
16

SLATE port to AMD and Intel
platforms
Ahmad Abdelfattah
Mohammed Al Farhan
Cade Brown
Mark Gates
Dalal Sukkari
Asim YarKhan
Jack Dongarra

Innovative Computing Laboratory

April 5, 2021

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Revision Notes
04-2021 first publication

@techreport{abdelfattah2021slate-port,

author={Ahmad Abdelfattah and Mohammed Al Farhan and Cade Brown and Mark Gates

and Dalal Sukkari and Asim YarKhan and Jack Dongarra},

title={{SLATE} port to {AMD} and {Intel} platforms, {SWAN} No. 16},

institution={Innovative Computing Laboratory, University of Tennessee},

year={2021},

month={4},

number={ICL-UT-21-01},

note={revision 04-2021},

url={https://www.icl.utk.edu/publications/swan-016},

}

i

Contents

Contents ii

1 Introduction 1

2 Porting SLATE to use BLAS++ 1
2.1 Simplified code . 1
2.2 New optimizations . 3
2.3 Lost optimizations . 3
2.4 Future improvements . 4

3 Porting BLAS++ to rocBLAS 4

4 Porting BLAS++ to oneMKL 5

References 6

ii

2 Porting SLATE to use BLAS++

1 Introduction

SLATE implements GPU-accelerated linear algebra, relying primarily on vendor-provided
GPU BLAS for performance, in particular batched BLAS routines. Initially, SLATE was written
using NVIDIA’s CUDA and cuBLAS for GPU acceleration. At the time that the SLATE project
was started, it was unclear what GPU technologies would exist for other platforms [1]. Since
then, AMD has developed their ROCm platform, which includes the HIP portability layer,
and Intel has developed their oneAPI platform based on SYCL, a C++ descendant of OpenCL.
These so�ware stacks will be used on upcoming exascale systems: Frontier, built by AMD for
Oak Ridge National Laboratory, and Aurora, built by Intel for Argonne National Laboratory.
Therefore, to support these new platforms, SLATE needed to be ported to both ROCm and
Intel oneMKL.

2 Porting SLATE to use BLAS++

The strategy we employed in SLATE is to leverage the BLAS++ library as a portability layer.
Therefore, we removed CUDA and cuBLAS functions from SLATE, and replaced them with
portable abstractions in the BLAS++ library. This included:

• Replacing CUDA streams and cuBLAS handles with BLAS++ queues.

• Replacing CUDA functions (cudaMalloc, cudaFree, cudaMemcpy, cudaStreamSynchro-
nize, etc.) with BLAS++ wrappers.

• Replacing cuBLAS functions (cublas*Gemm, cublas*GemmBatched, etc.) with BLAS++
wrappers.

2.1 Simpli�ed code

In many cases, the new code using BLAS++ is simpler than the original code using cuBLAS, for
several reasons. BLAS++ handles checking errors from CUDA and cuBLAS, and throwing errors
that occur. Thus the typical error handler macros are no longer needed. Compare the original
code:

1void* dev_mem;

2slate_cuda_call(

3cudaMalloc ((void **)& dev_mem , size));

with the revised code:

1void* dev_mem = blas:: device_malloc <char >(size);

BLAS++ will also handle setting the device as needed based on the queue, eliminating many
uses of cudaSetDevice. Compare Algorithm 2.1 line 2 with Algorithm 2.2. Indeed, with SYCL
used by Intel oneAPI, there is no concept of a “current device”, so set device calls may be even
further eliminated in the future.

