
4

C++ API for Batch BLAS
Ahmad Abdelfattah ICL1

Konstantin Arturov Intel2

Cris Cecka NVIDIA3

Jack Dongarra ICL
Chip Freitag AMD4

Mark Gates ICL
Azzam Haidar ICL
Jakub Kurzak ICL
Piotr Luszczek ICL
Stan Tomov ICL
Panruo Wu ICL

1Innovative Computing Laboratory
2Intel Corporation
3NVIDIA Corporation
4Advanced Micro Devices, Inc.

February 21, 2018

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear
Security Administration) responsible for the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system engineering and early testbed platforms,
in support of the nation’s exascale computing imperative.

Revision Notes
06-2017 first publication

01-2018 copy editing, improved artwork, new cover

@techreport{luszczek2017cpp,
author={Abdelfattah, Ahmad and Arturov, Konstantin and Cecka, Cris and

Dongarra, Jack and Freitag, Chip and Gates, Mark and Haidar, Azzam
and Kurzak, Jakub and Luszczek, Piotr and Tomov, Stan and Wu, Panruo},

title={{SLATE} Working Note 4: C++ {API} for Batch {BLAS}},
institution={Innovative Computing Laboratory, University of Tennessee},
year={2017},
month={December},
number={ICL-UT-17-12},
note={revision 01-2018}

}

i

Contents

1 Introduction 1
1.1 What is a Batch Routine? . 1
1.2 Why are Batch Routines Important? . 1

1.2.1 High Demand for Batch Computation in Scientific Applications 1
1.2.2 Increasing Parallelism in Hardware Architectures 2
1.2.3 Fair Performance of Existing Numerical Software on Batch Workloads 3

1.3 Standardization Effort for Batch BLAS . 6
1.3.1 Naming Conventions . 6
1.3.2 Argument Conventions . 6
1.3.3 Error Handling . 7
1.3.4 Sample APIs . 8
1.3.5 Discussion and Critique . 9

1.4 Summary . 9

2 Existing Solutions 11
2.1 NVIDIA cuBLAS . 11

2.1.1 Interface with Array of Pointers . 12
2.1.2 Interface with Single Pointer and Stride . 13
2.1.3 Routines from LAPACK with Pointer Array Interface 14
2.1.4 Routines with LAPACK-like Functionality with a Pointer Array Interface . . . 16
2.1.5 Summary . 16

2.2 Intel® MKL . 17
2.2.1 GEMM . 17
2.2.2 TRSM . 18

2.3 AMD hipBLAS/rocBLAS . 18
2.4 ICL MAGMA . 20

2.4.1 Error Handling in MAGMA . 21
2.4.2 Advanced MAGMA APIs . 21
2.4.3 Discussion and Critique . 22

ii

2.5 Summary of Existing APIs . 23

3 Proposed APIs 25
3.1 The Objective . 25
3.2 Compliance with the C++ BLAS API . 26
3.3 General Design Principles . 27
3.4 BLAS Error Checking . 30
3.5 Size Error Checking . 33
3.6 Reference Implementation . 33
3.7 Extension for Group-Based APIs . 35
3.8 Extension for Stride-Based APIs . 36
3.9 Discussion and Critique . 36
3.10 Summary . 37

iii

CHAPTER 1

Introduction

This chapter introduces the de�nition of batch routines, and their impact on today’s scienti�c
applications. The chapter highlights the ongoing e�orts to establish standardization for Batch
Basic Linear Algebra Subroutines.

1.1 What is a Batch Routine?

A batch routine is de�ned as a piece of so�ware that applies the same operation on many
independent problems, potentially in a parallel fashion. In the context of dense linear algebra,
a batch routine applies a basic linear algebra subprogram (BLAS) or Linear Algebra PACKage
(LAPACK) operation to an ideally large number of relatively small independent problems. The
batch can have problems of the same size (�xed size) or di�erent sizes (variable size).

1.2 Why are Batch Routines Important?

The answer to this question is three-fold. Each reason is discussed in detail below.

1.2.1 High Demand for Batch Computation in Scienti�c Applications

The �rst, and most important, reason is that many higher-level solvers and scienti�c applications
require high-performance batch dense linear algebra so�ware. In fact, the absence of a mature
so�ware for such workloads has sparked some in-house developments of batch routines for

1

1.2. WHY ARE BATCH ROUTINES IMPORTANT? CHAPTER 1. INTRODUCTION

speci�c purposes. For example, batch LU factorization has been used in subsurface transport
simulation [16], where many chemical and microbiological reactions in a �ow path are simulated
in parallel [17]. A batch Cholesky factorization and the triangular solve have also been used to
accelerate an alternating least square (ALS) solver that generates product recommendations on
the basis of implicit feedback datasets [7, 11]. Batch matrix-matrix multiplication (GEMM) is at the
core of many tensor contraction problems [1, 14]. Sparse direct solvers, such as SuiteSparse,1

have huge dependencies on many batch BLAS and LAPACK routines [13, 18], including matrix
multiplication and one-sided factorization (LU, QR, and Cholesky). The generation of block-
Jacobi preconditioners has also been accelerated using batch matrix inversion [4].

The workload pattern of small independent problems is also very important to computations on
hierarchical matrices (H-matrices) [9]. Very large dense matrices (e.g., covariance matrices) are
o�en beyond the storage capabilities of a single modern node, and applying LAPACK algorithms
(with cubic complexities) directly on them is very time consuming. H-matrices represent a dense
matrix using a much smaller memory footprint through hierarchical representations, which
exploit and compress low-rank, o�-diagonal blocks of the original matrix. Such a compression
can be accomplished using batch QR factorization and singular value decompositions (SVDs) [5].
In addition to the compression phase, computations on H-matrices can bene�t from batch
BLAS and LAPACK routines as well. The work by Akbudak et al. [3] shows the huge potential for
the development of a batch routine for tile low-rank Cholesky factorization, which is used to
solve a climate modeling problem on a hierarchically compressed dense matrix. To conclude,
there is an obvious and growing research interest in high-performance batch dense linear
algebra operations.

1.2.2 Increasing Parallelism in Hardware Architectures

The second reason to consider batch routines is the increased level of parallelism in hardware
architectures. There has been a trend to move from multi-core architectures to many-core
architectures. Many-core architectures possess considerably more processing cores than today’s
multi-core architectures, but they are relatively small and simple compared to the processing
cores of today’s multi-core CPUs. Both graphics processing units (GPUs) and the Intel Xeon
Phi architecture 2 represent a move towards this many-core paradigm of more but simpler cores.
The simpler architecture of each processing core means that many-core architectures are more
throughput oriented, and it is therefore the responsibility of the so�ware—rather than large
caches or deep pipelines—to take advantage of massively parallel architectures to achieve high
performance.

In batch workloads, the size of a single problem is o�en too small to provide enough work
for the underlying hardware. Without batch routines, batch workloads can be processed by
sequentially looping over the problems and invoking a standard, non-batch routine at each
iteration on a certain problem. This approach does not yield any good performance on batch
workloads unless a single problem is large enough to �ll up the resources of the hardware.
On the other hand, batch routines take advantage of such data-parallelworkloads and provide
enough work for the underlying hardware—even if the problems are individually small. In fact,

1http://faculty.cse.tamu.edu/davis/suitesparse.html
2http://www.intel.com/XeonPhi/Processors

2

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://www.intel.com/XeonPhi/Processors

1.2. WHY ARE BATCH ROUTINES IMPORTANT? CHAPTER 1. INTRODUCTION

the performance gap between batch solutions and standard, non-batch solutions is inversely
proportional to the size of the individual problem. The smaller the problem size, the more
speedup is scored by batch routines over standard approaches.

As an example, consider performing a batch GEMM operation in double precision arithmetic
using two examples of a many-core architecture. Figure 1.1 shows a performance comparison
between the standard Intel Math Kernel Library’s (MKL’s) DGEMM routine and its batch variant
using an Intel Xeon Phi Knights Landing (KNL) coprocessor, while Figure 1.2 shows a similar
comparison for NVIDIA’s cuBLAS running on an NVIDIA Volta V100 GPU. As mentioned
before, small problems cannot provide enough parallel work for the hardware. This is why
we observe huge speedups scored by the batch routines over the standard approaches, as the
former takes advantage of the workload’s data-parallel property. As the problem sizes become
larger, the gap shrinks consistently until no further bene�t is observed for using the batch
routines. This is where a single problem has enough parallelism for the underlying hardware,
and where the use of batch routines is unnecessary or not even recommended.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500 4000

25~1000 matrices of size

Intel Xeon Phi (KNL, 68 cores)

Batch MKL DGEMM

Standard MKL DGEMM

small
sizes medium

sizes
Large sizes

Switch to Standard MKL DGEMM

10X

1.9X

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

25~1000 matrices of size

Intel Xeon Phi (KNL, 68 cores)

Batch MKL DGEMM

Standard MKL DGEMM

Figure 1.1: Performance comparison between batch DGEMM and standard DGEMM on a batch work-
load. For every size, the batch size is adjusted to �ll the hardware resources. MKL (version
2017.0.2) is con�gured with 68 threads.

1.2.3 Fair Performance of Existing Numerical So�ware on BatchWorkloads

The majority of numerical linear algebra libraries are speci�cally designed and tuned to perform
well on large problem sizes. The previous section shows that standard, non-batch approaches,
while eligible, are not suitable for batch workloads. A question now arises: can we bene�t
from parallelizing existing numerical so�ware using standard programming models like Open
Multi-Processing (OpenMP)? It might be a candidate for adding a parallelization layer over
an existing non-batch routine. This approach addresses the lack of parallelism imposed by
the small size of the individual problems. By launching parallel runs of a non-batch routine,
the hardware is better utilized, and higher performance is expected. The parallelization layer

3

1.2. WHY ARE BATCH ROUTINES IMPORTANT? CHAPTER 1. INTRODUCTION

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000 3500 4000

50~1000 matrices of size

Nvidia V100 GPU

Batch cuBLAS DGEMM

Standard cuBLAS DGEMM

small sizes medium sizes Large sizes

No performance gain

19X

1.4X
G

flo
p/

s

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000 3500 4000

50~1000 matrices of size

Nvidia V100 GPU

Batch cuBLAS DGEMM

Standard cuBLAS DGEMM

Figure 1.2: Performance comparison between batch DGEMM and standard DGEMM on a batch
workload using cuBLAS (CUDA 9.0.102). For every size, the batch size is adjusted to �ll the GPU
resources.

can be realized on both CPU-based architectures (e.g., through OpenMP parallel loops) and
GPU-based architectures (e.g., through concurrent execution queues). While the approach is
a better alternative than the standard sequential method, it still trails behind batch routines
in terms of performance. As an example, consider the same experiment shown in Figures 1.1
and 1.2, where we now add a parallelization layer to the standard routine (through OpenMP
on the Intel KNL and through CUDA streams on the NVIDIA V100 GPU). Figures 1.3 and 1.4
show much smaller gaps between the two graphs. On the Intel KNL hardware, the batch routine
still scores decent speedups against the MKL+OpenMP combination. For most sizes larger
than 40 × 40, the OpenMP solution is very similar in performance (or even better) than the
batch routine. On the V100 GPU, the batch routine is still faster than using concurrent streams,
especially on very small sizes, where the speedup remain huge. However, the two graphs now
meet much sooner than in Figure 1.2 (at size ∼ 320 × 320 instead of ∼ 2, 000 × 2, 000).

