570

shown in Figure 9b, this allows our implementation to scale over the two sockets

and to reach close to the peak bound.
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6.7. Application to the Intel KNL

The Intel KNL is a new architecture that provides improved hardware fea-

tures such as 512-bit vector units, 32 vector registers instead of 16, up to 288575

hardware threads, and a high-bandwidth memory called MCDRAM. The KNL

can be configured in different ways using the MCDRAM and sub-NUMA nodes

which have been detailed in Sodani’s Hot Chips presentations [23]. An extensive

study to apply the Roofline Performance Model [24] on the KNL [25] has shown

the differences between the MCDRAM configurations and the model’s impact580

on performance. Our study comes to the the same conclusion, and all applica-

tion results we present use the quad-flat representation as all of the data fits in

the MCDRAM. We use the Linux utility numactl to target the MCDRAM (flag

−m 1). To compile with GCC on the KNL, we add the −march = knl flag for

AVX512F instructions support.585

We can see in Figure 10 that the number of load 10a and store 10b instruc-

tions follow the same pattern as with the Haswell processor. The important

drops we see on each graph for the KNL are a bit different than on the Haswell

processor. This is due to the size of the vector unit increasing from 256-bit to

512-bit. For double-precision operations, we see on every multiple of 8 a large590

drop in the number of load/store instructions due to the matrix size being a

multiple of the SIMD size.

We generally reach the same number of load instructions as MKL since we

cannot really optimize this parameter significantly, as seen with the Haswell

CPU. The Eigen library has a greater number of load instructions than our595

MAGMA code or MKL, but has the same number of store instructions as MKL,

implying that their blocking strategy is very similar but that the unrolling and

register reuse may differ. By not using a standard blocking strategy, we are able

to further optimize the number of store operations compared to the Haswell

CPU due to the larger SIMD vector size. The prefetch and unroll strategy have600

also been tuned differently due to the increase in number of the vector registers

and their size. We can see in Figure 11a that we always have a lower total

instruction count. On the KNL, it is possible to have up to 4 threads per core.
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Figure 10: CPU performance counters measurement of the memory accesses on KNL.
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Figure 11: CPU performance counters and scaling analysis on KNL.

Using the maximum number of threads is never efficient, as seen in Figure 11.

Using 2 threads per core can sometimes yield better performance, but the delta605

is quite negligible. Except for matrix sizes smaller than 12, it is always better

to utilize every CPU core available on the KNL.

Similarly to what we saw with the Haswell processor, our analysis and design

directly translate to performance obtained (see Figure 12). The performance

with our generated code in MAGMA is always better than that of the MKL or610

Eigen code. We can see that the use of the MCDRAM as the main memory
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instead of DDR4 heavily impacts the performance. We observe an overall per-

formance increase of two when using MCDRAM. We end up far from the upper

bound due to data in the MCDRAM not being read multiple times, which limits

the bandwidth usage. Using MCDRAM also leads to more stable performance.615

Memory-bound problems tend to be less stable in terms of performance when

using SIMD instructions and multithreading due to computing power/band-

width ratio. This is even more prevalent with the KNL processor, as its very

large SIMD instructions (512-bit) correspond to the size of an L1 cache line (64

Bytes).620
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(c) Performance on sizes up to 12

Figure 12: Experimental results of the matrix-matrix multiplication on KNL — 68 threads.
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6.8. Application to ARM Processor

The ARM processor that we use for this benchmark is the CPU of the Tegra

X1, a 4-core Cortex A57. The problems we detailed earlier still apply to the

Tegra, but on a different scale. Indeed, the ARM intrinsics only support 128-bit

vectors, which severely limit the SIMD use for double-precision computations.625
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(a) Matrix sizes up to 32
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Figure 13: Experimental results of the matrix-matrix multiplication on the Tegra X1.

In Figure 13, we compare the performance of our MAGMA code, an ijk

code, an ikj code, an Eigen code and an OpenBLAS [26] code using the latest

version available from the develop branch on Github.

