
Analyzing Performance of BiCGStab with
Hierarchical Matrix on GPU clusters

Ichitaro Yamazaki∗, Ahmad Abdelfattah∗, Akihiro Ida†, Satoshi Ohshima‡,
Stanimire Tomov∗, Rio Yokota§, and Jack Dongarra∗

∗University of Tennessee, Innovative Computing Laboratory, USA
†University of Tokyo, Information Technology Center, Japan

‡Kyushu University, Research Institute for Information Technology, Japan
§Tokyo Institute of Technology, Global Scientific Information and Computing Center Japan

Abstract—ppohBEM is an open-source software package im-
plementing the boundary element method. One of its main
software tasks is the solution of the dense linear system of
equations, for which, ppohBEM relies on another software
package called HACApK. To reduce the cost of solving the
linear system, HACApK hierarchically compresses the coefficient
matrix using adaptive cross approximation. This hierarchical
compression greatly reduces the storage and time complexities
of the solver and enables the solution of large-scale boundary
value problems. To extend the capability of ppohBEM, in this
paper, we carefully port the HACApK’s linear solver onto GPU
clusters. Though the potential of the GPUs has been widely
accepted in high-performance computing, it is still a challenge
to utilize the GPUs for a solver, like HACApK’s, that requires
fine-grained computation and global communication. First, to
utilize the GPUs, we integrate the batched GPU kernel that
was recently released in the MAGMA software package. We
discuss several techniques to improve the performance of the
batched kernel. We then study various techniques to address the
inter-GPU communication and study their effects on state-of-
the-art GPU clusters. We believe that the techniques studied in
this paper are of interest to a wide range of software packages
running on GPUs, especially with the increasingly complex node
architectures and the growing costs of the communication. We
also hope that our efforts to integrate the GPU kernel or to setup
the inter-GPU communication will influence the design of the
future-generation batched kernels or the communication layer
within a software stack.

I. INTRODUCTION

The boundary integral equations is a powerful tool for
solving the boundary value problems of partial differential
equations. It has been successfully used in many scientific and
engineering applications including in the studies of acoustics,
electromagnetics, fracture mechanics, and fluid mechanics.
ppohBEM [1] is an open-source software package that imple-
ments the boundary element method (BEM) for numerically
solving the integral equations. For the numerical solution,
ppohBEM relies on the HACApK library [2], whose main
purpose is the solution of the dense linear system of equations.
If the dense linear system had been directly solved, the size
of the problems that ppohBEM can solve would have been
limited by the excessive amount of the required memory
and time. To reduce the costs of solving the linear system,
HACApK takes advantage of the special properties of the

problem and hierarchically compresses the coefficient matrix
using low-rank factorization of its off-diagonal blocks. This
hierarchical compression greatly reduces the storage and time
complexities of the solver, and increases the size of the
problems that ppohBEM can solve.

ppohBEM has been mainly designed for the homogeneous
distributed-memory computers. In order to extend the capabil-
ity of HACApK, in this paper, we port the HACApK’s linear
solver onto a GPU cluster. Though the potential of the GPUs
has been widely accepted in high-performance computing,
it is not trivial to utilize the GPU cluster for a solver,
like HACApK’s, that requires fine-grained computation and
global communication. Due to the tremendous compute power
available on each node, the data communication between the
GPUs or any part of the solver that is not executed or does not
perform well on the GPU, can quickly become a performance
bottleneck. To effectively make use of the GPUs, in this paper,
we carefully design our implementation.

To harness the compute power of each node, we first
integrate a batched GPU kernel into HACApK and utilize
the multiple GPUs available on the node for executing many
small-size independent tasks in parallel. We discuss several
techniques to improve the performance of the GPU kernel:
e.g., 1) sorting the computational tasks to reduce the overhead
associated with the variable shapes of the tasks, 2) dividing
the tasks into multiple batches with different task counts,
and 3) using GPU streams to execute multiple batches in
parallel. We then evaluate several techniques to address the
inter-GPU communication: 1) different schemes to assign each
process to multiple GPUs, 2) usage of NVLink for the data
exchanges among the local GPUs, and 3) overlapping the
communication with computation. Our experimental results
on two state-of-the-art GPU clusters demonstrate the effects of
these techniques. We believe that the techniques studied in this
paper (to utilize the multiple GPUs on the node and to manage
the communication between the GPUs) are of interest to a
wide range of applications running on GPUs, especially with
the increasingly complex node architectures and the growing
cost of the communication compared with the computation.
Furthermore, we intentionally rely on existing open-source
software packages, instead of developing specialized kernels,



(a) Matrix partition for 100ts. (b) Matrix distribution example.

Fig. 1. H-matrix partition and distribution; j-th process owns submatrix Mj .

to show their current potential and limitations. We hope that
our efforts to integrate the GPU kernel or to setup the inter-
GPU communication will influence the design of the future-
generation batched kernels or the communication layer within
the software stack.

The rest of the paper is organized as follows. We first
introduce, in Sections II and III, ppohBEM and HACApK’s
linear solver, respectively. We then, in Section V, integrate the
GPU kernel into HACApK, and address the inter-GPU com-
munications in Section VI. Finally, in Section VII, we discuss
the challenges of avoiding or hiding the communication in
HACApK. Our final remarks are listed in Section VIII.

II. PPOHBEM AND HACAPK

ppohBEM [1] implements BEM for solving boundary in-
tegral equations. For the numerical solution of the integral
equations, ppohBEM uses HACApK [2] for solving a linear
system of equations, Ax = b, whose coefficient matrix A is
dense. The sizes of the problems that ppohBEM can solve
is limited by the excessive amount of the memory and time
needed for solving the dense linear system. To reduce the costs
of solving the linear system, HACApK exploits the property
that the kernel function g(p1,p2) of the integral operator for
two far-away points p1 and p2 can be approximated by a
degenerate kernel. Hence, many of the off-diagonal blocks of
the coefficient matrix can be well approximated by its low-rank
factorization. To extract this hierarchal low-rank structure of
the matrix A, HACApK first uses the geometric information
of the problem to generate a suitable matrix permutation and
matrix partition based on a cluster tree such that off-diagonal
blocks of large dimensions become low-rank. Then, the low-
rank representation of each block is computed by algebraically
approximating the quadrature of the kernel using Adaptive
Cross Approximation (ACA) or ACA+. Figure 1(a) shows the
partition of one of our test matrices. This hierarchical low-
rank compression of the matrix reduces both the storage and
computational costs associated with the matrix (e.g., matrix-
vector multiply with O(n log(n)) storage and flops where n
is the number of unknowns in the matrix). The hierarchically-
compressed matrix is commonly referred to as H-matrix.