1

2 Porting SLATE to use BLAS++ 2.1 Simpli�ed code

Algorithm 2.1Original internal::gemm implementation snippet

1slate_cuda_call(

2cudaSetDevice(device));

3

4// cublas_handle uses this stream

5cudaStream_t stream = C.compute_stream(device);

6cublasHandle_t cublas_handle = C.cublas_handle(device);

7

8slate_cuda_call(

9cudaMemcpyAsync(C.array_device(device , batch_arrays_index),

10C.array_host(device , batch_arrays_index),

11sizeof(scalar_t *)* batch_count *3,

12cudaMemcpyHostToDevice ,

13stream));

14

15if (batch_count_00 > 0) {

16if (layout == Layout :: ColMajor) {

17slate_cublas_call(

18cublasGemmBatched(

19cublas_handle , // uses stream

20cublas_op_const(opA), cublas_op_const(opB),

21mb00 , nb00 , kb,

22&alpha , (const scalar_t **) a_array_dev , lda00 ,

23(const scalar_t **) b_array_dev , ldb00 ,

24&beta , c_array_dev , ldc00 ,

25batch_count_00));

26}

27else {

28slate_cublas_call(

29cublasGemmBatched(

30cublas_handle , // uses stream

31cublas_op_const(opB), cublas_op_const(opA),

32nb00 , mb00 , kb,

33&alpha , (const scalar_t **) b_array_dev , ldb00 ,

34(const scalar_t **) a_array_dev , lda00 ,

35&beta , c_array_dev , ldc00 ,

36batch_count_00));

37}

38}

39

40...

41

42slate_cuda_call(

43cudaStreamSynchronize(stream));

BLAS++ handles the layout argument to switch between row and column-major, eliminating
one case from SLATE, as seen in Algorithm 2.1 line 16.

In BLAS++, the batch arrays for the A, B, and C matrices are passed as std::vectors on the
host. BLAS++ handles copying these vectors to the GPU, alleviating SLATE from that task (see
Algorithm 2.1 line 8).

BLAS++ provides overloading based on the data type, which is needed for the template code
in SLATE. For instance, blas::gemm(..., A, ..., B, ..., C, ..., queue) calls one of
cublasSgemm, cublasDgemm, cublasCgemm, or cublasZgemm, depending on the data type of the
A, B, and C matrices. Previously SLATE had its own overloaded lightweight wrappers for
cuBLAS functions; these were removed in favor of the BLAS++ wrappers.

2

2 Porting SLATE to use BLAS++ 2.2 New optimizations

Algorithm 2.2 Revised internal::gemm implementation snippet

1std::vector <Op> opA_(1, opA);

2std::vector <Op> opB_(1, opB);

3std::vector <scalar_t > alpha_(1, alpha);

4std::vector <scalar_t > beta_(1, beta);

5std::vector <int64_t > k(1, kb);

6// info size 0 disables slow checks in batched BLAS ++.

7std::vector <int64_t > info;

8

9blas::Queue* queue = C.compute_queue(device , queue_index);

10assert(queue != nullptr);

11

12if (c_array00.size() > 0) {

13std::vector <int64_t > m(1, mb00);

14std::vector <int64_t > n(1, nb00);

15std::vector <int64_t > ldda(1, lda00);

16std::vector <int64_t > lddb(1, ldb00);

17std::vector <int64_t > lddc(1, ldc00);

18blas::batch::gemm(

19layout , opA_ , opB_ ,

20m, n, k,

21alpha_ , a_array00 , ldda ,

22b_array00 , lddb ,

23beta_ , c_array00 , lddc ,

24c_array00.size(), info , *queue);

25}

26

27...

28

29queue ->sync ();

2.2 New optimizations

BLAS++ also extends the number of batched routines available. For BLAS, cuBLAS currently
provides only batched gemm and batched trsm. BLAS++ implements all Level 3 batched BLAS
routines: gemm, hemm, herk, her2k, symm, syrk, syr2k, trmm, trsm. If an underlying batched
implementation does not exist, BLAS++ uses a multi-stream approach, calling the non-batched
implementation for eachmatrix in a di�erent stream, currently forking up to 10 parallel streams,
which are then joined. This allowed SLATE to move some operations from non-batched to
batched, such as herk on diagonal tiles in internal::herk, gaining a performance improvement
even with CUDA.

2.3 Lost optimizations

The port to BLAS++ did eliminate some optimizations that were in SLATE. Taking gemm as a
typical BLAS call, it has 3 matrices: A, B, C. In SLATE, the batch arrays for all 3 were packed
one a�er another into a single array, and a single cudaMemcpy was used to copy it to the GPU. In
BLAS++, these are 3 std::vector arguments, each of which must be copied individually to the
GPU, invoking 3 small memcpy calls instead of 1 larger memcpy call. This change appeared to
have negligible impact on performance.