Results follow the same trend we saw on the Intel processors. On very

small sizes, ijk and ikj versions are quite efficient as the arithmetic intensity is630

very low, limiting the usefulness of parallelism. With increased sizes, we start

to see these versions stall and reach a limit set around 3.5 gigaFLOP/s. The

OpenBLAS version provides good performance but is limited by its blocking

model, which is not adapted for very small sizes. We obtain better results than

OpenBLAS with the Eigen library but still lower than our MAGMA code. The635

difference lies in the blocking and unrolling strategies from our tuning approach

compared to those of Eigen or OpenBLAS.
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6.9. Application to IBM Processor

The IBM processor used for this benchmark is a POWER8 with 10 cores

and 8 threads per core. The POWER8 has a high number of threads per core640

due to its higher on-chip memory with the embedded DRAM (eDRAM) and

memory bandwidth (≈ 85GB/s). The Altivec intrinsics support only 128-bit

vectors, which is one of the limiting factors.
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Figure 14: Experimental results of the matrix-matrix multiplication on a POWER8 processor.

To efficiently use the high memory bandwidth of the POWER8 and maximize

the pipeline occupancy, it is important to properly tune the number of threads645

per core (see Figure 14a). We have found the best thread number for matrix

ranging from a size of 8 to 32 to be 40 threads. Figure 14b compares the
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performance of our MAGMA code to the different algorithms, ESSL being the

IBM BLAS library for PowerPC architectures.

In Figures 14a and 14b, we can see that the POWER has a hard time using650

both standard and vectorial instructions. This is why our MAGMA code has

some performance drops on sizes not multiple of the SIMD vector size. It is

possible to improve performance for these sizes, but this requires specific code

optimization and different compiler options. As we want to provide a generic

implementation of the code with a simple compilation process, we only give655

the results obtained with the overall best configuration. The Eigen version

provides weaker results than expected compared to the ESSL library from IBM.

The POWER8 provides very distinct architectural features from Intel or ARM

architectures, so the blocking sizes and unrolling features in Eigen may not be

best suited to this architecture.660

7. Programming Model, Performance Analysis, and Optimization for

GPUs

Concerning the development for GPUs, we set a goal to have a unified code

base that can achieve high performance for very small matrices. The design

strategy is different from the MAGMA batched GEMM kernel for medium and665

large sizes [8]. The latter uses a hierarchical blocking technique where different

thread blocks (TBs) compute different blocks of the output matrix C. With

such a design, a TB reads an entire block row of A and an entire block column

of B to compute its share of C. Obviously, there will be redundant reads of both

A and B among TBs. For extremely small sizes (e.g., up to 32), we cannot afford670

redundant reads, since the memory bandwidth becomes the main bottleneck for

such computational workloads.

Instead, we adopt a strategy where a single TB performs the entire multipli-

cation of at least one problem, computing all of C with no subdivision involved.

We start by an initial design that represents a special case of a 1×1 blocking675

technique in order to avoid redundant reads from global memory. Since the sizes
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considered are very small, there are enough resources on the streaming multi-

processor (SM) to store all of A, B, and C in shared memory and/or registers.

Similar to the design proposed in [8], we use CUDA C++ templates to have

an abstract design that is oblivious to tuning parameters and precision. In this680

paper, we discuss the main design aspects of the proposed kernel, and how we

managed, through an extensive autotuning and performance counter analysis,

to improve its performance on the Tesla P100 GPU over the original design

proposed in [9].

7.1. A Shared-Memory Approach685

Our previous work [9] showed that using shared memory to exploit data reuse

is superior to using the read-only data cache. We start with a simple design

where A and B are stored in shared memory for data reuse, and C is stored

in registers. Each TB performs exactly one GEMM operation. Eventually, the

kernel launches as many TBs as the number of multiplications to be performed.690

Using a 2-D thread configuration, each thread computes one element in the

output matrix C. The matrices A, B, and C are read only once from the global

memory. Data reuse of A and B occurs only in shared memory, where each

thread reads a row of A and a column of B to compute its respective output.

7.2. Data Prefetching695

Our first try to improve the performance adds data prefetching to the initial

design. By assigning more multiplications per TB, we can prefetch the next

triple A, B, and C while another multiplication is taking place. We choose to

prefetch data in registers in order to reduce synchronization and avoid overload-

ing the shared memory. Recall that the register file per SM is about 256KB,700

while the shared memory is 64KB at maximum. Surprisingly, Figure 15a shows

that data prefetching does not result in performance gains except for slight im-

provements for a few certain sizes. We list two major reasons for this behavior.