III. BICGSTAB

1: α := 0.0; β := 0.0; ζ := 0.0;
2: t := Ax
3: r := b− t; r0 := r
4: γ := ‖r0‖2
5: for iter = 1, 2, . . . ,maxiters

do
6: if γ/‖r0‖2 < tol then
7: break;
8: end if
9: p := r + β · (p− ζ · v)

10: v := Ap, followed by Allgatherv
11: α = (r0, r)/(r0,v)
12: v := r− α · v
13: t := Av, followed by Allgatherv
14: ζ = (t,v)/(t, t)
15: x := x + αp + ζv
16: r := v − ζt
17: β = α/ζ · (r0, r)/γ
18: γ = ‖r‖
19: end for

(a) Standard.

1: β := 0.0; ζ := 0.0;
2: t := Ax
3: r := b− t; r0 := r
4: f := Ar0, t := Af
5: α = (r, r)/(r, f)
6: γ := ‖r0‖2
7: for iter = 1, 2, . . . ,maxiters do
8: if γ/‖r0‖2 < tol then
9: break;

10: end if
11: p := r + β · (p− ζ · g)
12: g := f + β · (g − ζ · z)
13: z := t + β · (z− ζ · v)
14: q := r− α · g
15: y := f − α · z
16: v := Az, hide Allgatherv behind ζ
17: ζ := (qi,yi)/(yi,yi)
18: x := x + αp + ζq
19: r := q− ζ · y
20: f := y − ζ · (t− αv)
21: t := Av, hide Allgatherv with α, β, γ
22: β = α/ζ · (r0, r)/(r0, r)
23: α = (r0, r)/((r0, f)

+β · ((r0, g)− ζ(r0, z))
24: γ = ‖r‖
25: end for

(b) Pipelined.

Fig. 2. Pseudocode of BICGStab.

To solve the linear system, HACApK relies on the BiCon-
jugate Gradient Stabilized (BiCGStab) [3], a Krylov subspace
projection method for solving a general linear system of
equations (see Figure 2(a) for its pseudocode). Though the
low-rank compression reduces the cost of the matrix multiply,
in many cases, the BiCG’s iteration time is still dominated by
this Hierarchical Matrix Vector multiply (HiMV). To reduce the
iteration time using a distributed-memory computer, HACApK
distributes the contiguous, but not disjoint, rows of the matrix
among the processes (see Figure 1(b) for an illustration). Then,
each process performs HiMV with its local submatrix. All other
vector operations of the BiCG iteration are redundantly per-
formed by all the processes. With this parallelization scheme,
the only required inter-process communication is the all-gather
needed after HiMV to form the global vector on each process
(using MPI_Allgatherv). This parallelization scheme is
motivated by two performance properties of the solver: 1) the
BiCG’s computation time is dominated by HiMV, while the
time needed for the remaining vector operations is insignificant
in the computation time and 2) the redundant computation of
the vector operations avoids the global all-reduces needed to
compute the six dot-products for each BICG iteration, which
can be much more expensive compared with the arithmetic
operations. Hence, by redundantly performing the vector op-
erations, this parallelization scheme aims to balance out two
conflicting performance factors: distributing the computation
with a minimum inter-process communication.

HACApK also supports a hybrid MPI/OpenMP mode. Dur-
ing the BiCG iteration, OpenMP threads are used to parallelize
the vector operations and to parallelize HiMV by executing
the small independent matrix-vector multiplies with the local
dense and compressed blocks in parallel. This not only reduces
the serial bottleneck of performing the vector operations but
also improves the parallel scalability by reducing the process



Sphere objects
name 100ts 288ts 338ts 1ms

size, n 101,250 288,000 338,000 1,004,400
compress% 16.0 16.7 16.9 17.6

Sphere objects (precond) Human objects
name 8ms 20ms hum2 hum4 hum6

size, n 7,996,800 20,736,000 78,656 314,624 707,904
compress% 1.7 1.7 17.3 22.9 31.7

Fig. 3. Test matrices where “compression%” is the ratio of the total number
of numerical values in the compressed matrix over n log2(n).

count and lowering the inter-process communication cost. In
order to extend the capability of ppohBEM, in this paper, we
port the HACApK’s BiCG solver onto GPU clusters.

IV. EXPERIMENT SETUPS

We conducted all the experiments in double precision, and
used the matrices from electrostatic field simulations with
perfect conductors of two particular shapes:
• Sphere: pairs of perfect conductors with the shape of a

sphere. For each pair, one sphere has its electric potential
set to be 1 Volt, while the other has the electric potential
of −1 Volt. We use the boundary value of 0 Volt at infinity
and analyze the induced electrical charge on the surface
of the spheres.

• Human: perfect conductors with the shape of a humanoid
who is standing on a uniform 2D grid on a uniform
electric field. The surface of the humanoid is divided into
2, 359, 680 triangular elements and the induced electrical
charge on the humanoid’s surface was calculated using
an indirect BEM with a single layer potential formulation
and step functions as the base function for the BEM.

Figure 3 lists our test matrices. The large-scale matrices 8ms
and 20ms were used for the inner-iteration to precondition
the linear system [4]. All of their compressed blocks have
rank one and we fixed the number of inner iterations to be 20
for our experiments. We denote the k-th block of the matrix
using B(k) and set the threshold for ACA+ such that B(k) is
approximated to ‖B(k) − U (k)V (k)‖ ≤ 10−3. The computed
solution is considered to have converged when the residual `2-
norm is reduced by at least seven order of magnitude. These
are the standard matrices used in the previous studies, and they
are the typical setups used in the actual simulation.

We conducted all of our experiments on either the
Reedbush-H supercomputer at the University of Tokyo or the
Tsubame-3 supercomputer at Tokyo Institute of Technology.
Each node of both supercomputers has NVIDIA Telsa P100
GPUs, each of which has the double-precision peak perfor-
mance of 4.7 Tflop/s and 16 GB of main memory with the
peak bandwidth of 732 GB/s. We obtained 4.7 Tflop/s using
cublasDgemm for a large enough matrix and the bandwidth
of 495 GB/s using NVIDIA’s bandwidth utility.
• Each node of Reedbush-H consists of two eighteen-core

Intel Xeon E5-2695 V4 (Broadwell-EP) processor and
two P100 GPUs. These two GPUs on the node are
connected by two NVLinks with the theoretical peak

(a) Reedbush-H.

(b) Tsubame 3.

Fig. 4. Node architectures of our testbeds.

bandwidth of 2× 20 GB/s, while the data copy between
the CPU and the GPU goes through the PCI Express
(PCIe) Gen3 with the bandwidth 16 GB/s (and observed
bandwidth of 11.1 or 12.9 GB/s for copying data to or
from the GPU, respectively). The nodes are connected by
the InfiniBand FDR with the bandwidth of 2× 56 Gb/s.

• Each node of Tsubame-3 has two fourteen-core Intel
Xeon E5-2680 V4 (Broadwell-EP) processors and four
NVIDIA P100 GPUs. The CPU and the GPUs are con-
nected through the PCIe’s where a pair of the GPUs
share the same PCIe. The four GPUs are also directly
connected through an NVLink except for two pairs of the
GPUs that are connected by two NVLinks. The nodes are
connected by the Intel Omni-Path with the bandwidth of
4× 100 Gb/s.