Another point in this regard is that some existing numerical solutions, by design, cannot bene�t
that much from the parallelization layer. For example, the Matrix Algebra on GPU and Multicore
Architectures (MAGMA) library 3 uses a hybrid CPU-GPU design for its implementation of most
LAPACK algorithms. This is a nearly perfect strategy for large problems. MAGMA is built on
the assumption that trailing matrix updates on the GPU can hide both the CPU activity and the
CPU-GPU communication [15]. Such an assumption completely goes away for small problems,
which means that communication becomes the bottleneck in batch routines rather than the
lack of parallel runs. Another example is the blocking technique, for which LAPACK is famous.
While it has been shown that blocking is bene�cial for medium-sized batch workloads [10], the
blocking technique, by nature, imposes a redundant memory tra�c that is una�ordable for
very small sizes. For example, the cost of writing a factorized panel and reading it back for the
update stage remains signi�cant in small problems. This explains why many research e�orts
adopt a fused design approach, where all the computational steps are performed in the same

3http://icl.cs.utk.edu/magma/

4

http://icl.cs.utk.edu/magma/

1.2. WHY ARE BATCH ROUTINES IMPORTANT? CHAPTER 1. INTRODUCTION

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

G
flo

p/
s

10000 matrices of size

Intel Xeon Phi (KNL, 68 cores)

Batch MKL DGEMM

Standard MKL DGEMM + OpenMP

Figure 1.3: Performance comparison between batch DGEMM and parallelized standard DGEMM on
a batch workload. The parallelized standard solution invokes single-threaded MKL (version
2017.0.2) within an OpenMP parallel for loop. The number of OpenMP threads is 68.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500

G
flo

p/
s

1000 matrices of size

Nvidia V100 GPU

Batch cuBLAS DGEMM

Parallelized standard cuBLAS DGEMM

Figure 1.4: Performance comparison between batch DGEMM and the parallelized standard DGEMM
on a batch workload using cuBLAS (CUDA 9.0.102).

context while keeping the data in the fastest memory levels as much as possible [2, 4, 11].

5

1.3. STANDARDIZATION EFFORT FOR BATCH BLAS CHAPTER 1. INTRODUCTION

1.3 Standardization E�ort for Batch BLAS

Owing to its critical importance and potentially great impact, there have been some community
e�orts—including e�orts from vendors and the research community—to establish a standard
application programming interface (API) for batch BLAS.4 Such e�orts have led to a preliminary
de�nition for the batch BLAS API [6], the introduction of numerically reproducible BLAS,5

and some other e�orts that utilize batch BLAS in real-world applications.

The �rst published standard for batch BLAS [6] de�nes naming conventions, type de�nitions,
and C interfaces for batch level-3 BLAS routines. The interfaces are intentionally designed
to be close to the BLAS standard and to be hardware independent. They are given in C for
use in C/C++ programs, but extensions/implementations can be called from other languages
(e.g., Fortran). The goal is to provide the developers of applications, compilers, and runtime
systems with the option of expressing many small BLAS operations as a single call to a routine
from the new batch operation standard, and thus enable the entire linear algebra community to
collectively attack a wide range of small matrix problems. The published standard is not �nal,
and is, in fact, going through several iterations until the linear algebra community reaches a
consensus regarding the speci�cations of the interface.

1.3.1 Naming Conventions

The �rst published standard suggests that a batch BLAS routine follows, and extends as needed,
the conventions of the corresponding BLAS routine. In particular, the name is composed
of �ve characters specifying the BLAS routine followed by the su�x _batch. For example,
the dgemm_batch routine implements batch general matrix-matrix multiplication in double
precision arithmetic, and the ctrsm_batch routine implements batch triangular solve in complex
precision.

1.3.2 Argument Conventions

The proposed standard also follows a convention for the list of arguments that is similar to
the convention used for BLAS, with the necessary adaptations for the batched operations. In
general, the standard promotes scalar arguments found in BLAS into array arguments for batch
BLAS. As an example, arguments that specify options (e.g., transpositions, conjugation, · · ·),
sizes, and leading dimensions are promoted into arrays instead of scalars. The input/output
matrices are also passed as arrays of pointers. Three additional arguments are also proposed
to all routines. The �rst is an integer that speci�es the size of the batch, (i.e., the number of
BLAS operations to be performed). The second is an enumerated type called batch_opts, which
speci�es certain options and styles regarding the batch (e.g., �xed size vs. variable size). The
third is an array of integers called info_array, which is used to report errors to the users.

4http://icl.utk.edu/bblas/
5http://bebop.cs.berkeley.edu/reproblas/

6

http://icl.utk.edu/bblas/
http://bebop.cs.berkeley.edu/reproblas/

1.3. STANDARDIZATION EFFORT FOR BATCH BLAS CHAPTER 1. INTRODUCTION

1.3.3 Error Handling

As mentioned before, the info_array argument replaces the legacy XERBLA() function, which is
used to report errors in the standard BLAS implementation. The use of XERBLA() guarantees
that errors are reported regardless of whether the caller code checks for errors. The default im-
plementation of XERBLA() can also be overridden if another behavior is desired upon detecting
errors. However, there are some reasons to reject the use of XERBLA() for batch BLAS:

1. The default XERBLA() implementation is not su�ciently precise for complex runtime
error scenarios: If a BLAS routine is called in a loop, then the input/output (I/O) bu�er
or the console screen will be �ooded with error messages. This would require a custom
implementation for XERBLA() that suppresses error messages, which is a mode of operation
available only in few development work�ows.

2. The use of global state: XERBLA() requires global variables for non-trivial customization
and information passing between the user and the BLAS library.

3. Dependence on platform-speci�c features: Dynamic libraries o�en require special fea-
tures in the binary format of the operating system (OS) to overload a function. This is not
hardware speci�c but also involves the accompanying so�ware stack, including the OS
and the compiler-linker tool chain.

4. Limited customization: There can only be one XERBLA() per executable, and there is no
mechanism for chaining or queueing its invocations in case two di�erent call sites would
like to install di�erent error handlers. Furthermore, there is no way to establish a protocol
between call sites for cooperative error handling, because the only feature available is the
linker name replacement system, which is available in Linux and Mac OS X and used
when creating Executable and Linkable Format (ELF) �les or Mach-O object �les.

5. Language-speci�c behavior is dependent on name mangling: Modern BLAS standards and
their implementations expose the Fortran API and the C API. The older CBLAS standard
implements functions like cblas_dgemm(), and the newer standard uses BLAS_dgemm().
The XERBLA() mechanism requires resolving the coexistence of both language bindings
(Fortran and C), sometimes in the same binary. Neither of these languages necessarily
share the same I/O streams, and—in a mixed programming language environment—it is
not obvious which XERBLA() binding needs to be reimplemented to take over the BLAS
error handling.

6. Mixing computational capabilities with I/O facilities: According to the standard’s de�ni-
tion of XERBLA(), the use of I/O streams is required by the default implementation inside
the BLAS library. This obviously causes issues for headless mode operation when the
access to the I/O facilities is restricted to accommodate custom environments. For exam-
ple, on an embedded system or on a cloud platform, the only available I/O steam might
occur during limited system logging or in extra overheads generated by system-wide
synchronization.

7. Lack of support for the asynchronous interface: The XERBLA() error handling mechanism
is not meant for the asynchronous and event-based processing that has become prevalent

7

1.3. STANDARDIZATION EFFORT FOR BATCH BLAS CHAPTER 1. INTRODUCTION

on modern high-performance computing (HPC) architectures. Modern computing hard-
ware features multiple execution streams that add �exibility to scheduling at the hardware
level but do not guarantee a speci�c order of completion for independent subroutine calls.
This means that the XERBLA()-based library cannot be wrapped inside such an interface
because error delivery is independent of the error-causing invocation. Connecting the
two would also add unnecessary complexity and synchronization and thus diminish the
potential bene�ts of asynchronous execution.

8. Lack of support for multithreading: The BLAS interface with XERBLA() is inherently
single threaded. Multiple threads that asynchronously call BLAS and cause invocation of
XERBLA() must be synchronized to provide coherent error reporting. The behavior under
such circumstances is unspeci�ed, and extra care has to be devoted to recognize the calling
thread (e.g., with calls to pthread_self() or omp_get_num_threads()) and contextualize
the error.

9. So�ware for Linear Algebra Targeting Exascale (SLATE): The C++ API design for BLAS
and LAPACK in SLATE [8] aims to use C++ exceptions for error reporting rather than
XERBLA().

The reasons listed above have encouraged the investigation and use of alternate error handling
mechanisms, either by returning error codes (e.g., in C and Fortran interfaces) or by throwing
exceptions (e.g., in C++ interfaces).

1.3.4 Sample APIs

According to the �rst published standard for the batch BLAS API [6], a batch general matrix-
matrix multiplication in double precision should look like:

1 void dgemm_batch(enum trans_t *transA , enum trans_t *transB ,
2 int *m, int *n, int *k,
3 double *alpha , double **A_array , int *lda ,
4 double **B_array , int *ldb ,
5 double *beta , double **C_array , int *ldc ,
6 int batch_count ,
7 enum batch_opts_t batch_opts ,
8 int *info_array)

The transA and transB arrays can be of size one for batches of the same size, or of size
batch_count for the variable sizes case. For the latter, each value de�nes the operation on
the corresponding matrix. The m, n, and k arrays of integers are of size batch_count, where each
value de�nes the dimension of the operation on each corresponding matrix. The alpha and
beta arrays provide the scalars α and β (recall the standard GEMM operation: C = αAB + βC).
The arrays of pointers A_array, B_array, and C_array are of size at least batch_count and point
to the matrices {Ai}, {Bi}, and {Ci}. The size of matrix {Ci} is m[i]×n[i]. The sizes of the
matrices {Ai} and {Bi} depend on transA[i] and transB[i]. The arrays of leading dimen-
sions lda, ldb, and ldc de�ne the leading dimension of each of the matrices {Ai(lda,*)},
{Bi(ldb,*)}, and {Ci(ldc,*)}, respectively. If the batch_opts argument speci�es that the batch
is of BATCH_FIXED type, only transA[0], transB[0], m[0], n[0], k[0], alpha[0], lda[0], ldb[0],
beta[0], and ldc[0] are used to specify the GEMM parameters for the batch. The info_array

8

1.4. SUMMARY CHAPTER 1. INTRODUCTION

argument de�nes the error array. It is an output array of integers of size batch_count, where a
value at position i re�ects the argument error for the GEMM with matrices Ai, Bi, and Ci. The
de�nition of other BLAS routines in the standard is quite similar to GEMM in terms of notation
and argument types.

1.3.5 Discussion and Critique

The APIs of the proposed standard uses a �ag mechanism to distinguish between batches of �xed
size and batches of variable size. The user has to set batch_opts properly to re�ect the nature
of the input batch. According to the standard, setting batch_opts to BATCH_FIXED means that
the batch has matrices of the same size, while setting it to BATCH_VARIABLE means that the batch
has matrices of di�erent sizes. However, the de�nitions of BATCH_FIXED and BATCH_VARIABLE
seem inaccurate and lack �exibility for some use cases, where they unnecessarily restrict some
arguments based on the sizes being �xed or variable. The following examples are for the GEMM
API, but they are generally applicable to any BLAS routine.

1. In the BATCH_FIXED mode, the values of alpha and beta are assumed to be the same across
the batch. This is an unnecessary restriction. In fact, it is unrelated to the sizes of the
input matrices. For example, with the current standard, if the sizes are the same but the
values of alpha and beta di�er, the user has to con�gure the call as BATCH_VARIBALE and
replicate the sizes across the arrays m, n, and k.

2. Similarly, the interface assumes the same leading dimension if BATCH_FIXED is de�ned. In
general, matrices of the same size can have di�erent leading dimensions.

3. On the other hand, the BATCH_VARIABLE mode must accept array arguments for alpha and
beta. A variable size batch can, in general, have the same alpha and beta, but this is not
supported in the current standard.

A more accurate de�nition for the BATCH_FIXED mode is one where all non-data arguments
are the same across the batch. For GEMM, this includes transpositions, scaling arguments, sizes,
and leading dimensions. The BATCH_VARIABLE mode assumes that all arguments vary from one
problem to another. Despite being generic, such an API can be quite cumbersome in some use
cases where a certain argument has the same value across the batch (e.g., same k in a variable
size batch GEMM). The user has to create an array whose entries have that exact same value. Such
a lack of �exibility can be addressed by expanding the batch_opts argument to include more
�ne-grained options. However, this expansion makes it more di�cult for the user to correctly
use the API. The use of more advanced languages like C++ can address the same concerns in a
more elegant and easy-to-use way.