SLATE also had a split gemm implementation, where preparing the batch arrays and copying
them to the GPU was handled in one OpenMP task, and the actual execution of the gemm was

3

3 Porting BLAS++ to rocBLAS 2.4 Future improvements

in another OpenMP task [2]. This was motivated by contention between di�erent OpenMP
tasks for the DMA to copy data to the GPU. BLAS++ does not currently support this model.
While this may a�ect performance when using many GPUs such as on an 8 GPU NVIDIA DGX
node, it does not seem to a�ect performance on Summit, where each MPI process has either 1
or 3 GPUs, depending on job settings.

2.4 Future improvements

One signi�cant performance issue was discovered in BLAS++, where if the std::vector for
info was of size batch_count, the BLAS++ code to check for errors added signi�cant overhead.
This may be a collision of OpenMP constructs, as BLAS++ attempts to multithread the checking,
but in SLATE the BLAS++ call occurs inside an OpenMP task. We will investigate further to
resolve the issue. Currently we set info to be of size 0, which avoids the overhead, as seen in
Algorithm 2.2 line 7.

Batched routines in BLAS++ have a di�erent interface than in cuBLAS. Most arguments in
batched BLAS++ are passed as a std::vector. If an argument’s vector is of size 1, that argument
is �xed for all items in the batch; if it is of size batch_count, it is variable across items in the
batch. This potentially adds much more �exibility by allowing batches with di�erent size
matrices. However, as the underlying implementation (in cuBLAS, rocBLAS, etc.) presently
has only �xed size matrices, it is most e�cient to retain this restriction in use. Thus, SLATE
uses size 1 vectors for most arguments including transposition operation, matrix dimensions,
leading dimensions, alpha, and beta, as seen in Algorithm 2.2.

The need to set up std::vector objects for every single argument is a bit of a burden for
using batched BLAS++. A possible revision of BLAS++ would use C++ techniques to tem-
plate the batched functions so they could take either singletons (e.g., int m) or vectors (e.g.,
std::vector<int>& m). We brie�y investigated this for feasibility, but need more work to
implement in BLAS++. This would further simplify SLATE’s code, eliminating 10 lines from
Algorithm 2.2.

Currently, SLATE’s routines generally build 4 batches: one for interior tiles, one for the bottom
row, one for the right column, and one for the bottom-right tile. It is assumed that tiles within
each of these batches are the same size, but di�erent batches could have di�erent sizes. This
�ts well with the “group API” for batch routines, �rst proposed by Intel and incorporated in the
Batched BLAS proposal [3]. BLAS++ could be extended to support the group API, internally
mapping to the �xed size API for backends that lack the group API.

3 Porting BLAS++ to rocBLAS

Most of the work in porting BLAS++ to rocBLAS was in refactoring the BLAS++ code to be more
usable by applications. Previously, BLAS++ Queues were de�ned only if cuBLAS was available.
This would necesitate having #ifdef BLAS_HAVE_CUBLAS in application codes like SLATE. We
reorganized code so even if no GPU BLAS is available, the Queue class is de�ned, though it
cannot be instantiated without a GPU device being available. Similarly, all GPU BLAS functions
are now always de�ned, though they cannot be called without a GPU device and Queue, and

4

4 Porting BLAS++ to oneMKL

throw a blas::Error. As a special case, blas::get_device_count() simply returns 0 if no GPU
backend exists. This reorganization eliminates the need for #ifdef related to BLAS++ GPU
backends in SLATE code, and in other applications leveraging BLAS++.

The con�guration and CMake scripts were also updated for ROCm. As part of this, preprocessor
de�nes such as BLAS_HAVE_CUBLASweremoved into a header include/blas/defines.h created
during con�guration, which allows the application to know what compile-time options were
used, including if a GPU backend is available.