Figure 4, taken from [5], [6], illustrates the node architectures
of these two systems.

On both systems, we complied our code using OpenMPI
mpicc version 2.1.1 compiler with Intel icc version 17.0
and CUDA nvcc version 8.0.44 compilers. The optimization
flags -O3 was used with the additional flag -xCORE-AVX2
on Reedbush-H. Though there have been significant efforts to
utilize both the CPU and GPUs, in this work, we decided to
perform all the computation on the GPUs (while using the
CPU for scheduling the computational and communication
tasks). This is motivated by our observations that on many
leadership supercomputers, the gaps between the compute
powers of the CPUs and GPUs on the node are widening. For
example, on the early-access version of the Summit supercom-



puter (i.e., Summitdev) at Oak Ridge Leadership Computing
Facility, each node has four P100 GPUs and two ten-core
POWER8 CPUs. The difference in their double-precision peak
performances is 33× (i.e., 4 × 4.7 Tflop/s on the GPUs vs.
560 Gflop/s on the CPUs). In the full production system, the
gap likely grows having six NVIDIA Volta GPUs and two ten-
core POWER9 CPUs on each node. On such architectures, any
operation on the CPUs could quickly become a performance
bottleneck.

V. INTEGRATING BATCHED GPU KERNEL

The BiCG’s computation time is typically dominated by
HiMV that consists of many small matrix-vector multiplies
with the dense or compressed blocks of the matrix. To ac-
celerate HiMV, we use the batched GPU kernel of MAGMA
that performs a batch of small dense matrix-vector multiplies
(dgemv’s) through one kernel launch. We describe our imple-
mentation of the batched kernel in Section V-A and present
how we integrated the kernel into HACApK in Section V-B.
We then, in Section V-C, show the effect of the GPU kernel
on the BiCG’s performance. Here, we focus on improving
the performance of each process using a GPU (i.e., one GPU
per process), while in Section VI, we look at improving the
performance on the GPU cluster.

A. Variable-size Batched dgemv Kernel for GPU

The variable size batched dgemv kernel, or simply
dgemv_vbatched, was part of the MAGMA 2.1 release.
Figure 5 shows the overall structure of dgemv_vbatched,
which can be used for any other kernel. The design of the
batched kernel has three components. The first is the compu-
tational code, which carries out a single dgemv operation.
This code can be used with either batched or non-batched
kernel, and is written as a CUDA device routine. We use
C++ templates to have a highly tunable code that achieves
a nearly optimal performance for all input sizes, which has
been already demonstrated for fixed size batch workloads [7].
The second component is the Adaptive SubGrid Truncation
(ASGT), which has been first introduced for level-3 BLAS
kernels [8]. The ASGT technique is an upper layer that
encloses the computational code. As shown in Figure 5, it
is a distribution layer that organizes the kernel into a number
of subgrids, and assigns one dgemv operation per subgrid. It
is also a protection layer that prevents the computational code
from committing out-of-bound memory accesses. It does so
by truncating each subgrid to match the size of the assigned
problem. Because dgemv_vbatched must accommodate the
largest matrix in the batch, other subgrids that are assigned
to smaller problems might possess thread blocks without
any work. The ASGT layer ensures that such thread blocks
are detected and terminated before starting the computational
code.

The final component is the kernel driver. The driver must
have the size of the largest matrix in the batch, which is nec-
essary for the kernel configuration. For dgemv_vbatched,
only the maximum number of rows is required. The driver

non-batched 
GEMV 

code

subgrid 0

thread 
block

subgrid 1

subgrid 2

subgrid (BC-1)

terminated by ASGT

Fig. 5. Structure of the variable size dgemv kernel with batch count BC.

also has an error checking mechanism that is similar
to BLAS. However, an important design aspect of the
dgemv_vbatched routine is that both finding the maximum
size(s) and error checking are decoupled from the bottom
two layers, and can be skipped in order to achieve a better
performance. In our case, we provide the maximum number
of rows explicitly to the low-level API. We also skip the error
checking phase, which is of a significant overhead, especially
with a large batch count.

Figure 5 shows that there is a number of thread blocks
that are launched, but then get immediately terminated using
the ASGT technique. The overhead of having and terminating
quickly these thread blocks is proportional to the variations in
the number of rows across the matrices in the batch. While
the overhead can be of less impact if the kernel is compute
bound [9], it can become quite significant for memory bound
kernels, such as the dgemv kernel that we use in this work. We
pay attention to this effect while calling dgemv_vbatched
from HACApK solver.

B. Integration into HACApK

We now describe how we integrated dgemv_vbatched
into HACApK. In this section, we let each MPI process use
one GPU, while in Section VI, we look at having multiple
GPUs per process. To avoid the expensive data copy between
the CPU and GPU, once the right-hand-side vector is copied to
the GPU, all the matrix and vector operations are performed
on the GPU. Our focus is on HiMV, which dominates the
compute time of the iteration, while the rest of the vector
operations are redundantly performed by all the processes. The
only potential data copies between the CPU and GPU are for
the inter-process communication to form the global vector on
each GPU after the distributed HiMV (addressed in the next
section).

Figure 6(a) shows the pseudocode of HiMV, while Fig-
ure 6(b) shows the sizes of the blocks (either dense B(k),
or compressed U (k) and V (k)) in the matrix 100ts. We
see a wide range of the block sizes where all the blocks on
the diagonal are square and dense, while off-diagonal blocks
can be either dense or compressed and are either tall-skinny
or wide-short. To utilize the GPU, each process divides its
local dgemv tasks with B(k), U (k), and V (k) into several



1: for k = 1, 2, . . . , n` do
2: if dense block then
3: y(k) := B(k)x(k)

4: else
5: t(k) := V (k)x(k)

6: y(k) := U(k)t(k)

7: end if
8: end for

(a) HiMV pseudocode.

(b) Block sizes in 100ts.

Fig. 6. Matrix-vector multiply y := Ax with a H-matrix A, where n` is the
number of blocks in A, and B(k) is the k-th block with the corresponding
vectors x(k) and y(k), and U(k)V (k) is the low-rank representation of the
k-th block, i.e., B(k) ≈ U(k)V (k).

batches (e.g., a batch with a fixed number of dgemv’s), and
then calls dgemv_vbatched for each batch. To this end,
we must resolve two types of data conflicts. First, the output
vectors y(k) of different dgemv’s may overlap on each other.
These data conflicts were resolved using the CUDA’s atomic-
add operation on the output vector y. We found that on the
latest NVIDIA GPU, the overhead of the atomic operation is
minimum. The second type of the data conflicts is that when
multiplying with the compressed block, the second dgemv
with U (k) depends on the output vector t(k) from the first
dgemv with V (k). In order to resolve this conflict, we create
two types of the batches; the first type only contains the
dgemv’s with the dense blocks B(k) and with the first low-
rank block V (k). Then, once all the batches of the first type
are launched, we launch the second type that contains the
dgemv’s with U (k). The data conflicts are resolved either by
launching all the kernels on the same GPU stream or by using
CUDA events to follow the data dependency on the multiple
streams.