1.4 Summary

This chapter introduced a de�nition of batch routines with an emphasis on its importance for
several scienti�c applications. The need to develop dedicated routines for batch workloads has
been discussed and justi�ed. The chapter also highlights the ongoing standardization e�orts

9

1.4. SUMMARY CHAPTER 1. INTRODUCTION

for batch BLAS APIs, with some discussion about its advantages and shortcomings. The next
chapter provides a survey of the available APIs for batch BLAS routines in many so�ware
libraries that are widely used by the community.

10

CHAPTER 2

Existing Solutions

This chapter presents an overview of existing batch BLAS solutions, and their functionalities,
from vendors and library developers. It also discusses solutions that are available for both CPUs
and GPU accelerators.

2.1 NVIDIA cuBLAS

NVIDIA provides a rich set of batch BLAS calls in the cuBLAS library.1 This library is available
as part of the CUDA toolkit, which is comprised of compilers, libraries, debugging tools, and
performance analysis tools that support NVIDIA’s GeForce, Quadro, and Tesla GPU cards.2

Despite a wide range of supported accelerator devices, the API looks exactly the same for all
hardware, and the choice of an optimal code path is taken care of internally. The installation
requires “superuser” access to install kernel drivers, and there must be at least one supported
device/card present in order for any of the calls to succeed. In other words, the functionality
cannot be provided on CPU-only systems, nor on systems with GPUs that are not CUDA-enabled.

The interface has multiple variants that depend on data types and on the way in which the
matrices’ location is encoded on input and output. Also, di�erent groups of routines are available:
level-3 BLAS, LAPACK, and LAPACK-like routines. At the same time, however, not all possible
combinations are provided, and Section 2.1.5 provides a quick overview of the functionality,
which should help the user discover whether or not a given combination is supported. The
following sections try to provide an intuitive layout of the available functionality and might
seem lacking at �rst reading due to the uneven coverage of the possible combinations.

1https://developer.nvidia.com/cublas
2https://developer.nvidia.com/cuda-toolkit

11

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cuda-toolkit

2.1. NVIDIA CUBLAS CHAPTER 2. EXISTING SOLUTIONS

2.1.1 Interface with Array of Pointers

The “array of pointers” interface requires that the matrices be identi�ed by pointers that are then
stored in arrays of the appropriate type. For example, for the 64-bit �oating-point data type,
double, the pointers to matrices A will be stored in array double *Aarray[]. Complex numbers
are represented by CUDA-speci�c cuComplex and cuDoubleComplex data types for 32-bit and
64-bit �oating-point numbers, respectively.

GEMM

The batch GEMM routine in cuBLAS is available in �ve precisions.

Half precision: cublasHgemmBatched()

1 cublasStatus_t
2 cublasHgemmBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t transa , cublasOperation_t transb ,
5 int m, int n, int k,
6 const __half *alpha , const __half *Aarray[], int lda ,
7 const __half *Barray[], int ldb ,
8 const __half *beta , __half *Carray[], int ldc ,
9 int batchCount);

Single precision: cublasSgemmBatched()

1 cublasStatus_t
2 cublasSgemmBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t transa , cublasOperation_t transb ,
5 int m, int n, int k,
6 const float *alpha , const float *Aarray[], int lda ,
7 const float *Barray[], int ldb ,
8 const float *beta , float *Carray[], int ldc ,
9 nt batchCount);

Double precision: cublasDgemmBatched()

1 cublasStatus_t
2 cublasDgemmBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t transa , cublasOperation_t transb ,
5 int m, int n, int k,
6 const double *alpha , const double *Aarray[], int lda ,
7 const double *Barray[], int ldb ,
8 const double *beta , double *Carray[], int ldc ,
9 int batchCount);

Complex precision: cublasCgemmBatched()

1 cublasStatus_t
2 cublasCgemmBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t transa , cublasOperation_t transb ,
5 int m, int n, int k,
6 const cuComplex *alpha , const cuComplex *Aarray[], int lda ,
7 const cuComplex *Barray[], int ldb ,
8 const cuComplex *beta , cuComplex *Carray[], int ldc ,
9 int batchCount);

12

2.1. NVIDIA CUBLAS CHAPTER 2. EXISTING SOLUTIONS

Double complex precision: cublasZgemmBatched()

1 cublasStatus_t
2 cublasZgemmBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t transa , cublasOperation_t transb ,
5 int m, int n, int k,
6 const cuDoubleComplex *alpha , const cuDoubleComplex *Aarray[], int lda ,
7 const cuDoubleComplex *Barray[], int ldb ,
8 const cuDoubleComplex *beta , cuDoubleComplex *Carray[], int ldc ,
9 int batchCount);

Apart from the pointer array arguments, the cuBLAS interface assumes that all arguments have
the same value across the batch. The scalars alpha and beta are passed by their addresses, which
can be in the host memory or in the GPU memory.

The cuBLAS library also provides other batch BLAS functions (e.g., triangular solves [TRSM]).
However, this routine is not available in half precision. The signature of the batch TRSM routine
in double precision looks like:

cublasDtrsmBatched()

1 cublasStatus_t
2 cublasDtrsmBatched(
3 cublasHandle_t handle ,
4 cublasSideMode_t side , cublasFillMode_t uplo , cublasOperation_t trans , cublasDiagType_t diag ,
5 int m, int n,
6 const double *alpha , double *A[], int lda ,
7 double *B[], int ldb ,
8 int batchCount);

2.1.2 Interface with Single Pointer and Stride

In some applications, the batches of matrices are laid out in a regular pattern inside a large
memory region. For such cases, the strided interface might be a better �t because it allows the
user to specify the pointer to the �rst matrix and the displacement stride for each subsequent
matrix in the batch. It is worth noting that only one level 3 BLAS routine is supported for this
interface, and the remaining routines either correspond to the LAPACK routines or represent
LAPACK-like functionality.

GEMM

Similar to batch GEMM, the strided batch GEMM routine is available in �ve precisions.

cublasHgemmStridedBatched()

1 cublasStatus_t
2 cublasHgemmStridedBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t transa , cublasOperation_t transb ,
5 int m, int n, int k,
6 const __half *alpha , const __half *A, int lda , long long int strideA ,
7 const __half *B, int ldb , long long int strideB ,
8 const __half *beta , __half *C, int ldc , long long int strideC ,
9 int batchCount);

13

2.1. NVIDIA CUBLAS CHAPTER 2. EXISTING SOLUTIONS

cublasSgemmStridedBatched()

1 cublasStatus_t
2 cublasSgemmStridedBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t transa , cublasOperation_t transb ,
5 int m, int n, int k,
6 const float *alpha , const float *A, int lda , long long int strideA ,
7 const float *B, int ldb , long long int strideB ,
8 const float *beta , float *C, int ldc , long long int strideC ,
9 int batchCount);

cublasDgemmStridedBatched()

1 cublasStatus_t
2 cublasDgemmStridedBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t transa , cublasOperation_t transb ,
5 int m, int n, int k,
6 const double *alpha , const double *A, int lda , long long int strideA ,
7 const double *B, int ldb , long long int strideB ,
8 const double *beta , double *C, int ldc , long long int strideC ,
9 int batchCount);

cublasCgemmStridedBatched()

1 cublasStatus_t
2 cublasCgemmStridedBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t transa , cublasOperation_t transb ,
5 int m, int n, int k,
6 const cuComplex *alpha , const cuComplex *A, int lda , long long int strideA ,
7 const cuComplex *B, int ldb , long long int strideB ,
8 const cuComplex *beta , cuComplex *C, int ldc , long long int strideC ,
9 int batchCount);

cublasZgemmStridedBatched()

1 cublasStatus_t
2 cublasZgemmStridedBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t transa , cublasOperation_t transb ,
5 int m, int n, int k,
6 const cuDoubleComplex *alpha , const cuDoubleComplex *A, int lda , long long int strideA ,
7 const cuDoubleComplex *B, int ldb , long long int strideB ,
8 const cuDoubleComplex *beta , cuDoubleComplex *C, int ldc , long long int strideC ,
9 int batchCount);

2.1.3 Routines from LAPACKwith Pointer Array Interface

Surprisingly, cuBLAS provides more batch LAPACK routines than batch BLAS routines. The
interface uses an array of pointers for each data argument. No stride interfaces are available
for batch LAPACK routines. In addition, there is no interface for these routines that supports
half-precision arithmetic. Here are some examples that are shown in double precision only.

Batch LU Factorization (GETRF)

cublasDgetrfBatched()

14

2.1. NVIDIA CUBLAS CHAPTER 2. EXISTING SOLUTIONS

1 cublasStatus_t
2 cublasDgetrfBatched(
3 cublasHandle_t handle ,
4 int n,
5 double *Aarray[], int lda ,
6 int *PivotArray , int *infoArray ,
7 int batchSize);

Batch Linear Solve of LU Factorized Systems (GETRS)

cublasDgetrsBatched()

1 cublasStatus_t
2 cublasDgetrsBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t trans ,
5 int n, int nrhs ,
6 const double *Aarray[], int lda ,
7 const int *devIpiv ,
8 double *Barray[], int ldb ,
9 int *info ,
10 int batchSize);

Batch Inversion of LU Factorized Systems (GETRI)

cublasDgetriBatched()

1 cublasStatus_t
2 cublasDgetriBatched(
3 cublasHandle_t handle ,
4 int n,
5 double *Aarray[], int lda ,
6 int *PivotArray ,
7 double *Carray[], int ldc ,
8 int *infoArray ,
9 int batchSize);

Batch QR Factorization (GEQRF)

cublasDgeqrfBatched()

1 cublasStatus_t
2 cublasDgeqrfBatched(
3 cublasHandle_t handle ,
4 int m, int n,
5 double *Aarray[], int lda ,
6 double *TauArray[],
7 int *info ,
8 int batchSize);

Batch Least Squares Solve (GELS)

cublasDgelsBatched()

15

2.1. NVIDIA CUBLAS CHAPTER 2. EXISTING SOLUTIONS

1 cublasStatus_t
2 cublasDgelsBatched(
3 cublasHandle_t handle ,
4 cublasOperation_t trans ,
5 int m, int n, int nrhs ,
6 double *Aarray[], int lda ,
7 double *Carray[], int ldc ,
8 int *info , int *devInfoArray ,
9 int batchSize);

2.1.4 Routines with LAPACK-like Functionality with a Pointer Array Interface

Some routines in cuBLAS have LAPACK-like functionalities like cublas<t>matinvBatched,
which computes the explicit inverse of a batch of matrices that have the same size. How-
ever, this routine is limited to matrices up to 32 × 32 in size. The inverse of larger matrices
can be computed by calling cublas<t>getrfBatched followed by cublas<t>getriBatched.

Batch Explicit Matrix Inversion (MATINV)

cublasDmatinvBatched()

1 cublasStatus_t
2 cublasDmatinvBatched(
3 cublasHandle_t handle ,
4 int n,
5 const double *A[], int lda ,
6 double *Ainv[], int lda_inv ,
7 int *info ,
8 int batchSize);

2.1.5 Summary

In the table below, we summarize the available interface calls to illustrate the distribution of
functionalities among various available routines. In an ideal scenario, each routine would be
available in three precisions (16-bit, 32-bit, and 64-bit) for both real and complex elements.
Every routine would come in one of three �avors: single large matrices (L), batch of small
matrices (B), and a batch of strided matrices (S). As of CUDA 9, only a subset of this functionality
is available. The table summarizes batch BLAS routines only.