The first is that the prefetching technique uses 4× the register resources of the

original design, which might limit the number of TBs per SM as the sizes get705
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larger. The second is that there is a costly branch statement inside the kernel

that checks whether there is more data to prefetch. Eventually, we decided to

drop data prefetching from the final design.
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Figure 15: Impact of data prefetching and aggregation on performance. The experiment is

performing 100,000 GEMM operations in double precision on a Tesla P100 GPU.

7.3. Thread Block-Level Aggregation

We adopt a different approach to assign multiple multiplications per TB.710

Considering the original design, we aggregate a number of TBs together into

one bigger TB. Internally, the new TB is divided into smaller working groups,

each taking care of one multiplication. Such a design significantly improves

the performance for tiny sizes. The main reason is that the original design

suffers from a bad TB configuration, which assigns very few warps, or even less715

than a warp, to a TB. The aggregation technique improves this configuration

for tiny sizes. As an example, the original design launches 4 threads per TB

for a multiplication of 2 × 2 matrices, which is one eighth of a warp. The

aggregation technique groups 16 multiplications per TB, thus launching 2 warps

per TB. The level of aggregation is controlled through a tuning parameter (tba).720

Figure 15b shows the impact of aggregation (after tuning tba for every size) on

performance, where we observe performance improvements on sizes smaller than

8. For example, aggregation achieves a speedups of 4.1×, 2.5×, 1.7×, 1.25×,

and 1.20× for sizes 2, 3, 4, 5, and 6, respectively. For larger sizes, we observe

that it is always better to set tba=1, since there are enough warps per TB.725
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7.4. Resource Optimization

We propose a new optimization technique that helps improve the perfor-

mance for the sizes in the interval [17:32]. Recall that the original design of the

GPU kernel [9] has a negative impact on performance as the sizes become larger

than 16. Typically, the performance stays within 90% of its roofline until size

16, and then drastically shifts away from the roofline, scoring as low as 60% of

the upper bound. This is mainly a design issue with respect to the amount of

resources required by the kernel. For a multiplication of size N , the original

design uses N × N threads and 2N × N of shared memory per TB. This con-

figuration limits the number of TBs that can execute concurrently per SM. For

example, if N = 32, each thread block requires 1024 threads and about 16KB

of shared memory (for double precision). The shared memory requirement is

one third of the multiprocessor capacity, but the number of threads limits the

occupancy to just two TBs per multiprocessor. This means that at least one

third of the shared memory in each multiprocessor is wasted. In order to miti-

gate this effect, we recursively block the computation in shared memory, which

enables us to use fewer threads and less shared memory. The new design uses

N̂ × N̂ threads and 2N̂ × N̂ , where N̂ is a tuning parameter that is typically

less than N , such that: ⌈
N

2

⌉
≤ N̂ < N . (1)

This optimization of threads/shared memory comes at the cost of extra resources

from the register file, which is underutilized in the original design. The kernel

reads A, B, and C once into registers. Since the shared memory resources can

only accomodate two N̂ × N̂ blocks, the computation is performed in several

stages. Equation 1 enables a 2×2 blocking of the form:C00 C01

C10 C11

 = α

A00 A01

A10 A11

×
B00 B01

B10 B11

+ β

C00 C01

C10 C11

 (2)

The sizes of C00, C01, C10, and C11 are N̂ × N̂ , N̂ × (N − N̂), (N − N̂) × N̂ ,

and (N − N̂)× (N − N̂), respectively, which are exactly the same for the A and
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B sub-blocks. The scaling with β is done upon reading C. In order to compute

C00, the kernel performs the following steps:730

(1) Load A00 and B00 into shared memory

(2) Perform C00 = C00 + αA00 ×B00

(3) Load A01 and B10 into shared memory

(4) Perform C00 = C00 + αA01 ×B10

Similar steps are carried out for C01, C10, and C11. Since C is stored in the735

register file, the accumulation occurs in the registers holding β×C. Eventually,

the kernel is performing one GEMM operation using much fewer resources in terms

of shared memory and threads. While this comes at the cost of using more

registers, the register file per SM is big enough to accommodate such an increase.