(a) sorted by number of rows. (b) grouped and sorted by number of
rows, and then by number of columns
within group.

Fig. 7. Different schemes to sort block sizes for the matrix 100ts.

As discussed in Section V-A, dgemv_vbatched can
execute dgemv’s with variable matrix sizes in a single kernel
launch. However, the performance of dgemv_vbatched
can be much lower than its fixed-size counterpart. This is
especially true when there is a wide range of matrix sizes
in the single batch. In order to improve the performance of
dgemv_vbatched, we examined several schemes to sort
the blocks of A, on which dgemv’s operate. Figure 7 shows

(a) sorting scheme of Figure 7(a) with
fixed batch count.

(b) sorting scheme of Figure 7(b) with
fixed batch count.

(c) sorting scheme of Figure 7(b) with
variable batch counts.

(d) original without sorting.

Fig. 8. Performance of fixed-size and variable-size batched kernel, batch(`)
and vbatch(`), on an NVIDIA P100 GPU, where ` is the batch count. In the
legend, we show the total time required to execute all the tasks. We lauched
batch(`) for each block size whose performance is considered as the upper
bound on the performance of vbatch(`).

two promising sorting schemes: in Figure 7(a), the blocks
were sorted in the ascending order of their numbers of rows,
and in Figure 7(b), we first grouped the blocks according
to the number of rows (the k-th group contains the block
with the number of rows in the range between 8(k − 1) + 1
and 8k), and then we order the blocks in the same group
according to their numbers of columns. Figures 8(a) and 8(b)
show the effects of these two sorting schemes on the kernel
performance for the matrix 100ts, while Figure 8(d) shows
the original performance without sorting. The figure also
shows the performance of the fixed-size batched kernel for
each block size, which we consider as the upper bound on the
performance of the variable-size kernel. We clearly see that
the performance can be significantly improved by properly
sorting the blocks (speedups of up to 2.5×) and the variable-
size kernel may obtain the performance closer to that of the
fixed-size kernel.

In the experiments so far, we used a fixed batch count (i.e.,
each batch contains the same number of tasks). Unfortunately,
even after sorting the blocks, there may be a wide range of
block sizes within a batch. For example, in Figure 8, the
kernel spends longer time on the right side of the plot where
the blocks are larger with wider variations in the numbers of
rows (see Figure 7). To avoid the overhead associated with the
different block sizes, in Figure 8(c), we adjust the batch counts
such that each batch only contains a specific range of block
sizes (i.e., we used three ranges [1, 7], [8, 31], and [32,m

(k)
max],

which match the internal optimization of dgemv_vbatched,
where m

(k)
max is the largest number of rows in the blocks).



100ts 338s hum2 hum6
sequential MKL + 32 OpenMP threads 10.42 11.52 11.51 10.68
CUBLAS + 5 streams 0.42 0.52 0.37 0.60
batch(5K, fixed) with pad 53.00 64.51 43.11 72.13
vbatch(20K, fixed) 65.21 74.10 50.93 84.35
vbatch(20K, variable) + 1 stream 51.43 56.67 40.72 70.50
vbatch(20K, variable) + 2 streams 81.12 84.14 72.20 96.56
vbatch(20K, variable) + 3 streams 84.13 86.14 72.20 96.87

Fig. 9. Performance (Gflop/s) of different implementations with one NVIDIA
P100 GPU and two 16-core Intel Broadwell CPUs on Reedbush-H.

Though the variable batch counts did not significantly improve
the performance in this particular setup, we further explore its
potential in the next paragraph.

Table 9 shows the overall performance of different imple-
mentations of HiMV. Our batched kernel (using the sorting
scheme of Figure 8(b)) obtains much higher performance
compared with that obtained by launching dgemv of the
sequential MKL from OpenMP parallel for-loop or by launch-
ing cublasDgemv with multiple GPU streams. Even for a
batch with the largest blocks, the batched kernel was faster
than the other implementations. We also tested the fixed-size
batched kernel such that all the tasks have the maximum matrix
dimension in each batch. Though this avoids the overhead
of the variable-sized tasks, the performance was lower due
to the wasted operations. The last three rows of the table
show the performance with the variable batch counts. Here, we
split the blocks into smaller batches (i.e., the number of rows
are split into the ranges of 8, 32, 64, 96, . . . ,m

(k)
max). Then, to

effectively utilize the GPU, we execute these small batches in
parallel using multiple GPU streams. Compared with the fixed
batch count, this variable batch counts now obtained higher
performance. We note that the dgemv’s performance is limited
by the bandwidth where our GPU has the observed bandwidth
of 495 GB/s. Since dgemv reads one matrix entry ai,j and two
vector entries xj and yi to perform two flops, yj = ai,j ·xj+yj ,
the peak dgemv performance is between 61 ∼ 183 Gflop/s
depending on if the vector entries stayed in the cache. We
observed that cublasDgemv obtains around 150 Gflop/s for
a large enough matrix. dgemv_vbatched obtained about
48 ∼ 65% of the peak cublasDgemv performance.

C. BiCG Performance

Figures 10 and 11 show the effects of the GPU kernels
on the BiCG performance on Tsubame-3 and Reedbush-H,
respectively. For the performance without the GPUs, we bind
each process to a socket and launch one OpenMP thread
on each of the available cores of the socket. We found this
process/thread configuration typically gives the best perfor-
mance of the hybrid MPI/OpenMP implementation. With the
GPUs, we launch one process per GPU (i.e., four or two
processes per node on Tsubame-3 or Reedbush-H). The figures
clearly show that the GPUs have reduced the iteration time
significantly, obtaining the speedups of about 4.2× and 4.5×
on eight nodes of Tsubame-3 and Reedbush-H, respectively
(in Figures 10(b) and 11(b)). At the same time, even on these
small numbers of nodes, the communication starts to become
significant, spending over 46% and 43% of the iteration time

6.0x

8.5x 6.5x 5.1x 2.1x

1 GPU 1 2 4 8

Number of nodes

0

0.2

0.4

0.6

0.8

1

1.2

B
iC

G
 S

o
lu

ti
o

n
 T

im
e

 (
s
) other

SpMV(MPI)

SpMV(copy)

SpMV(comp)

(a) Strong scaling with 100ts.

2.1x 3.0x 3.3x
3.2x

1.8x

4.2x

100ts 288ts 388ts 1ms hum4 hum6
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

B
iC

G
 S

o
lu

ti
o
n
 T

im
e
 (

s
)

(b) Performance on 8 nodes.