Real/Complex→ R C R C R C
Precision→ 16 16 32 32 64 64

Routine ↓

gemm L/B L/B/S L/B/S L/B/S L/B/S
trsm L/B L/B L/B L/B

L = interface for large matrices
B = interface for batch of matrices
S = interface for batch of strided matrices

16

2.2. INTEL®MKL CHAPTER 2. EXISTING SOLUTIONS

2.2 Intel®MKL

Intel’s MKL is a highly optimized mathematical library for Intel processors—including multi-
core CPUs and many-core coprocessors (Xeon Phi). As of this writing, Intel MKL 2018 includes
batch routines for matrix multiplication (GEMM) and triangular solve (TRSM) for single (S),
double (D), single complex (C), and double complex (Z) precisions. MKL also includes routines
for specialized matrix multiplication (GEMM3M) for C and Z precisions only. The APIs for the
batch routines are quite �exible in that they support both �xed and variable parameters for
the operations by introducing the group designation. Within a group, the operations must have
the same transpose (trans,tranb), sizes (m,n, k), α, β, and leading dimensions (lda, ldb, ldc).
These parameters can be di�erent for di�erent groups. By grouping operations with the same
aforementioned parameters and specifying multiple groups, a single API call can accommodate
many operations without repeating identical parameters. The layout (row major or column
major), however, must be the same for all the operations.

2.2.1 GEMM

1 void
2 cblas_sgemm_batch(
3 const CBLAS_LAYOUT Layout ,
4 const CBLAS_TRANSPOSE *transa_array ,
5 const CBLAS_TRANSPOSE *transb_array ,
6 const MKL_INT *m_array , const MKL_INT *n_array , const MKL_INT *k_array ,
7 const float *alpha_array , const float **a_array , const MKL_INT *lda_array ,
8 const float **b_array , const MKL_INT *ldb_array ,
9 const float* beta_array , float **c_array , const MKL_INT* ldc_array ,
10 const MKL_INT group_count , const MKL_INT *group_size);
11
12 void
13 cblas_dgemm_batch(
14 const CBLAS_LAYOUT Layout ,
15 const CBLAS_TRANSPOSE *transa_array , const CBLAS_TRANSPOSE *transb_array ,
16 const MKL_INT *m_array , const MKL_INT *n_array , const MKL_INT *k_array ,
17 const double *alpha_array , const double **a_array , const MKL_INT *lda_array ,
18 const double **b_array , const MKL_INT *ldb_array ,
19 const double *beta_array , double **c_array , const MKL_INT *ldc_array ,
20 const MKL_INT group_count , const MKL_INT *group_size);
21
22 void
23 cblas_cgemm_batch(
24 const CBLAS_LAYOUT Layout ,
25 const CBLAS_TRANSPOSE *transa_array , const CBLAS_TRANSPOSE *transb_array ,
26 const MKL_INT *m_array , const MKL_INT *n_array , const MKL_INT *k_array ,
27 const void *alpha_array , const void **a_array , const MKL_INT *lda_array ,
28 const void **b_array , const MKL_INT *ldb_array ,
29 const void *beta_array , void **c_array , const MKL_INT *ldc_array ,
30 const MKL_INT group_count , const MKL_INT *group_size);
31
32 void
33 cblas_zgemm_batch(
34 const CBLAS_LAYOUT Layout ,
35 const CBLAS_TRANSPOSE *transa_array , const CBLAS_TRANSPOSE *transb_array ,
36 const MKL_INT *m_array , const MKL_INT *n_array , const MKL_INT *k_array ,
37 const void *alpha_array , const void **a_array , const MKL_INT *lda_array ,
38 const void **b_array , const MKL_INT *ldb_array ,
39 const void *beta_array , void **c_array , const MKL_INT *ldc_array ,
40 const MKL_INT group_count , const MKL_INT *group_size);

17

2.3. AMD HIPBLAS/ROCBLAS CHAPTER 2. EXISTING SOLUTIONS

2.2.2 TRSM

1 void
2 cblas_strsm_batch(
3 const CBLAS_LAYOUT Layout ,
4 const CBLAS_SIDE *Side_Array , const CBLAS_UPLO *Uplo_Array ,
5 const CBLAS_TRANSPOSE *TransA_Array , const CBLAS_DIAG *Diag_Array ,
6 const MKL_INT *M_Array , const MKL_INT *N_Array ,
7 const float *alpha_Array , const float **A_Array , const MKL_INT *lda_Array ,
8 float **B_Array , const MKL_INT *ldb_Array ,
9 const MKL_INT group_count , const MKL_INT *group_size);
10
11 void
12 cblas_dtrsm_batch(
13 const CBLAS_LAYOUT Layout ,
14 const CBLAS_SIDE *Side_Array , const CBLAS_UPLO *Uplo_Array ,
15 const CBLAS_TRANSPOSE *Transa_Array , const CBLAS_DIAG *Diag_Array ,
16 const MKL_INT *M_Array , const MKL_INT *N_Array ,
17 const double *alpha_Array , const double **A_Array , const MKL_INT *lda_Array ,
18 double **B_Array , const MKL_INT *ldb_Array ,
19 const MKL_INT group_count , const MKL_INT *group_size);
20
21 void
22 cblas_ctrsm_batch(
23 const CBLAS_LAYOUT Layout ,
24 const CBLAS_SIDE *Side_Array , const CBLAS_UPLO *Uplo_Array ,
25 const CBLAS_TRANSPOSE *Transa_Array , const CBLAS_DIAG *Diag_Array ,
26 const MKL_INT *M_Array , const MKL_INT *N_Array ,
27 const void *alpha_Array , const void **A_Array , const MKL_INT *lda_Array ,
28 void **B_Array , const MKL_INT *ldb_Array ,
29 const MKL_INT group_count , const MKL_INT *group_size);
30
31 void
32 cblas_ztrsm_batch(
33 const CBLAS_LAYOUT Layout ,
34 const CBLAS_SIDE *Side_Array , const CBLAS_UPLO *Uplo_Array ,
35 const CBLAS_TRANSPOSE *Transa_Array , const CBLAS_DIAG *Diag_Array ,
36 const MKL_INT *M_Array , const MKL_INT *N_Array ,
37 const void *alpha_Array , const void **A_Array , const MKL_INT *lda_Array ,
38 void **B_Array , const MKL_INT *ldb_Array ,
39 const MKL_INT group_count , const MKL_INT *group_size);

2.3 AMD hipBLAS/rocBLAS

For their part, AMD provides the hipBLAS and rocBLAS libraries, both of which are being
developed in public repositories hosted on GitHub. hipBLAS3 is a BLAS marshaling library
with support for di�erent back ends, including support for the rocBLAS and cuBLAS back ends.
hipBLAS also allows the user to change the back end BLAS library without changing the client
code (the application). rocBLAS4 is a BLAS library optimized for AMD’s latest discrete GPUs, is
implemented on top of AMD’s Radeon Open Compute (ROCm) runtime and tool chains, and
uses the HIP programming language.

At this point, hipBLAS contains a small number of functions—including a handful of
level-1, level-2, and level-3 BLAS functions—and a set of basic functions for managing
streams and matrices. In terms of batch BLAS, hipBLAS contains hipblas?gemmBatched and
hipblas?gemmStridedBatched in single and double precision (no complex precision yet).

3https://github.com/ROCmSoftwarePlatform/hipBLAS
4https://github.com/ROCmSoftwarePlatform/rocBLAS

18

https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/rocBLAS

2.3. AMD HIPBLAS/ROCBLAS CHAPTER 2. EXISTING SOLUTIONS

1 hipblasStatus_t
2 hipblasSgemmBatched(
3 hipblasHandle_t handle ,
4 hipblasOperation_t transa , hipblasOperation_t transb ,
5 int m, int n, int k,
6 const float *alpha , const float *A[], int lda ,
7 const float *B[], int ldb ,
8 const float *beta , float *C[], int ldc ,
9 int batchCount);
10
11 hipblasStatus_t
12 hipblasDgemmBatched(
13 hipblasHandle_t handle ,
14 hipblasOperation_t transa , hipblasOperation_t transb ,
15 int m, int n, int k,
16 const double *alpha , const double *A[], int lda ,
17 const double *B[], int ldb ,
18 const double *beta , double *C[], int ldc ,
19 int batchCount);

1 hipblasStatus_t
2 hipblasSgemmStridedBatched(
3 hipblasHandle_t handle ,
4 hipblasOperation_t transa , hipblasOperation_t transb ,
5 int m, int n, int k,
6 const float *alpha , const float *A, int lda , long long bsa ,
7 const float *B, int ldb , long long bsb ,
8 const float *beta , float *C, int ldc , long long bsc ,
9 int batchCount);
10
11 hipblasStatus_t
12 hipblasDgemmStridedBatched(
13 hipblasHandle_t handle ,
14 hipblasOperation_t transa , hipblasOperation_t transb ,
15 int m, int n, int k,
16 const double *alpha , const double *A, int lda , long long bsa ,
17 const double *B, int ldb , long long bsb ,
18 const double *beta , double *C, int ldc , long long bsc ,
19 int batchCount);

Currently, in terms of batch operations, rocBLAS only contains the strided batch ?gemm routine
in single and double precisions.

1 rocblas_status
2 rocblas_sgemm_strided_batched(
3 rocblas_handle handle ,
4 rocblas_operation transa , rocblas_operation transb ,
5 rocblas_int m, rocblas_int n, rocblas_int k,
6 const float *alpha , const float *A, rocblas_int lda , rocblas_int bsa ,
7 const float *B, rocblas_int ldb , rocblas_int bsb ,
8 const float *beta , float *C, rocblas_int ldc , rocblas_int bsc ,
9 rocblas_int batch_count);
10
11 rocblas_status
12 rocblas_dgemm_strided_batched(
13 rocblas_handle handle ,
14 rocblas_operation transa , rocblas_operation transb ,
15 rocblas_int m, rocblas_int n, rocblas_int k,
16 const double *alpha , const double *A, rocblas_int lda , rocblas_int bsa ,
17 const double *B, rocblas_int ldb , rocblas_int bsb ,
18 const double *beta , double *C, rocblas_int ldc , rocblas_int bsc ,
19 rocblas_int batch_count);

hipBLAS can be used with cuBLAS as the back end. When doing so, hipBLAS functions are sim-
ple wrappers for the cuBLAS functions. Therefore, the semantics of the hipBLAS functions are

19

2.4. ICLMAGMA CHAPTER 2. EXISTING SOLUTIONS

identical to their cuBLAS counterparts, cublas?gemmBatched and cublas?gemmStridedBatched.

2.4 ICLMAGMA

The MAGMA library5 is an open-source package that harnesses a GPU’s compute power in
many BLAS and LAPACK algorithms. The original purpose of MAGMA was to take advantage
of heterogeneous CPU-GPU architectures by o�oading throughput-sensitive workloads (e.g.,
GEMM) to the GPU while performing latency-sensitive tasks (e.g., panel factorization) on the
CPU [15]. Now, however, MAGMA also provides some routines that work entirely on the GPU.
In fact, all batch routines in MAGMA (both BLAS and LAPACK) are designed for GPU-only
execution. MAGMA is the only GPU-accelerated library that provides variable-size batch BLAS
routines.

Unlike the Intel MKL library, MAGMA provides two separate APIs for each batch routine—one
for �xed sizes and the other for variable sizes. All �xed-size routines have the su�x _batched,
while the variable-size routines have the su�x _vbatched. For example, the �xed-size batch
DGEMM routine in MAGMA is shown below.

1 void
2 magmablas_dgemm_batched(
3 magma_trans_t transA , magma_trans_t transB ,
4 magma_int_t m, magma_int_t n, magma_int_t k,
5 double alpha ,
6 double const * const * dA_array , magma_int_t ldda ,
7 double const * const * dB_array , magma_int_t lddb ,
8 double beta ,
9 double **dC_array , magma_int_t lddc ,
10 magma_int_t batchCount , magma_queue_t queue);

Similarly, the variable-size batch DGEMM routine looks like this:

1 void
2 magmablas_dgemm_vbatched(
3 magma_trans_t transA , magma_trans_t transB ,
4 magma_int_t* m, magma_int_t* n, magma_int_t* k,
5 double alpha ,
6 double const * const * dA_array , magma_int_t* ldda ,
7 double const * const * dB_array , magma_int_t* lddb ,
8 double beta ,
9 double **dC_array , magma_int_t* lddc ,
10 magma_int_t batchCount , magma_queue_t queue);

MAGMA assumes that all array arguments are stored in the GPU’s main memory. MAGMA also
provides batched one-sided factorization routines. For example, the Cholesky factorization
algorithm is available for both �xed and variable-size batch workloads.