The overall result is an improved performance for relatively larger sizes as shown740

in Figure 16. In the matrix range from 20 × 20 to 32 × 32 , we observe

speedups ranging from 3% up to 31% for the P100 GPU. As for the V100 GPU,

the speedup is up to 28%. Generally, the original kernel loses performance as we

increase the sizes—unlike the new kernel, which has a more stable performance.

 0

 300

 600

 900

 1200

 20  22  24  26  28  30  32

G
f
o
p
/s

Matrix size

 magma: resource opt.

 magma: original

(a) Performance on NVIDIA P100

 0

 300

 600

 900

 1200

 1500

 1800

 20  22  24  26  28  30  32

G
f
o
p
/s

Matrix size

 magma: resource opt.

 magma: original

(b) Performance on NVIDIA V100

Figure 16: Impact of resource optimization on performance. The experiment is performing

100,000 GEMM operations in double precision.

745

Eventually, our solution combines all of the aforementioned techniques, with

the exception of data prefetching. We can subdivide the size range 1 to 32 into
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three segments. The first represents the tiny sizes in the range of 1 to 10, where

we use the original kernel with tba> 1. The second is the midrange 11 to 19,

where we still use the original kernel, but setting tba = 1. The third is the750

relatively larger sizes in the range of 20 to 32, where we call the new kernel with

resource optimization.

7.5. Instruction Mix

A common optimization in all of our designs is the instruction mix of the

GPU kernel, which is crucial to performance when operating on matrices of755

very small sizes. Integer instructions, which are used for loop counters and

memory address calculations, can be quite an overhead in such computations.

Moreover, our study showed that a loop with a predefined boundary can be

easily unrolled and optimized by the NVIDIA compiler. Using CUDA C++

templates that are instantiated with a compile-time tuning parameter, we are760

able to produce fully unrolled code for every size of interest. By profiling the

kernel execution, we collected the number of integer instructions as well the

number of the FP64 instructions. Figure 17 shows the total number of integer

instructions as well as the ratio of integer instructions to the total number integer

and FP64 instructions. We observe that the MAGMA kernel always executes765

fewer integer instructions than cuBLAS. It also has the smallest ratio across all

sizes. An interesting observation of the cuBLAS implementation, for this range

of matrices, is that it uses a fixed blocking size of 16×16. This explains the

drops at sizes 16 and 32, where the problem size matches the internal blocking

size.770

7.6. Support for Different Transposition Modes and Rectangular Sizes

The GEMM routine, by definition, allows either of A or B to be transposed

in the multiplication. In order to support such configurations with minimal

changes to the computational part of the kernel, both A and B are transposed

on the fly (if needed) while reading them from the global memory. This leaves775
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(b) Percentage of integer instructions

Figure 17: Profiling the instruction mix of MAGMA versus CUBLAS. The experiment is

performing 100,000 GEMM operations in double precision on a Tesla P100 GPU.

the computational part unchanged, regardless of the input transposition modes

of A and B.

The same kernel design applies for rectangular sizes. The difference from

square cases comes on the side of thread configuration and shared memory

requirements. For a rectangular matrix of size M × N , the kernel should be780

configured with M̂ × N̂ threads, where M̂ is computed in a similar manner to

Equation 1. The reading of A and B into shared memory is properly handled

to prevent out-of-bounds memory reads or writes, especially when the common

dimension K is not fully divisible by M̂ or N̂ .

7.7. Performance and Profiling Results785

Figure 18a shows the final performance of the proposed solution against

cuBLAS using the NVIDIA P100 GPU. We also show the upper bound of the

performance, as estimated in Section 3. The results show that MAGMA is

significantly faster than cuBLAS, scoring speedups that range from 1.13× (at

size 32) up to 18.2× (at size 2). We observe that the smaller the size, the larger790

the speedup. In addition, the MAGMA kernel is up to 88% of the performance

upper bound.