Fig. 10. Performance on Tsubame-3. The blue markers show the solution time
with original HACApK without GPUs, while the bars are with the GPUs.

4.2x

4.4x
3.6x 4.7x 4.6x

1 GPU 1 2 4 8

Number of nodes

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

B
iC

G
 S

o
lu

ti
o

n
 T

im
e

 (
s
) other

SpMV(MPI)

SpMV(copy)

SpMV(comp)

(a) Strong scaling with 100ts.

4.6x 3.3x 3.0x
3.3x

3.1x

3.8x

100ts 288ts 338ts 1ms hum1 hum4
0

2

4

6

8

10

12

B
iC

G
 S

o
lu

ti
o
n
 T

im
e
 (

s
)

(b) Performance on 8 nodes.

Fig. 11. Performance on Reedbush-H. The blue markers show the solution
time with original HACApK without GPUs, while the bars are with the GPUs.

on Tsubame-3 and Reedbush-H, respectively (e.g., on 1 node
with the matrix 100ts, we obtained a speedup of about
8.5× using GPUs on Tsubame-3). Furthermore, the part of
the bar, colored in black, is mostly for the vector operations.
Since these operations are not parallelized, they could become
significant in the iteration time on a large number of GPUs.

VI. IMPROVING PERFORMANCE ON MULTIPLE GPUS

As the GPU kernel reduces the compute time on the node,
the inter-process communication becomes more significant in
the iteration time. This is especially true with HiMV be-
cause the hierarchical compression reduces the computational
complexity, but the communication cost stays the same (i.e.,
O(n log(n)) flops, compared with O(n) communication vol-
ume since HACApK forces that the ranks of all the compressed
block are at lest one). To reduce the communication cost,
in this section, we develop a “multi-GPU” implementation
of the solver where each process manages multiple GPUs.
This multi-GPU implementation can not only lower the inter-
process communication by reducing the number of processes
but also explicitly utilize the NVLinks for the communication
among the local GPUs of the process. We first describe our im-
plementation (Section VI-A). We then profile the costs of the
required communication on the node and between the nodes
(Sections VI-B and VI-C). Finally, we show the performance
of this multi-GPU implementation (Section VI-D).

A. Multiple GPUs Implementation

Here, we describe a new implementation of the solver that
lets each process use multiple GPUs on the node to perform
HiMV. To this end, the batches of the first type are executed



from\to 0 1 2 3
0 6.3 / 212.5 / NA 6.3 / 9.3 / 18.5 6.0 / 9.9 / 31.0 6.0 / 9.9 / 18.5
1 6.3 / 9.3 / 18.5 6.3 / 212.5 / NA 6.0 / 9.9 / 18.5 6.0 / 9.9 / 31.2
2 6.0 / 9.9 / 33.7 6.1 / 9.9 / 18.4 6.1 / 211.9 / NA 6.1 / 9.3 / 18.4
3 6.1 / 9.9 / 18.4 6.1 / 9.9 / 31.2 6.1 / 9.3 / 18.5 6.1 / 212.5 / NA

Fig. 12. Bandwidth (GB/s) for the GPU point-to-point data copy using set
/ copy / peer on a single node of Tsubame 3.

GPU 0 1 2 3
0 12.1 / 12.2 / 12.2 6.1 / 5.2 / 7.2 5.9 / 3.5 / 7.0 5.7 / 2.7 / 6.9
1 5.6 / 2.7 / 6.9 12.1 / 12.2 / 12.2 11.3 / 5.4 / 7.2 5.7 / 3.5 / 7.0
2 5.7 / 3.4 / 6.9 5.7 / 2.5 / 6.8 11.3 / 11.4 / 11.4 5.7 / 5.1 / 6.9
3 11.3 / 5.3 / 6.9 6.1 / 3.4 / 6.9 5.6 / 2.5 / 6.9 11.3 / 11.5 / 11.5

(a) set / copy / peer where (i, j)-th cell broadcasts to i, . . . , j-th GPUs.

GPU (0) (0,1) (0,2) (3,0)
GB/s 6.2 / 6.6 5.6 / 6.9 5.6 / 8.4 5.6 / 6.9

(b) set / peer with multiple GPUs/process: ‘(0)’ uses one process per GPU,
while the rest have one process per two GPUs with ‘(i, j)’ using i-th and j-th
GPUs for the first process.

Fig. 13. Bandwith (GB/s) for broadcasting from CPU to GPUs on a single
node of Tsubame-3.

on the multiple GPUs in a round-robin fashion. Then, to
avoid copying the vectors t(k) among the local GPUs, the
batch of the second type is executed on the GPU where the
corresponding batch of the first type was executed. The vector
operations are redundantly computed on all the GPUs to avoid
the data copy between the local GPUs.

This multi-GPU implementation introduces two local com-
munication phases where each process exchanges the data
among the local GPUs:

1) Local all-reduce: The partial results of HiMV from all
the local GPUs are gathered and summed on one of the GPUs.
The resulting data is then copied to the CPU before the MPI
call.

2) Local broadcast: After the MPI call, the CPU broadcasts
the resulting global vector to all the local GPUs.

Though the matrix is distributed to maintain the load bal-
ances, there often exists load imbalance among the processes,
and the imbalance may increase with the GPUs (e.g., due to
the difference in the kernel performance with different sizes
of the blocks distributed to each process). In addition, the
data transfer to the GPUs may introduce different amount
of idling time on the GPUs due to the hardware bottlenecks.
Such load imbalances from the different phases of the iteration
may be reduced by removing all the synchronization points
between them. To this end, our multi-GPU implementation
extensively uses the GPU streams and events so that the only
synchronization points are those before and after the MPI
communication. For instance, using one process per node on
eight nodes of Tsubame-3, having the synchronizations can
increase the iteration time by 15 ∼ 20% for the matrix 1ms,
and the effects of the synchronizations may increase on a larger
number of GPUs or with a larger load imbalance.

B. Inter-GPU Communication on a Node

We now benchmark the cost of the local communication
needed for our multi-GPU implementation: local all-reduce
and local broadcast. We focus on Tsubame-3 since Reedbush-
H has a simpler node architecture (e.g., each node has only

two GPUs, and the CPU can broadcast to the GPUs in parallel
using a different PCIe to each GPU).