1 magma_int_t
2 magma_dpotrf_batched(
3 magma_uplo_t uplo , magma_int_t n,
4 double **dA_array , magma_int_t lda ,

5http://icl.cs.utk.edu/magma/

20

http://icl.cs.utk.edu/magma/

2.4. ICLMAGMA CHAPTER 2. EXISTING SOLUTIONS

5 magma_int_t *info_array ,
6 magma_int_t batchCount , magma_queue_t queue);

1 magma_int_t
2 magma_dpotrf_vbatched(
3 magma_uplo_t uplo , magma_int_t *n,
4 double **dA_array , magma_int_t *ldda ,
5 magma_int_t *info_array , magma_int_t batchCount ,
6 magma_queue_t queue);

2.4.1 Error Handling in MAGMA

The batch BLAS routines in MAGMA have a similar error handling mechanism to traditional
BLAS. Numerical errors are not reported, and only errors in the arguments are detected and
reported to the user through XERBLA(). The variable-size batch BLAS routines do not pinpoint
the problem indices where argument errors are found. For example, if a size array has multiple
negative entries, one error is reported for the entire array without indicating the positions of the
negative values. In batch LAPACK routines, however, MAGMA distinguishes between argument
errors and numerical errors through the following mechanisms.

1. Argument errors are checked before launching any computation on the batch. If argument
errors are detected, the computation is canceled for the entire batch, and XERBLA() is
invoked.

2. Numerical errors are speci�c to batch LAPACK routines and are reported through the
info_array argument. If a numerical error is detected in a problem, the rest of the
computation continues normally for other problems. The user must check the info_array
argument for numerical errors a�er the routine is �nished.

The argument error checking in �xed-size batch routines is accomplished using the host CPU,
since the checking is performed on scalar arguments. However, the argument error checking
for variable-size batch routines has to go through arrays that are stored in the GPU memory.
This is why the error checking is done on the GPU. If errors are detected, the CPU is informed,
and XERBLA() is invoked accordingly.

2.4.2 AdvancedMAGMAAPIs

MAGMA provides a set of advanced APIs for every variable-size batch routine. These APIs help
mitigate two di�erent types of overheads for the user.

1. Checking argument errors. The argument error checking in the variable-size routines
can be a signi�cant overhead, because it involves launching GPU kernels and communica-
tion with the CPU.

2. GPU kernel con�guration. An implementation artifact of the current MAGMA routines
requires computing the maximum size(s) of the input problems. Such maximum values
are used to con�gure the computational kernels on the GPU.

21

2.4. ICLMAGMA CHAPTER 2. EXISTING SOLUTIONS

The advanced APIs allow the user to skip these overheads if no checking is required (similar to
Intel MKL direct calls6) and if the maximum sizes are known beforehand. For example, the
magmablas_dgemm_vbatched has a lower-level API that looks like this:

1 void
2 magmablas_dgemm_vbatched_max_nocheck(
3 magma_trans_t transA , magma_trans_t transB ,
4 magma_int_t* m, magma_int_t* n, magma_int_t* k,
5 double alpha ,
6 double const * const * dA_array , magma_int_t* ldda ,
7 double const * const * dB_array , magma_int_t* lddb ,
8 double beta ,
9 double **dC_array , magma_int_t* lddc ,
10 magma_int_t max_m , magma_int_t max_n , magma_int_t max_k ,
11 magma_int_t batchCount , magma_queue_t queue);

The advanced API is usually recommended if the batch contains a relatively small number of
problems and/or if the sizes are very small. This helps avoid the overheads of error checking
and searching for the maximum values.

2.4.3 Discussion and Critique

Below are some discussion points and critiques of the MAGMA APIs.

1. Same option arguments. The MAGMA batch routines restrict the option arguments to be
the same across all matrices in the batch. For example, the batch GEMM routines (for both
�xed and variable sizes) accept only scalar arguments for transpositions. Similarly, the
batch Cholesky factorization routines assume that either the lower or the upper triangular
part is read/written for all matrices. While this seems like a lack of �exibility, scalar option
arguments work well for MAGMA’s purposes (batch BLAS and LAPACK functionality).

2. Same scaling parameters. Similar to the option arguments, the scaling parameters are
also uni�ed across the batch (e.g., alpha and beta in the batch GEMM routines). Again, this
works well for the purposes of MAGMA but not necessarily for other workloads. However,
the API’s design in this regard is compatible with the current cuBLAS batch routines and
allows for easy integration of cuBLAS batch functionality into MAGMA.

3. Separate APIs. MAGMA maintains at least three APIs for every batch routine (�xed size,
variable size, and advanced variable size). Keeping too many interfaces creates long-term
so�ware maintenance problems.

4. Cumbersome use of variable size APIs. In some use cases, the variable size API imposes
some di�culties for the users. For example, an array argument with a uni�ed value across
the entire batch must still be passed as an array for which entries possess the same value.
Having to create an array with identical entries provides a poor user experience.

6https://software.intel.com/en-us/articles/improve-intel-mkl-performance-for-small-problems-the-use-of-mkl-direct-call

22

https://software.intel.com/en-us/articles/improve-intel-mkl -performance-for-small-problems-the-use-of-mkl-direct-call

2.5. SUMMARY OF EXISTING APIS CHAPTER 2. EXISTING SOLUTIONS

2.5 Summary of Existing APIs

This section summarizes the main di�erences among the existing batch BLAS interfaces.
In general, BLAS routines have four categories of arguments. Taking matrix multiplication
(GEMM) as an example, these categories are:

1. Option arguments. These arguments specify di�erent options for performing the BLAS
operation. They can be used to de�ne the pattern of accessing the data (e.g., lower vs.
upper triangular), the order of performing the computation (e.g., forward vs. backward
substitution), and others. The transposition arguments in the GEMM routine (transA and
transB) correspond to this kind of argument.

2. Scaling arguments. These arguments specify scalar values that can be used to scale the
values of a matrix or a vector. The GEMM routine uses two scaling arguments: (1) alpha to
scale the product A×B and (2) beta to pre-scale the original values of the output matrix
C .

3. Size arguments. This category corresponds to the integer arguments that specify the
matrix/vector sizes, leading dimensions of matrices, strided access for vectors, etc. The
GEMM routine includes many size arguments (m, n, k, lda, ldb, and ldc).

4. Data pointer arguments. This category is used to locate the data in memory, usually
through a pointer. The A, B, and C arguments in the GEMM routine belong to this category.

Moving from BLAS to batch BLAS, many vendors and library developers took di�erent ap-
proaches on which categories of arguments are uni�ed across a batch of problems and which
are allowed to be varied. While most solutions assume “�at” interfaces, in the sense that all
problems belong to one batch, the Intel MKL library represents the only solution that uses a
group interface, where the batch is subdivided into groups such that each group has its own set
of arguments. With respect to all the existing solutions discussed in this document, Table 2.1
summarizes the decisions taken to develop each solution.

Type Library name
Argument type

Options Scaling Sizes Data pointers
Flag-based

Standard
BATCH_FIXED F F F V

�at BATCH_VARIABLE V V V V

Group MKL
Per group F F F V
Across groups V V V V

Flat
MAGMA

Fixed size F F F V
Variable size F F V V

cuBLAS F F F V7

hipBLAS/rocBLAS F F F V7

Table 2.1: A summary of existing interfaces for batch BLAS. An entry with “F” means that the
corresponding category of arguments is �xed across the batch. An entry with “V” means that
this category of arguments is allowed to be varied across di�erent problems in the batch.

7A stride-based interface is also available.

23

2.5. SUMMARY OF EXISTING APIS CHAPTER 2. EXISTING SOLUTIONS

All solutions agree that all data pointer arguments should be passed as pointer arrays. The
standard C interface [6] is a �at interface that uses a �ag to distinguish between the �xed-
size and the variable-size batch workloads. If the value of the �ag is BATCH_FIXED, then each
non-data argument is allowed to have one unique value across the batch. If the �ag is set to
BATCH_VARIABLE, then all arguments can have di�erent values for di�erent problems. The Intel
MKL library adopts a group interface, where all non-data arguments are �xed within a group
but can be varied across groups. The MAGMA library provides a �xed size interface that is
similar to a the standard C interface using the BATCH_FIXED mode. It also provides a variable size
interface that allows the argument size to be varied but restricts the option arguments and the
scaling arguments as �xed. Finally, both the cuBLAS and the rocBLAS libraries adopt interfaces
that are similar to the MAGMA �xed size interface. They also provide stride-based interfaces,
where a data pointer argument is passed as a combination (pointer+stride) rather than explicitly
as a pointer array. The next chapter discusses the shortcomings associated with these interfaces
and how they can be resolved with a �exible C++ interface.

24

CHAPTER 3

Proposed APIs

3.1 The Objective

The main objective of the C++ API is to address some of the shortcomings in the existing
APIs. Every solution discussed in Chapter 2 imposes some constraints on certain categories of
arguments. For example, cuBLAS, rocBLAS, and MAGMA all assume that the scaling arguments
are �xed across the batch. The same restriction applies to the leading dimensions. These are
unnecessary constraints. In general, a batch can have matrices of the same size but with di�erent
scaling arguments and leading dimensions. Similar constraints appear in the MKL interface
(within a group) and in the standard C interface when the BATCH_FIXED mode is enabled.

On another level, the standard C interface is the only �at API that allows all argument categories
to be varied across the batch. The MKL interface supports the same variation across di�erent
groups. While these interfaces have a high degree of �exibility, some scenarios are poorly
supported, which results in the user having to duplicate one or more arguments. For example,
consider the batch rank-k update in the LU factorization (Cm×n = Cm×n − Am×k × Bk×n) to
be applied on matrices of di�erent sizes {C1m1×n1 , C2m2×n2 , etc.}. Assuming that k � ni,
the value of k is uni�ed across all matrices during the batch update. Unfortunately, such a
scenario is poorly supported through the existing interfaces. The user must invoke a variable
size API, where k is unnecessarily promoted to an array of duplicate values. This applies to all
variable-size �at interfaces. For the MKL group interface, di�erent size matrices have to go to
di�erent groups, and an array of duplicate values for replacing the scalar k is still required.

The same unnecessary duplication can appear in �xed size interfaces. For example, consider a
�xed-size batch GEMM, where the matrix A is the same for all problems. Since most existing
solutions assume a pointer array for each data argument, the pointer of A has to be duplicated

25

3.2. COMPLIANCE WITH THE C++ BLAS API CHAPTER 3. PROPOSED APIS

in a pointer array, because there is no way to tell the batch routine that it is the same matrix.

The objective of the C++ interface is to �exibly support many di�erent scenarios through one
uni�ed API. Such an API should meet the following requirements.

1. Support both �xed-size and variable-size batches (no separate APIs).

2. No unnecessary duplication of any argument category. Basically, any argument can be
independently �xed or varied across the batch.

3. Feasible implementation on CPUs and accelerators.

4. Flexible error checking mechanisms.

5. Support for di�erent modes of operations (e.g., �at, grouped, and stride-based).

An API that meets these requirements will allow easy integration into several applications and
ensure portable codes on di�erent hardware con�gurations.

3.2 Compliance with the C++ BLAS API

The proposed C++ API for batch BLAS will be introduced in the context of the C++ API for BLAS
and LAPACK [8], which represents the foundation of the SLATE library [12]. The proposed API
shares the following design decisions from the C++ BLAS API. For more details about these
design decisions and the justi�cations supporting them, the reader should refer to the original
design document for the BLAS/LAPACK C++ API [8].

1. Stateless interface. The proposed batch BLAS API will be stateless.

2. Templated routines. The proposed APIs use templated routines with respect to precision,
which allows for a uni�ed name across di�erent precisions and future mixed precision
routines. Similar to BLAS [8], the templated routines will have overloaded signatures to
support the existing solutions from vendors and library developers.