A�er this refactoring of the BLAS++ code, changes related to ROCm are con�ned to de�ning
what exists in the Queue class (streams, handles), and simple wrappers around BLAS and utility
functions. For instance, ROCm-speci�c code is limited to these source code �les in BLAS++:

1include/blas/device.hh

2src/device_batch_trmm.cc // only to fix an bug with ROCm 4.0

3src/device_queue.cc

4src/device_utils.cc

5src/rocblas_wrappers.cc

Higher level BLAS++ routines are mostly backend-independent and call these lower level
wrappers. For instance, blas::batch::herk handles checking arguments, interpretting the
std::vector arguments, copying these batch arrays to the GPU, and then invoking the low
level herk wrapper around cublasHerk or rocblasHerk.

As BLAS++ already had a cuBLAS backend, we chose to port it to use rocBLAS rather than
hipBLAS. Porting to hipBLAS, which is ROCm’s own portability layer across cuBLAS and
rocBLAS, would needlessly add another layer.

4 Porting BLAS++ to oneMKL

The port of BLAS++ to Intel oneMKL was signi�cantly more di�cult, because SYCL has some
very di�erent constructs than CUDA and ROCm/HIP. Indeed, HIP is speci�cally designed to
closely match CUDA, with porting o�en being a matter of replacing “cuda” with “hip” and the
like. Signi�cant di�erences in SYCL compared to CUDA and HIP include:

• In CUDA and ROCm, devices are enumerate by integers: device 0, 1, In contrast, in
SYCL devices must be queried, and are each represented by an opaque object. We handle
this query internally, so Queues can still be constructed by an integer device ID.

• As previously mentioned, SYCL has no notion of a current device. Memory allocation
must take a SYCL queue to know what device it uses. This necessitated a change in the
BLAS++ API to take a BLAS++ queue in device malloc and free routines.

• It is unclear how or if SYCL supports pinned memory.

• It is unclear if SYCL has 2D memcpy, which is frequently used in dense linear algebra to
copy submatrices. We emulate 2D memcpy by looping over columns of the submatrix.
(In SLATE, tiles are frequently contiguous, so can be copied with a plain (1D) memcpy
instead of 2D memcpy.)

5

References References

• It is unclear how to synchronize between SYCL queues, in the manner we synchronize
CUDA and HIP streams using events. Thus, presently BLAS++ with oneMKL does not
support multi-stream for batched BLAS.

• Device memory allocation failed with segfaults in our testing. Instead, we used universal
shared memory (USM) allocation.

We hope that some of these di�erences can be resolved as our understanding of SYCL and
oneMKL improves, and as the so�ware stack matures. However, so far none of these di�erences
has been a complete barrier to having a portable implementation of SLATE with BLAS++.

References

[1] Ahmad Abdelfattah, Hartwig Anzt, Aurelien Bouteiller, Anthony Danalis, Jack Dongarra,
Mark Gates, AzzamHaidar, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, StephenWood,
Panruo Wu, Ichitaro Yamazaki, and Asim YarKhan. Roadmap for the Development of
a Linear Algebra Library for Exascale Computing: SLATE: So�ware for Linear Algebra
Targeting Exascale. SLATEWorking Notes 1, ICL-UT-17-02, 2017. URL http://www.icl.utk.
edu/publications/swan-001.

[2] Mark Gates, Ali Charara, Asim YarKhan, Dalal Sukkari, Mohammed Al Farhan, and Jack
Dongarra. SLATE working note 14 Performance Tuning SLATE. Technical Report ICL-
UT-XX-XX, Innovative Computing Laboratory, University of Tennessee, December 2019.
revision 12-2019.

[3] Ahmad Abdelfattah, Timothy Costa, Jack Dongarra, Mark Gates, Azzam Haidar, Sven
Hammarling, Nick Higham, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, and Mawussi
Zounon. A set of batched basic linear algebra subprograms. ACMTransactions onMathematical
So�ware (TOMS), 2020. Accepted, in press.

6

http://www.icl.utk.edu/publications/swan-001
http://www.icl.utk.edu/publications/swan-001

	Contents
	Introduction
	Porting SLATE to use BLAS++
	Simplified code
	New optimizations
	Lost optimizations
	Future improvements

	Porting BLAS++ to rocBLAS
	Porting BLAS++ to oneMKL
	References