In Figure 12, we look at transferring 8MB of data
between a pair of GPUs for performing local all-reduce
where we tested three implementations: the first one, called
set, copies the data to the CPU’s pinned memory us-
ing cublasGetVector before copying it to the target
GPU using cublasSetVectorAsync, while the other
two, referred to as copy and peer, directly copy the
data between the GPUs using cudaMemcpyAsync and
cudaMemcpyPeerAsync, respectively. The bandwidth is
computed as the ratio of the data size sent between the GPUs
over the total time needed for the communication. The figure
shows that set obtained about a half of the observed peak
bandwidth between the CPU and GPU since the data needs
to go to the CPU before being copied to the target GPU. A
slightly higher bandwidth was obtained using copy, especially
for the pair of the GPUs that are connected through separate
PCIe’s to the CPU. This might be because we can pipeline
the two phases of the data copy using two separate PCIe’s:
copying first from the source GPU to the CPU and then from
the CPU to the target GPU. We did not pipeline the data copy
for set, and hence, these two communication phases occur
in sequence. We obtained much higher bandwidth (about half
of observed GPU bandwidth) using copy on the same GPU
because only the local data read and write on the GPU were
needed. Finally, peer obtained higher bandwidth utilizing
the NVLink between the GPUs. Moreover, compared with
the bandwidth between GPU-0 and GPU-1, the bandwidth
between GPU-0 and GPU-2 is doubled since these two GPUs
are connected by two NVLinks (see Figure 4(b)).

Next, Table 13(a) shows the bandwidth for broadcast-
ing the data from the CPU to the local GPUs where
we again tested three configurations: the first configuration
set broadcasts the data from the CPU to all the GPUs
using cublasSetVectorAsync and one GPU stream
per GPU, while the other two configurations copy and
peer use cublasSetVectorAsync to copy the data
only to the first GPU and then use cudaMemcpyAsync or
cudaMemcpyPeerAsync to copy the data from the first
GPU to the rest of the GPUs on different streams. The
bandwidth is computed as the ratio of the data size over the
time needed to complete the broadcast. With set, the amount
of time needed to copy the data to both GPU-0 and GPU-2
was about the same as the time needed to copy the data only
to GPU-0. On the other hand, the bandwidth halved when
copying the data to GPU-0 and GPU-1. This is because the
CPU is connected to GPU-0 and GPU-2 through two separate
PCIe’s, while the data transfer to GPU-0 and GPU-1 must
go through the same PCIe (see Figure 4(b)). Hence, the data
can be concurrently copied to GPU-1 and GPU-2 in parallel,
while the data can be only transferred to GPU-0 and GPU-1,
sequentially. The table also shows that using copy lead to
slower data transfer since the data needs to go through the
same PCIe from the source GPU (without NVLinks). On the
other hand, using peer, we obtain more consistent bandwidth



1 2 4 8 16

Node count

2
3
4
5
6
7
8
9

10
11
12
13

G
B

/s

per gpu

per socket

per node

(a) Allgatherv on CPUs.

1 2 4 8 16

Node count

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

3.5

3.7

G
B

/s

(b) Allgatherv on GPUs.

Fig. 14. Performance of MPI_Allgatherv on Tsubame-3.

with different numbers of target GPUs since the data can be
communicated between the GPUs using NVLinks in parallel.
As expected, though the communication to some GPUs may
complete faster than the others, each configuration achieved
about the same overall bandwidth when it sent the data to all
the GPUs regardless of the order the data is sent to the GPUs.
However, the bandwidth was higher using peer than using
set, which was faster than using copy.

In Figure 13(b), we again broadcast the data from the CPU
to all the GPUs on the node. For these experiments, however,
we used multiple MPI processes on the node and assigned
different numbers of the GPUs to the process. We have studied
two configurations: 1) with set, each process broadcasts the
data from the CPU to all the GPUs and 2) with peer, the
process only copies the data from the CPU to one GPU,
and it then copies the data from the GPU to the other GPUs
through NVLink. When each process has multiple GPUs with
peer, it was important that each process communicates with a
specific GPU so that we can reduce the contention on the PCIe
connecting the CPU to the GPUs. For example, with both (0,1)
and (0,2) configurations, Process-0 talks with GPU-0 while
Process-1 talks with GPU-3. If Process-1 talks with GPU-1,
there will be more stress on the PCIe connecting the CPU with
these two GPUs. As we expected, set obtained about the half
of the observed peak bandwidth in all the setups. We obtained
higher bandwidth using peer, and the highest bandwidth of
about 8.5 GB/s was obtained using the (0,2) configuration,
utilizing the two NVLinks between the local GPUs (compared
with 6.9 GB/s obtained to broadcast to all the GPUs with one
process per node in Table 13(a)).

C. Inter-GPU Communication between Nodes

We now look at the cost of gathering a vector distributed
over multiple nodes of Tsubame-3 and Reedbush-H. We
designed the benchmark to reflect our HiMV implementation
discussed in Section VI-A. In particular, for these experiments,
we evenly distributed the vector v among the processes such
that the j-th process has the local vector vj of the length nj .
Then, each of the j-th process’ local GPUs stores an nj-
length vector such that vj is the sum of the vectors stored
on the local GPUs (i.e., vj =

∑
k v

(k)
j where v

(k)
j is the

vector on the k-th local GPU). Then for our benchmark, the
process first sums the local vectors distributed among the

12 4 8 16 32

Node count

1
2
3
4
5
6
7
8
9

10
11
12
13

G
B

/s

per socket

per node

(a) Allgatherv on CPUs.

12 4 8 16 32

Node count

0

2

4

6

8

10

12

14

16

G
B

/s

per node

per socket

per node, GDR

per socket, GDR

(b) Allgatherv on GPUs.

Fig. 15. Performance of MPI_Allgatherv on Reedbush-H.

GPUs on one of its local GPUs. Then, the resulting vector
is copied from the GPU to the CPU’s pinned memory before
performing MPI_Allgatherv. After the MPI communica-
tion, each process broadcasts the global vector to its local
GPUs. The motivation for having each process manage the
multiple GPUs is to lower the inter-process communication
cost by reducing the number of processes. However, there is
the additional communication and computation needed to sum
the local vectors distributed among the local GPUs.

For our benchmark on Reedbush-H, we tested two config-
urations 1) per-node: one process per node and two GPUs
per process and 2) per-socket: one process per socket
and one GPU per process, while on Tsubame-3, we had three
configurations 1) per-node with four GPUs per process, 2)
per-socket with two GPUs per process, and 3) per-gpu
with one GPU per process and two processes per socket
(per-gpu is equivalent to per-socket on Reedbush-H).
For these experiments, we fixed the vector length to be 106

(i.e., 8MB of data) and increased the node count. We show the
average time of two separate runs where each run computes
the average time needed for 100 all-gather communication.
The bandwidth is computed as the size of the global vector
over the total communication time.