3. C++ language standard. The C++11 standard su�ciently covers all of the features required
in the proposed APIs.

4. Naming convention. The batch BLAS routines will have names similar to those used
in the traditional BLAS routines, excluding the precision pre�x. The interfaces shall be
declared in the batch namespace, which is in turn declared inside the blas namespace.
Therefore, both BLAS and batch BLAS interfaces are reachable by including the blas.hh
header and using the namespace blas. As an example, the name of the batch GEMM
routine will be blas::batch::gemm.

5. Uni�ed syntax. Some routines have di�erent names for real and complex precisions (e.g.,
syrk vs. herk). Following the footsteps of the C++ BLAS API, both names will be extended
to all precisions.

26

3.3. GENERAL DESIGN PRINCIPLES CHAPTER 3. PROPOSED APIS

6. const. The const speci�er will be used where applicable.

7. Enumberated constants. The proposed APIs use the same enum constants de�ned in the
blas namespace. These constants mostly correspond to the option arguments in BLAS
operations (e.g., transposition, upper/lower triangular).

8. Errors. The proposed API uses C++ exceptions to report errors. However, there are
di�erent modes of operation for error reporting. More details are presented in Section 3.4.

9. Return values. All batch BLAS interfaces will be void. Although some BLAS routines
have return values (e.g., nrm2), the corresponding batch routines will have an extra output
argument to hold the results instead.

10. Integer type. The proposed API will use the int64_t type to specify sizes and dimensions.
Although batch routines usually operate on relatively small sizes, the use of int64_t uni�es
the object dimensions between BLAS and batch BLAS and avoids any confusion about
the size of integer type.

11. Matrix layout. For now, the proposed API shall focus only on column-major layouts.
While the C++ BLAS API supports row-major layouts by calling column-major routines us-
ing di�erent options (e.g., changing transpositions), the same approach has technical issues
for some routines if applied to the batch BLAS—especially when explicit transpositions
are required in extra allocated workspaces.

3.3 General Design Principles

The requirements mentioned in Section 3.1 state that the API should be �exible enough to
accomodate several scenarios (e.g., �xed size vs. variable size and �xed arguments vs. array
arguments). Basically, there are two ways to accomplish such a requirement. The �rst is to use
overloaded routine names such that a single routine name accepts di�erent sets of arguments.
While this is a legitimate approach, it is very cumbersome for vendors and library developers
to provide many signatures for the same routine. For example, the GEMM routine accepts
13 arguments. Excluding the output argument and ruling out some ineligible combinations,
the batch GEMM routine can have more than a thousand sets of di�erent signatures. The
overloaded routine names are, therefore, impractical as a primary solution.

The second approach, which is the solution proposed in this document, is to use the std::vector
container in C++. Basically, almost every argument in a BLAS routine will be promoted to a
std::vector argument of the same type. As an example, the code below shows the declarations
of the GEMM and the batch GEMM routines within the blas and batch namespaces, respectively.

1 using namespace std;
2
3 namespace blas {
4
5 /* other declarations */
6
7 template <typename FloatType >
8 void gemm(Op transA , Op transB ,
9 int64_t m, int64_t n, int64_t k,
10 FloatType alpha , FloatType* A, int64_t lda ,

27

3.3. GENERAL DESIGN PRINCIPLES CHAPTER 3. PROPOSED APIS

11 FloatType* B, int64_t ldb ,
12 FloatType beta , FloatType* C, int64_t ldc
13);
14
15 namespace batch {
16
17 /* other declarations */
18
19 template <typename FloatType >
20 void gemm(
21 vector <Op> const &transA , vector <Op> const &transB ,
22 vector <int64_t > const &m, vector <int64_t > const &n, vector <int64_t > const &k,
23 vector <FloatType > const &alpha ,
24 vector <FloatType*> const &A, vector <int64_t > const &lda ,
25 vector <FloatType*> const &B, vector <int64_t > const &ldb ,
26 vector <FloatType > const &beta ,
27 vector <FloatType*> const &C, vector <int64_t > const &ldc ,
28 const int64_t batchCount);
29
30 } // namespace batch
31 } // namespace blas

As mentioned before, the namespace batch is included within the blas namespace, so that
blas::gemm is the traditional non-batch instance of the operation, and blas::batch::gemm
corresponds to its batch variant. The interface shown does not provide error checking, which
will be discussed later in Section 3.4. The basic idea is that a vector argument should have its
size equal to either one or batchCount. If the size of the vector is one, then the value of the
corresponding argument is uni�ed across the batch. If the size is equal to batchCount, then the
corresponding argument has a value for each problem. This does not include the vector(s) of
the output argument(s) (e.g., C in the batch GEMM routine), which must obviously be of size
batchCount. While the batchCount argument can be removed completely, since the size of the
batch can be deduced from the size of the output vector, we decided to preserve it for potential
extensions, as explained later in Sections 3.7 and 3.8.

Below are some advantages of this interface.

1. The batch GEMM interface shown above covers over a thousand di�erent combinations
of �xed vs. varied arguments. It eliminates the borders between �xed size and variable
size batch routines, as it naturally combines both. It also goes beyond the �xed vs. variable
size distinction and e�ciently supports signi�cantly more calling scenarios than any other
interface.

2. No duplication of any argument is required. If the value of an argument is uni�ed across
the batch, then it is passed in a std::vector of size one.

3. The interface uses a standard C++ container, which is widely supported in almost all
so�ware environments. It also comes with built-in functions and capabilities such as
iterators, maximum/minimum functions, and others. The vector type is also supported
on accelerators (e.g., NVIDIA’s Thrust library1).

4. A reference implementation is feasible on both CPUs and accelerators. Vendors and library
developers can choose to provide more optimized routines for speci�c combinations of
vector sizes. Such optimized routine(s) can be internally invoked instead of the reference

1http://docs.nvidia.com/cuda/thrust/index.html

28

http://docs.nvidia.com/cuda/thrust/index.html

3.3. GENERAL DESIGN PRINCIPLES CHAPTER 3. PROPOSED APIS

implementation if the vector sizes match the corresponding combination of the optimized
routine.

The reference implementation using this interface can be developed through OpenMP on CPUs,
and through execution queues on GPU accelerators (e.g., CUDA streams). We �rst introduce
a very simple extract function that, given the index of a problem, extracts the corresponding
value of an argument. Because the function is templated, it works for any type of argument
(e.g., option arguments, scaling arguments, sizes, and pointers). The function exists in the
blas::batch namespace.

1
2 template <typename T>
3 T blas:: batch:: extract(vector <T> const &ivector , const int64_t index)
4 {
5 if(ivector.size() == 1)
6 return ivector [0];
7 else
8 return ivector[index];
9 }

A reference implementation for the batch GEMM using OpenMP is shown below. Recall that,
at this stage, we assume no error checking. Ideally, the routine blas::gemm should provide
an instance that does not throw any exceptions. The reference implementation is a simple
parallel for loop that calls a non-batch GEMM routine. Before the invokation takes place,
the extract function is called as many times as necessary to provide the list of arguments for a
speci�c operation.

1 using namespace std;
2 using namespace blas;
3
4 template <typename FloatType >
5 void blas::batch::gemm(
6 vector <Op> const &transA , vector <Op> const &transB ,
7 vector <int64_t > const &m, vector <int64_t > const &n, vector <int64_t > const &k,
8 vector <FloatType > const &alpha ,
9 vector <FloatType*> const &A, vector <int64_t > const &lda ,
10 vector <FloatType*> const &B, vector <int64_t > const &ldb ,
11 vector <FloatType > const &beta ,
12 vector <FloatType*> const &C, vector <int64_t > const &ldc ,
13 const int64_t batchCount)
14 {
15 #pragma omp parallel for schedule(dynamic)
16 for(int64_t i = 0; i < batchCount; i++){
17 // extract arguments
18 Op transA_ = extract <Op >(transA , i);
19 Op transB_ = extract <Op >(transB , i);
20
21 int64_t m_ = extract <int64_t >(m, i);
22 int64_t n_ = extract <int64_t >(n, i);
23 int64_t k_ = extract <int64_t >(k, i);
24
25 FloatType alpha_ = extract <FloatType >(alpha , i);
26 FloatType beta_ = extract <FloatType >(beta , i);
27
28 FloatType* A_ = extract <FloatType*>(A, i);
29 FloatType* B_ = extract <FloatType*>(B, i);
30 FloatType* C_ = C[i];
31
32 int64_t lda_ = extract <int64_t >(lda , i);
33 int64_t ldb_ = extract <int64_t >(ldb , i);
34 int64_t ldc_ = extract <int64_t >(ldc , i);

29

3.4. BLAS ERROR CHECKING CHAPTER 3. PROPOSED APIS

35
36 // call non -batch gemm
37 blas::gemm <FloatType >(
38 transA_ , transB_ ,
39 m_, n_, k_,
40 alpha_ , A_, lda_ ,
41 B_, ldb_ ,
42 beta_ , C_, ldc_);
43 }
44 }

3.4 BLAS Error Checking

The error checking in BLAS is responsible for catching errors in the arguments’ values (e.g., if
the leading dimension of a matrix is less than its number of rows). In batch BLAS, we propose
to have a similar error checking behavior, except that the user can specify di�erent methods of
error reporting. We also choose to cancel the entire computation on the batch if any error is
detected in any problem. The batch GEMM interface with error checking looks like:

1 namespace blas{
2
3 /* other declarations */
4
5 namespace batch{
6
7 /* other declarations */
8
9 template <typename FloatType >
10 void gemm(
11 vector <Op> const &transA , vector <Op> const &transB ,
12 vector <int64_t > const &m, vector <int64_t > const &n, vector <int64_t > const &k,
13 vector <FloatType > const &alpha ,
14 vector <FloatType*> const &A, vector <int64_t > const &lda ,
15 vector <FloatType*> const &B, vector <int64_t > const &ldb ,
16 vector <FloatType > const &beta ,
17 vector <FloatType*> const &C, vector <int64_t > const &ldc ,
18 const int64_t batchCount , vector <int64_t > const &info
19);
20 } // namespace batch
21 } // namespace blas

The interface is now overloaded to accept an extra vector argument, info. The size of the info
vector speci�es how the errors are reported, the general procedure of which is outlined below.

1. If the vector size is zero, this means “disable any error checking.” In fact, this is mostly
equivalent to calling the interface that does not accept the info argument.

2. If the vector size is one, this enables the argument-based error checking (ABER) mode.
This mode is similar to the error checking in BLAS except that it executes on vector
arguments, and it does not pinpoint the indices of the entries that caused the errors. If
an error is detected in a vector argument, the value of info is set to -i, where i is the
order of the vector argument in the interface. For example, if any error is detected in
the lda argument, the value of info is set to −8. An exception is thrown to cancel the
computation and notify the user. This mode informs the user that “something is wrong
with a certain argument.” The exception is thrown when the �rst error is detected.

30

3.4. BLAS ERROR CHECKING CHAPTER 3. PROPOSED APIS

3. If the vector size is batchCount, this enables the problem-based error reporting (PBER)
mode, where an error code is generated for every problem in the batch. This mode
provides more information about each problem. If an operation encountered an error,
the respective entry in info is set to a negative value that indicates the error-causing
argument. An exception is thrown upon the detection of any error in any problem. Such
an exception informs the user that “something went wrong in at least one problem.” The
user should then inspect the info vector to determine which problems encountered errors.