Now considering the V100 GPU (Figure 18b), the trends and observations

are similar, but the performance is uniformly lifted up, reaching about 1,600
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(b) Performance on Nvidia V100

Figure 18: Final obtained performance of 100,000 GEMM operations in double precision on a

Tesla P100 and V100 GPU.
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Figure 19: Profiling the achieved occupancy of MAGMA versus cuBLAS. The experiment is

performing 100,000 GEMM operations in double precision on a Tesla P100 GPU.

gigaFLOP/s for matrices of size 32. This 50% performance boost is in pro-795

portion to the 50% more powerful V100 GPU. Figure 18b shows more details,

as it compares the MAGMA performance versus cuBLAS. While both graphs

achieve similar performances on sizes 15, 16, 31, and 32, MAGMA outperforms

cuBLAS on all other sizes, scoring speedups between 1.08× and 9.3× (at size

2). MAGMA is also up to 95% close to the performance upper bound.800

An interesting observation is depicted in Figure 7.7, which shows that the

cuBLAS kernel achieves higher occupancy than the MAGMA kernel, starting

from size 10. We point out that the achieved occupancy metric does not neces-

sarily give good insight into performance, and it has to be combined with other

metrics. In fact, the achieved occupancy is defined as the ratio of the average805
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(b) Write throughput

Figure 20: DRAM read and write throughputs. The experiment is performing 100,000 GEMM

operations in double precision on a Tesla P100 GPU.

active warps per active cycle to the maximum number of warps supported on

the SM. However, the measurement of busy warps does not mean that they are

doing useful work. In fact, Figure 17 shows that the cuBLAS kernel executes far

more integer instructions than the MAGMA kernel. Moreover, since the com-

putation is memory bound, we show a more representative metric. Figure 20810

shows the read and write throughputs of the GPU memory during execution.

The proposed MAGMA kernel achieves significantly higher throughput than

cuBLAS in both reads and writes, with an up to 22× higher throughput in

reads and up to 15× higher throughput in writes.

8. Conclusions and Future Directions815

This paper presented an extensive study of the design and optimization

techniques for Batched GEMMs on small matrices. The work is motivated

by a large number of applications ranging from machine learning to big data

analytics, to high-order finite element methods and more, which all require fast

linear algebra on many independent problems that are of size 32 and smaller.820

The use of standard Batched BLAS APIs in applications is essential for their

performance portability. However, this performance portability can be obtained

provided that—similar to BLAS—vendors start developing and supporting high-

performance implementations in their libraries. This is happening now; but
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still, as shown, GEMMs for small matrices are not yet sufficiently optimized in825

existing libraries. Therefore, we first developed theoretical models quantifying

the peak performances for the architectures of interest, and then developed

algorithms and optimization techniques that get very close (within 90%) to

those peaks. The results presented significantly outperform currently available

state-of-the-art implementations in the vendor-tuned math libraries, as well as830

popular open source libraries like OpenBLAS and Eigen.

The algorithms were designed for modern multi-core CPU, ARM, Xeon Phi,

and GPU architectures. Our solution is to bind all the developments into a

single generator that is combined with autotuning to empirically find the best

performing kernels, up to exploring a predefined design search space. While this835

produces a single tool, we note that the best kernels for different architectures

and sizes vary, incorporating different optimization techniques, algorithms, and

tuning parameters. We provided detailed analysis and the optimization tech-

niques for the different architectures. The optimization techniques, the algo-

rithms, and the overall framework can be used to develop other batched Level 3840

BLAS kernels and to accelerate numerous applications that need linear algebra

on many independent problems.

Future work includes further optimizations and analyses for other Batched

BLAS kernels and their use in applications. One particular application-specific

optimization challenge is how to fuse a sequence of Batched BLAS kernels into845

a single batched kernel. This is often needed in applications as an optimization

technique to reduce communications/data transfers.

Finally, it is known that compilers have their limitations in producing top

performance codes for computations like the ones addressed here. This influ-

enced our decision to rely not only on compilers and our domain-specific code850

generation techniques, but also on the use of lower-level programming languages

when needed. Current results used intrinsics for multi-core CPUs and CUDA for

GPUs—combined with autotuning in either case—to quickly explore the large

algorithmic variations developed in finding the fastest one. This is an area that

must be further developed and optimized.855
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