To benchmark the MPI’s communication without GPUs,
Figures 14(a) and 15(a) first show the performance of
MPI_Allgatherv alone. We clearly see that MPI commu-
nication time may be reduced having a fewer process per node.
Figures 14(b) then shows the performance with the GPUs on
Tsubame-3, where we tested using either copy (dotted line)
or peer (solid line) between the first GPU and the rest of the
GPUs after the data is copied to the first GPU. Compared with
the MPI communication alone, the inter-GPU communication
took significantly longer due to the expensive data transfer
between the CPU and GPUs through the PCIe. On a small
number of nodes, the inter-GPU communication could be
slower when each process manages multiple GPUs because of
the overhead needed to sum the local vectors among the local
GPUs. However, as the node count increases, the local vector
shortens reducing this overhead, and at the same time, the
inter-node communication starts to become more significant.
As a result, the overall communication was often faster when
there was a fewer processes on each node. Though the inter-
GPU communication was faster using per-socekt on one



100ts 1ms hum4 hum6
nd iter time (ms) time/it nd iter time (ms) time/it nd iter time (ms) time/it nd iter time (ms) time/it

per-gpu 2 15 56 (11) 3.7 4 14 410 (100) 29.3 2 73 1044 (141) 14.3 4 95 2396 (614) 25.2
4 14 43 (11) 3.1 8 15 456 (183) 30.5 4 70 846 (192) 12.1 8 101 2260 (786) 22.4
8 20 64 (26) 3.2 16 14 516 (251) 36.9 8 79 919 (333) 11.6 16 104 2705 (1233) 26.0

16 19 81 (40) 4.3 32 14 712 (411) 50.9 16 78 992 (479) 12.7 32 101 3289 (1920) 32.6
per-socket 2 14 53 (12) 3.8 4 14 366 (72) 26.2 2 74 1010 (94) 13.7 4 76 1671 (187) 22.0

4 13 43 (13) 3.3 8 14 306 (80) 21.9 4 72 693 (101) 9.6 8 94 1799 (452) 19.1
8 15 46 (16) 3.1 16 15 341 (130) 22.8 8 62 649 (122) 10.5 16 99 1821 (518) 18.4

16 19 74 (32) 4.6 32 15 433 (215) 28.9 16 77 860 (293) 10.8 32 104 2337 (811) 22.5
per-node 2 14 53 (9) 3.8 4 14 334 (42) 23.9 2 72 950 (38) 13.2 4 93 1932 (129) 20.8

4 15 46 (10) 3.1 8 14 277 (49) 19.8 4 73 664 (57) 9.1 8 95 1531 (152) 16.1
8 13 38 (10) 3.0 16 14 257 (60) 18.4 8 75 601 (65) 8.0 16 96 1445 (265) 15.1

16 13 42 (12) 3.3 32 14 260 (95) 18.6 16 71 586 (99) 8.2 32 99 1594 (310) 16.1

Fig. 16. BiCG performance with multiple GPUs per process on Tsubame-3: the numbers in parentheses are the MPI time and nd is the number of nodes.

node, per-node was faster on multiple nodes, reducing the
inter-node communication cost.

Figure 15(b) shows similar results on Reedbush-H, along
with the performance of the GPU-aware OpenMPI-GDR1.
Without GDR, we need to copy the data to the CPU before
calling MPI. With GDR, the data still goes out of the node
through PCIe, but we can avoid the back-and-forth data copy
between the CPU and switch (reducing the number of the data
transfers through the PCIe by a factor of two). The GDR may
also avoid some data copies between MPI’s internal buffers.
As a result, we observed that using per-node configuration,
GDR obtained the speedups of about 2.4× and 1.4× on one
and sixteen nodes, respectively. With per-socket, GDR
obtained even greater speedups of about 4.5× and 2.4× on one
and sixteen nodes, respectively. Also, due to the per-node’s
overhead to sum the vectors among the local GPUs, GDR
obtained a greater bandwidth using per-socket compared
with per-node. However, as we increase the node count, the
difference in the bandwidth was reduced (since the local over-
head with per-node diminishes while having a fewer pro-
cesses reduces the inter-process communication cost). Overall,
with enough GPUs, the good combination seems to be using
GDR among the processes and NVLink among the multiple
GPUs on each process. Unfortunately, at the time of preparing
this paper, the GPU-aware MPI through OmniPath was not
supported on Tsubame-3.

D. Performance of Multi-GPU Implementation

Figure 16 shows the effects of different process/GPU con-
figurations on the BiCG performance. The solution time can
be significantly reduced by assigning multiple GPUs to each
process primarily because of the reduction in the MPI time.
Overall, per-node was up to 2.7× faster than per-gpu.

E. Hierarchical Parallelization

To reduce the sequential bottleneck, we developed another
implementation that lets each process parallelize the vector
operations among the local GPUs. This parallelization needs
to be carefully designed since it introduces the communication
among the local GPUs. For this, we parallelized the update of

1The mpirun options --mca pml ˆyalla --mca mtl ˆmxm
--mca coll ˆhcoll --mca btl_openib_want_cuda_gdr 1
--mca mpi_warn_on_fork 0 is used to enable GDR.

0 200 400 600 800 1000

Vector Length (103)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

G
fl
o
p
/s

1 GPU

2 GPUs

4 GPUs

(a) Strong-scaling of dgemv with a ma-
trix of two vectors on one P100 GPU: the
solid line sums the local vectors on the
CPUs, while the dashed line accumulates
them on the GPU using MemcpyPeer.

scheme
matrix redundant hierarchical
hum4 1.99 / 81 1.07 / 85
hum6 5.23 / 102 2.60 / 106
100ts 0.22 / 19 0.17 / 19
1ms 1.04 / 15 0.50 / 14
8ms 10.56 / 20 6.09 / 20
20ms 27.61 / 20 19.79 / 20

(b) Time in seconds / # iterations on
64 nodes with one process per node.

Fig. 17. Performance with hierarchical parallelization on Tsubame-3.

the solution vector x and the dot-products in Figure 2(a). In
addition, for the experiments in the remaining of the paper,
instead of using cublasDdot to compute the dot-products,
we used the matrix-vector multiply cublasDgemv. For the
tall-skinny matrices, dgemv may not be optimized as well as
ddot is, but it allows us to merge multiple dot-products into
a single kernel launch (e.g., [r,v]T r0, [v, t]T t, or [r0, r]

T r
in Figure 2(a)). After the local dgemv, the pair of GPUs
independently accumulate their results using NVLink (e.g., on
Tsubame-3, GPU-0 and GPU-2, and GPU-1 and GPU3) before
sending their accumulated result to the CPU and computing
the final result. Figure 17(a) shows the performance of dgemv
using four P100 GPUs on one node of Tsubame-3, and
demonstrates that the performance can be improved using the
multiple GPUs. Figure 17(b) then shows that this “hierarchi-
cal” parallelization can reduce the sequential bottleneck and
improve the solver performance. We also investigated keeping
the scalars on the GPUs. This however leads to a few scalar
operations using BLAS on the GPU (i.e., the computation of α,
ζ, β, and γ), and often resulted in a lower solver performance.