The following code shows a prototype implementation for the function gemm_check.
1
2 template <typename FloatType >
3 void blas::batch:: gemm_check(
4 vector <Op> const &transA , vector <Op> const &transB ,
5 vector <int64_t > const &m, vector <int64_t > const &n, vector <int64_t > const &k,
6 vector <FloatType > const &alpha ,
7 vector <FloatType*> const &A, vector <int64_t > const &lda ,
8 vector <FloatType*> const &B, vector <int64_t > const &ldb ,
9 vector <FloatType > const &beta ,
10 vector <FloatType*> const &C, vector <int64_t > const &ldc ,
11 const int64_t batchCount , vector <int64_t > const &info)
12 {
13 if(info.size == 1){
14 /* argument based error reporting */
15 int64_t linfo;
16
17 // transA
18 linfo = 0;
19 #pragma omp parallel for reduction (+: linfo)
20 for(int64_t i = 0; i < transA.size (); i++){
21 linfo += (transA[i] != Op:: NoTrans &&
22 transA[i] != Op::Trans &&
23 transA[i] != Op:: ConjTrans
24) ? 1 : 0;
25 }
26 info [0] = (linfo > 0) ? -1 : 0;
27 throw_if_(info [0] == -1);
28
29 // transB
30 linfo = 0;
31 #pragma omp parallel for reduction (+: linfo)
32 for(int64_t i = 0; i < transB.size (); i++){
33 linfo += (transB[i] != Op:: NoTrans &&
34 transB[i] != Op::Trans &&
35 transB[i] != Op:: ConjTrans
36) ? 1 : 0;
37 }
38 info [0] = (linfo > 0) ? -2 : 0;
39 throw_if_(info [0] == -2);
40
41 // m
42 linfo = 0;
43 #pragma omp parallel for reduction (+: linfo)
44 for(int64_t i = 0; i < m.size (); i++){
45 linfo += (m[i] < 0) ? 1 : 0;
46 }
47 info [0] = (linfo > 0) ? -3 : 0;
48 throw_if_(info [0] == -3);
49
50 // n
51 linfo = 0;
52 #pragma omp parallel for reduction (+: linfo)
53 for(int64_t i = 0; i < n.size (); i++){
54 linfo += (n[i] < 0) ? 1 : 0;

31

3.4. BLAS ERROR CHECKING CHAPTER 3. PROPOSED APIS

55 }
56 info [0] = (linfo > 0) ? -4 : 0;
57 throw_if_(info [0] == -4);
58
59 // k
60 linfo = 0;
61 #pragma omp parallel for reduction (+: linfo)
62 for(int64_t i = 0; i < k.size (); i++){
63 linfo += (k[i] < 0) ? 1 : 0;
64 }
65 info [0] = (linfo > 0) ? -5 : 0;
66 throw_if_(info [0] == -5);
67
68 // lda
69 linfo = 0;
70 #pragma omp parallel for reduction (+: linfo)
71 for(int64_t i = 0; i < batchCount; i++){
72 Op trans_ = extract <Op >(transA , i);
73 int64_t nrowA_ = (trans_ == Op:: NoTrans) ?
74 extract <int64_t >(m, i) : extract <int64_t >(k, i);
75 int64_t lda_ = extract <int64_t >(lda , i);
76 linfo += (lda_ < nrowA_) ? 1 : 0;
77 }
78 info [0] = (linfo > 0) ? -8 : 0;
79 throw_if_(info [0] == -8);
80
81 // ldb
82 linfo = 0;
83 #pragma omp parallel for reduction (+: linfo)
84 for(int64_t i = 0; i < batchCount; i++){
85 Op trans_ = extract <Op >(transB , i);
86 int64_t nrowB_ = (trans_ == Op:: NoTrans) ?
87 extract <int64_t >(k, i) : extract <int64_t >(n, i);
88 int64_t ldb_ = extract <int64_t >(ldb , i);
89 linfo += (ldb_ < nrowB_) ? 1 : 0;
90 }
91 info [0] = (linfo > 0) ? -10 : 0;
92 throw_if_(info [0] == -10);
93
94 // ldc
95 linfo = 0;
96 #pragma omp parallel for reduction (+: linfo)
97 for(int64_t i = 0; i < batchCount; i++){
98 int64_t m_ = extract <int64_t >(m, i);
99 int64_t ldc_ = extract <int64_t >(ldc , i);
100 linfo += (ldc_ < m_) ? 1 : 0;
101 }
102 info [0] = (linfo > 0) ? -13 : 0;
103 throw_if_(info [0] == -13);
104
105 }
106 else{
107 /* problem based eror reporting */
108 #pragma omp parallel for schedule(dynamic)
109 for(int64_t i = 0; i < batchCount; i++){
110 Op transA_ = extract <Op >(transA , i);
111 Op transB_ = extract <Op >(transB , i);
112
113 int64_t m_ = extract <int64_t >(m, i);
114 int64_t n_ = extract <int64_t >(n, i);
115 int64_t k_ = extract <int64_t >(k, i);
116
117 int64_t lda_ = extract <int64_t >(lda , i);
118 int64_t ldb_ = extract <int64_t >(ldb , i);
119 int64_t ldc_ = extract <int64_t >(ldc , i);
120

32

3.5. SIZE ERROR CHECKING CHAPTER 3. PROPOSED APIS

121 int64_t norwA_ = (tarnsA_ == Op:: NoTrans) ? m_ : k_;
122 int64_t norwB_ = (tarnsB_ == Op:: NoTrans) ? k_ : n_;
123
124 if(transA_ != Op:: NoTrans &&
125 transA_ != Op::Trans &&
126 transA_ != Op:: ConjTrans) {
127 info[i] = -1;
128 }
129 else if(transB_ != Op:: NoTrans &&
130 transB_ != Op::Trans &&
131 transB_ != Op:: ConjTrans) {
132 info[i] = -2;
133 }
134 else if(m_ < 0) info[i] = -3;
135 else if(n_ < 0) info[i] = -4;
136 else if(k_ < 0) info[i] = -5;
137 else if(lda_ < nrowA_) info[i] = -8;
138 else if(ldb_ < nrowB_) info[i] = -10;
139 else if(ldc_ < m_) info[i] = -13;
140 }
141
142 int64_t info_ = 0;
143 #pragma omp parallel for reduction (+: info_)
144 for(int64_t i = 0; i < batchCount; i++){
145 info_ += info[i];
146 }
147 throw_if_(info_ != 0);
148 }
149 }

3.5 Size Error Checking

The use of the std::vector container enforces another kind of checking related to vector sizes.
With few exceptions, most vector arguments must have sizes that are either 1 or batchCount.
If any vector argument has a size that is not allowed, an exception is thrown to notify the
user about the error. This is a completely new type of error that did not exist before in BLAS.
In addition, there are some cases where the vector sizes become inconsistent across a group
of arguments. For example, if the matrix A in a batch GEMM operation is the same for all
multiplications (i.e., A.size() returns 1), this means that the sizes of m, k, and lda should all be
equal to 1. Otherwise, an exception is thrown to notify the user about the error in the vector
sizes. The size error checking layer precedes the BLAS error checking layer.

3.6 Complete Prototype for a Reference Implementation

Now we bring all the pieces together to provide a prototype reference implementation for a
batch GEMM. Figure 3.1 shows the composition of the di�erent layers. The �gure shows a
sugessted hierarchy for a reference implementation that invokes a non-batch BLAS routine.
Routines that are natively optimized for batch workloads do not have to follow the same
composition. However, the behavior of error reporting should adhere to the speci�cations
mentioned in Sections 3.4 and 3.5.

33

3.6. REFERENCE IMPLEMENTATION CHAPTER 3. PROPOSED APIS

Batch BLAS routine

Size error checking

BLAS error checking

Batch routine with no error checking

Parallelization layer (e.g. OpenMP)

BLAS routine
(e.g. GEMM)

Extract
function

Figure 3.1: The hierarchy of the proposed reference implementation of a batch BLAS routine.

The code for the prototype reference implementation is shown below.

1 using namespace std;
2 using namespace blas;
3
4 template <typename FloatType >
5 void blas::batch::gemm(
6 vector <Op> const &transA , vector <Op> const &transB ,
7 vector <int64_t > const &m, vector <int64_t > const &n, vector <int64_t > const &k,
8 vector <FloatType > const &alpha ,
9 vector <FloatType*> const &A, vector <int64_t > const &lda ,
10 vector <FloatType*> const &B, vector <int64_t > const &ldb ,
11 vector <FloatType > const &beta ,
12 vector <FloatType*> const &C, vector <int64_t > const &ldc ,
13 const int64_t batchCount , vector <int64_t > const &info
14)
15 {
16 throw_if_(batchCount < 0);
17 throw_if_(!(info.size() == 0 || info.size() == 1 || info.size() == batchCount));
18 if(info.size() > 0){
19 // size error checking
20 throw_if_((transA.size() != 1 && transA.size() != batchCount));
21 throw_if_((transB.size() != 1 && transB.size() != batchCount));
22
23 throw_if_((m.size() != 1 && m.size() != batchCount));
24 throw_if_((n.size() != 1 && n.size() != batchCount));
25 throw_if_((k.size() != 1 && k.size() != batchCount));
26
27 throw_if_((alpha.size() != 1 && alpha.size() != batchCount));
28 throw_if_((beta.size() != 1 && beta.size() != batchCount));
29
30 throw_if_((lda.size() != 1 && lda.size() != batchCount));
31 throw_if_((ldb.size() != 1 && ldb.size() != batchCount));
32 throw_if_((ldc.size() != 1 && ldc.size() != batchCount));
33
34 throw_if_((A.size() != 1 && A.size() != batchCount));
35 throw_if_((B.size() != 1 && B.size() != batchCount));

34

3.7. EXTENSION FORGROUP-BASED APIS CHAPTER 3. PROPOSED APIS

36 throw_if_((C.size() != batchCount));
37
38 throw_if_(A.size() == 1 && (m.size() > 1 || k.size() > 1 || lda.size() > 1));
39 throw_if_(B.size() == 1 && (k.size() > 1 || n.size() > 1 || ldb.size() > 1));
40 throw_if_(C.size() == 1 &&
41 (transA.size() > 1 || transB.size() > 1 ||
42 m.size() > 1 || n.size() > 1 || k.size() > 1 ||
43 alpha.size() > 1 || beta.size() > 1 ||
44 lda.size() > 1 || ldb.size() > 1 || ldc.size() > 1 ||
45 A.size() > 1 || B.size() > 1
46)
47);
48
49 // blas error checking
50 blas::batch::gemm_check <FloatType >(transA , transB ,
51 m, n, k,
52 alpha , A, lda ,
53 B, ldb ,
54 beta , C, ldc ,
55 batchCount , info);
56 }
57
58 blas:: batch::gemm <FloatType >(transA , transB ,
59 m, n, k,
60 alpha , A, lda ,
61 B, ldb ,
62 beta , C, ldc);
63 }

So far we have focused on a �at interface that assumes no groups. The following sections explain
how group-based and stride-based interfaces can be supported.

3.7 Extension for Group-Based APIs

The proposed interface is easily extendable to support groups of matrices—where all of the
argument values are the same across a group—by promoting the batchCount argument from
a constant integer to std::vector<int64_t>. In this case, the routine behaves as a �at routine
only if the size of the vector batchCount is 1. Otherwise, a group-based routine is provided. The
size error checking layer in a group implementation should limit the size of a vector argument
to either 1 or the size of the batchCount vector. A variant of the extract function should also be
provided in order to extract the correct argument value based on the group sizes.

The extension to a group interface is questionable, though. If the group interface is originally
intended to achieve a higher performance than a �at interface on groups of �xed arguments,
then the proposed API for batch BLAS can be extended to support groups and maintain the
same performance advantage. However, if the group interface is originally intended only to
provide a uni�ed C interface that supports �xed-size and variable-size batches, then it is not
necessary to extend the proposed API to support groups. The proposed C++ API naturally
supports signi�cantly more scenarios than the existing group interface in this regard.

35

3.8. EXTENSION FOR STRIDE-BASED APIS CHAPTER 3. PROPOSED APIS

3.8 Extension for Stride-Based APIs

Both cuBLAS and rocBLAS enable the user to implicitly pass a pointer array through a pointer
and a �xed stride. If the matrices are equidistant from each other, this is simpler than explicitly
providing a pointer array. There are two solutions for supporting stride-based interfaces. The
�rst is to provide an auxiliary function to populate a std::vector<FloatType*> based on a
pointer and a stride. Otherwise, the proposed C++ API can be overloaded to accept a pointer and
a stride instead of std::vector<FloatType*>. However, it is unclear if both input and output
data pointers should be strided. This adds yet another level of complexity to the interface.
For example, considering batch GEMM, it is unclear if there is a scenario where one matrix
argument is strided, while the others are not.