VII. HIDING INTER-GPU COMMUNICATION

Two approaches have been developed to address the inter-
process communication cost of the Krylov solvers. The first
approach is the “communication avoiding” (CA) that is based
on the s-step variant of the Krylov solvers [10], [11] and
redesigns the algorithm to communicate less by generating



#bytes tovrl[µsec] tpure[µsec] tCPU[µsec] overlap[%]
16384 2386.29 1945.92 2374.40 81.45
32768 2908.06 2786.06 2849.83 95.72
65536 4883.94 3933.52 4867.52 80.47

131072 11213.05 10552.64 11171.78 94.09
262144 19919.10 19834.93 19845.31 99.58
524288 38677.25 31071.01 38540.00 80.26

Fig. 18. Results of Intel MPI Benchmark for MPI_Iallgatherv on 16
nodes of Tsubame-3 with 4 processes per node.

100ts 338ts hum4
ng block pipe1 pipe2 block pipe1 pipe2 block pipe1 pipe2

1 18.4 19.2 19.3 −− −− −−
4 10.2 10.0 9.4 34.6 33.8 31.6 34.3 32.1 30.4
8 9.1 8.9 7.6 31.5 30.1 25.6 30.5 28.1 24.3

16 8.8 8.6 6.7 30.2 28.6 22.0 30.1 28.0 21.1
32 10.3 10.1 6.8 31.7 30.8 21.8 30.9 28.3 19.7

Fig. 19. Time per iteration (ms) with different GPU count, ng , on Tsubame-3.

a set of s basis vectors at a time. Though it has the potential
to reduce the communication latency cost by the factor of s,
HACApK requires the global vector for each application of
HiMV. Hence, in order to avoid the communication, each
process would require to redundantly compute the global
HiMV, falling back to the sequential performance [12].

The second approach is “pipelining” that redesigns the al-
gorithms to hide the cost of communication by exploiting non-
blocking communication and pipelining the iterations [13],
[14]. Though simply hiding the communication only leads to
the maximum speedup of 2×, pipelining the communication
may leads to greater speedups. The technique is designed
to hide the all-reduce communication required for the dot-
products behind the local computation of the sparse matrix-
vector multiply. In contrast, HACApK avoids the all-reduces
and its only inter-process communication is the all-gather after
HiMV. Unfortunately, the all-gather cannot be overlapped with
the local computation of HiMV since they are on the critical
path of the algorithm. Nevertheless, we adapt the pipelining
technique to hide the all-gather behind the vector operations.

Figure 2(b) shows the variant of BiCG. Though this variant
introduces additional computation (i.e., increases the number
of vector operations from 12 to 20), it hides the all-gather
communication behind the local dot-products. We looked at
two variants: 1) pipe1 hides the vector copy from the
GPU to the CPU and 2) pipe2 hides MPI_Allgatherv
between the CPUs. For these experiments, we used MPICH
version 3.2 that implements MPI_Iallgatherv using
TCP and IP-over-Infiniband. We configured MPICH with
--enable-threads=multiple and initialized the MPI
library using MPI_THREAD_MULTIPLE. We chose to use
MPICH mainly because of its MPI_Iallgatherv’s capa-
bility to overlap the communication with the computation (see
Figure 18). To show the potential of hiding the communication,
Figure 19 shows its effects on the performance of our single-
GPU implementation of the solver. The greater performance
improvements were obtained using pipe2 with the maximum
speedup of about 1.57×.

VIII. CONCLUSION

In this paper, we carefully ported the hierarchical-matrix
BiCG solver onto GPU clusters. We investigated several

techniques to improve the performance of the batched GPU
kernel (sorting the tasks, dividing them into multiple batches
of different batch sizes, and using GPU streams to execute
multiple batches in parallel). We hope that these techniques
were integrated into the future generation of the batched kernel
along with a runtime analysis and tuning. We have also studied
several techniques to reduce the inter-GPU communication. As
the heterogenous node architecture becomes increasingly com-
plex and the cost of the inter-GPU communication increases,
these techniques likely become critical to many applications
running on GPUs. We have observed a great potential of
the GPU-aware MPI that complements our studies, and we
plan to investigate its performance on different architectures
(e.g., non-blocking collective on Summit). We would also
like to investigate other algorithmic techniques to address the
communication costs (e.g., 2D partitioning, empty off-diagonal
blocks with rank zero). Though we ported only the linear
solver onto the GPUs, we plan to port other parts of the
simulation (e.g., generation or compression of the matrix).

REFERENCES

[1] T. Iwashita, A. Ida, T. Mifune, Y. Takahashi, Software framework for
parallel BEM analyses with H-matrices using MPI and OpenMP, in:
Proceedings of the International Conference on Computational Science,
20017, pp. 12–14.

[2] A. Ida, T. Iwashita, T. Mifune, Y. Takahashi, Parallel hierarchical ma-
trices with adaptive cross approximation on symmetric multiprocessing
clusters, Journal of Information Processing 22 (2014) 642–650.

[3] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM.
J. Sci. and Stat. Comput. 13 (2) (1992) 631–644.

[4] A. Ida, T. Iwashita, T. Mifune, Y. Takahashi, Variable preconditioning of
Krylov subspace methods for hierarchical matrices with adaptive cross
approximation, IEEE Transactions on Magnetics 52 (3) (2015) 1–1.

[5] http://www.t3.gsic.titech.ac.jp/node/6.
[6] http://www.cc.u-tokyo.ac.jp/system/reedbush/

reedbush_intro.html.
[7] T. Dong, A. Haidar, S. Tomov, J. Dongarra, Optimizing the SVD

bidiagonalization process for a batch of small matrices, Procedia Com-
puter Science 108 (Supplement C) (2017) 1008 – 1018, international
Conference on Computational Science, ICCS 2017.

[8] A. Abdelfattah, A. Haidar, S. Tomov, J. Dongarra, Novel hpc techniques
to batch execution of many variable size blas computations on gpus, in:
Proceedings of the International Conference on Supercomputing, 2017,
pp. 5:1–5:10.

[9] A. Abdelfattah, A. Haidar, S. Tomov, J. Dongarra, Performance, design,
and autotuning of batched GEMM for GPUs, in: Proceedings of the In-
ternational Supercomputing Conference (ISC) High Performance, 2016,
pp. 21–38.

[10] M. Hoemmen, Communication-avoiding Krylov subspace methods,
Ph.D. thesis, EECS Dep’t, Univ. of Calif., Berkeley (2010).

[11] E. Carson, N. Knight, J. Demmel, Avoiding communication in two-
sided Krylov subspace methods, Tech. Rep. UCB/EECS-2011-93, EECS
Dept., U.C. Berkeley (2011).

[12] M. Mohiyuddin, M. Hoemmen, J. Demmel, K. Yelick, Minimizing com-
munication in sparse matrix solvers, in: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis,
2009, pp. 36:1–36:12.

[13] P. Ghysels, T. Ashby, K. Meerbergen, W. Vanroose, Hiding global
communication latency in the GMRES algorithm on massively parallel
machines, SIAM J. Sci. Comput. 35 (2013) C48–C71.

[14] S. Cools, W. Vanroose, The communication-hiding pipelined BiCGstab
method for the parallel solution of large unsymmetric linear systems,
Parallel Comput. 65 (C) (2017) 1–20.