3.9 Discussion and Critique

The proposed API covers many scenarios that are impractical to cover in other languages like
C and FORTRAN. The use of a standard container in C++ allows for easy adoption in many
so�ware frameworks. However, the high degree of �exibility is not without some shortcomings.
Such shortcomings, along with suggested remedies, are summarized below.

1. The ease of use provided by the API comes at the cost of complications for vendors and
library developers to provide high-performance implementations of the same routine
for di�erent calling scenarios. Fortunately, there is a relatively simple reference imple-
mentation that can cover all cases. Vendors and library developers should focus on the
optimization of speci�c scenarios that appear frequently in today’s applications. The
optimization of other scenarios can be carried out over time based on demand from
application developers.

2. Indeed, the implementation complexity is hidden from the user by a simple uni�ed
interface. However, the user has to be very careful about the sizes of all the vector
arguments. The size error checking layer is responsible of informing the user about errors
and inconsistencies in the vector sizes. This can be enabled by using an info vector of
non-zero length.

3. Since a lot of semantics are hidden within the vector sizes, calling a batch routine might
not be as self-explanatory as regular BLAS calls. This is the price paid to have such a
�exible API. Since the user is responsible for providing correct vector sizes, it is relatively
easy to understand the call by inspecting the argument setup before launching the batch
routine.

4. The error checking layer, for both size and BLAS errors, is synchronous. No computation
is allowed if any error is detected. This brings with it a considerable overhead for batch
routines. An asynchronous error checking layer can amortize such an overhead, as the
checking of some problems can overlap with the computation of other problems. However,
the asynchronicity of error checking will probably only allow for PBER mode. In addition,
if the batch is large, it makes more sense to check all arguments �rst—especially if the

36

3.10. SUMMARY CHAPTER 3. PROPOSED APIS

error is detected only at the end of the batch. Finally, best practice would be to enable
error checking only for development runs. Production runs should, ideally, disable error
checking to maximize the performance, which can be accomplished with a simple change
in the application developer’s code (i.e., setting the info vector size to 0).

3.10 Summary

This chapter outlined the details of the proposed C++ API for batch BLAS routines. The API
uses the standard vector C++ container (std::vector), which allows for a very �exible interface
that can cover numerous calling scenarios. A detailed reference prototype implementation has
been introduced for batch matrix multiplication. While a comprehensive, high-performance
batch routine is a complicated thing to implement, such complexity can be mitigated over time
by focusing on the current demands for batch workloads from application developers. As new
demands arise for new patterns of batch workloads, the internals of the batch routine can be
optimized speci�cally for such workloads while keeping the same uni�ed interface.

37

Bibliography

[1] Ahmad Abdelfattah, Marc Baboulin, Veselin Dobrev, Jack J. Dongarra, Christopher W.
Earl, Joel Falcou, Azzam Haidar, Ian Karlin, Tzanio V. Kolev, Ian Masliah, and Stanimire
Tomov. High-Performance Tensor Contractions for GPUs. In International Conference on
Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA, pages 108–
118, 2016. doi: 10.1016/j.procs.2016.05.302. URL https://doi.org/10.1016/j.procs.2016.05.302.

[2] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack J. Dongarra. Factor-
ization and Inversion of a Million Matrices using GPUs: Challenges and Countermea-
sures. In International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland, pages 606–615, 2017. doi: 10.1016/j.procs.2017.05.250. URL https:
//doi.org/10.1016/j.procs.2017.05.250.

[3] Kadir Akbudak, Hatem Ltaief, Aleksandr Mikhalev, and David Keyes. Tile Low Rank Cholesky
Factorization for Climate/Weather Modeling Applications on Manycore Architectures, pages 22–40.
Springer International Publishing, Cham, 2017. ISBN 978-3-319-58667-0. doi: 10.1007/
978-3-319-58667-0 2. URL https://doi.org/10.1007/978-3-319-58667-0 2.

[4] Hartwig Anzt, Jack J. Dongarra, Goran Flegar, and Enrique S. Quintana-Ortı́. Batched Gauss-
Jordan Elimination for Block-Jacobi Preconditioner Generation on GPUs. In Proceedings
of the 8th International Workshop on Programming Models and Applications for Multicores and
Manycores, PMAM@PPoPP 2017, Austin, TX, USA, February 5, 2017, pages 1–10, 2017. doi:
10.1145/3026937.3026940. URL http://doi.acm.org/10.1145/3026937.3026940.

[5] Wajih Halim Boukaram, George Turkiyyah, Hatem Ltaief, and David E. Keyes. Batched
QR and SVD algorithms on GPUs with applications in hierarchical matrix compression.
Parallel Computing, 2017. ISSN 0167-8191. doi: https://doi.org/10.1016/j.parco.2017.09.001.
URL http://www.sciencedirect.com/science/article/pii/S0167819117301461.

[6] Jack Dongarra, Iain Du�, Mark Gates, Azzam Haidar, Sven Hammarling, Nicholas J. Higham,
Jonathon Hogg, Pedro Valero-Lara, Samuel D. Relton, Stanimire Tomov, and Mawussi

38

https://doi.org/10.1016/j.procs.2016.05.302
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1007/978-3-319-58667-0_2
http://doi.acm.org/10.1145/3026937.3026940
http://www.sciencedirect.com/science/article/pii/S0167819117301461

BIBLIOGRAPHY BIBLIOGRAPHY

Zounon. A Proposed API for Batched Basic Linear Algebra Subprograms. Technical report,
Manchester Institute for Mathematical Sciences, April 2016. URL http://eprints.maths.
manchester.ac.uk/id/eprint/2464. [MIMS Preprint].

[7] Mark Gates, Hartwig Anzt, Jakub Kurzak, and Jack J. Dongarra. Accelerating collaborative
�ltering using concepts from high performance computing. In 2015 IEEE International
Conference on Big Data, Big Data 2015, Santa Clara, CA, USA, October 29 - November 1, 2015,
pages 667–676, 2015. doi: 10.1109/BigData.2015.7363811. URL https://doi.org/10.1109/
BigData.2015.7363811.

[8] Mark Gates, Piotr Luszczek, Jakub Kurzak, Jack Dongarra, Konstantin Arturov, Cris Cecka,
and Chip Freitag. C++ API for BLAS and LAPACK. Technical Report 2, ICL-UT-17-03,
06-2017 2017. revision 06-2017.

[9] W. Hackbusch. A Sparse Matrix Arithmetic Based on H-matrices. Part I: Introduction
to H-matrices. Computing, 62(2):89–108, May 1999. ISSN 0010-485X. doi: 10.1007/
s006070050015. URL http://dx.doi.org/10.1007/s006070050015.

[10] Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, and Jack J. Dongarra.
Batched matrix computations on hardware accelerators based on GPUs. IJHPCA, 29(2):193–
208, 2015. doi: 10.1177/1094342014567546. URL https://doi.org/10.1177/1094342014567546.

[11] Jakub Kurzak, Hartwig Anzt, Mark Gates, and Jack J. Dongarra. Implementation and
Tuning of Batched Cholesky Factorization and Solve for NVIDIA GPUs. IEEE Trans.
Parallel Distrib. Syst., 27(7):2036–2048, 2016. doi: 10.1109/TPDS.2015.2481890. URL https:
//doi.org/10.1109/TPDS.2015.2481890.

[12] Jakub Kurzak, Panruo Wu, Mark Gates, Ichitaro Yamazaki, Piotr Luszczek, Gerald Ragghi-
anti, and Jack Dongarra. Designing SLATE: So�ware for Linear Algebra Targeting Exascale.
SLATE Working Notes 3, ICL-UT-17-06, 10-2017 2017.

[13] Steven C. Rennich, Darko Stosic, and Timothy A. Davis. Accelerating sparse Cholesky
factorization on GPUs. Parallel Computing, 59:140–150, 2016. doi: 10.1016/j.parco.2016.06.
004. URL https://doi.org/10.1016/j.parco.2016.06.004.

[14] Yang Shi, U. N. Niranjan, Animashree Anandkumar, and Cris Cecka. Tensor Contractions
with Extended BLAS Kernels on CPU and GPU. In 23rd IEEE International Conference onHigh
Performance Computing, HiPC 2016, Hyderabad, India, December 19-22, 2016, pages 193–202,
2016. doi: 10.1109/HiPC.2016.031. URL https://doi.org/10.1109/HiPC.2016.031.

[15] Stanimire Tomov, Jack J. Dongarra, and Marc Baboulin. Towards dense linear algebra for
hybrid GPU accelerated manycore systems. Parallel Computing, 36(5-6):232–240, 2010. doi:
10.1016/j.parco.2009.12.005. URL https://doi.org/10.1016/j.parco.2009.12.005.

[16] Oreste Villa, Massimiliano Fatica, Nitin Gawande, and Antonino Tumeo. Power/Per-
formance Trade-O�s of Small Batched LU Based Solvers on GPUs, pages 813–825. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-40047-6. doi: 10.1007/
978-3-642-40047-6 81. URL https://doi.org/10.1007/978-3-642-40047-6 81.

39

http://eprints.maths.manchester.ac.uk/id/eprint/2464
http://eprints.maths.manchester.ac.uk/id/eprint/2464
https://doi.org/10.1109/BigData.2015.7363811
https://doi.org/10.1109/BigData.2015.7363811
http://dx.doi.org/10.1007/s006070050015
https://doi.org/10.1177/1094342014567546
https://doi.org/10.1109/TPDS.2015.2481890
https://doi.org/10.1109/TPDS.2015.2481890
https://doi.org/10.1016/j.parco.2016.06.004
https://doi.org/10.1109/HiPC.2016.031
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1007/978-3-642-40047-6_81

BIBLIOGRAPHY BIBLIOGRAPHY

[17] Oreste Villa, Nitin Gawande, and Antonino Tumeo. Accelerating subsurface transport
simulation on heterogeneous clusters. In 2013 IEEE International Conference on Cluster
Computing, CLUSTER2013, Indianapolis, IN, USA, September 23-27, 2013, pages 1–8, 2013. doi:
10.1109/CLUSTER.2013.6702656. URL https://doi.org/10.1109/CLUSTER.2013.6702656.

[18] Sencer Nuri Yeralan, Timothy A. Davis, Wissam M. Sid-Lakhdar, and Sanjay Ranka. Algo-
rithm 980: Sparse QR Factorization on the GPU. ACM Trans. Math. So�w., 44(2):17:1–17:29,
August 2017. ISSN 0098-3500. doi: 10.1145/3065870. URL http://doi.acm.org/10.1145/
3065870.

40

https://doi.org/10.1109/CLUSTER.2013.6702656
http://doi.acm.org/10.1145/3065870
http://doi.acm.org/10.1145/3065870

	Introduction
	What is a Batch Routine?
	Why are Batch Routines Important?
	High Demand for Batch Computation in Scientific Applications
	Increasing Parallelism in Hardware Architectures
	Fair Performance of Existing Numerical Software on Batch Workloads

	Standardization Effort for Batch BLAS
	Naming Conventions
	Argument Conventions
	Error Handling
	Sample APIs
	Discussion and Critique

	Summary

	Existing Solutions
	NVIDIA cuBLAS
	Interface with Array of Pointers
	Interface with Single Pointer and Stride
	Routines from LAPACK with Pointer Array Interface
	Routines with LAPACK-like Functionality with a Pointer Array Interface
	Summary

	Intel® MKL
	GEMM
	TRSM

	AMD hipBLAS/rocBLAS
	ICL MAGMA
	Error Handling in MAGMA
	Advanced MAGMA APIs
	Discussion and Critique

	Summary of Existing APIs

	Proposed APIs
	The Objective
	Compliance with the C++ BLAS API
	General Design Principles
	BLAS Error Checking
	Size Error Checking
	Reference Implementation
	Extension for Group-Based APIs
	Extension for Stride-Based APIs
	Discussion and Critique
	Summary

