
ECP Milestone Report

Public release of CEED 2.0

WBS 2.2.6.06, Milestone CEED-MS25

Jed Brown
Ahmad Abdelfattah

Valeria Barra
Veselin Dobrev
Yohann Dudouit
Paul Fischer
Tzanio Kolev
David Medina
Misun Min

Thilina Ratnayaka
Cameron Smith

Jeremy Thompson
Stanimire Tomov
Vladimir Tomov
Tim Warburton

April 3, 2019

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or
any agency thereof.

ECP Milestone Report

Public release of CEED 2.0
WBS 2.2.6.06, Milestone CEED-MS25

Office of Advanced Scientific Computing Research
Office of Science

US Department of Energy

Office of Advanced Simulation and Computing
National Nuclear Security Administration

US Department of Energy

April 3, 2019

Exascale Computing Project (ECP) iii CEED-MS25

ECP Milestone Report

Public release of CEED 2.0
WBS 2.2.6.06, Milestone CEED-MS25

Approvals

Submitted by:

Tzanio Kolev, LLNL Date
CEED PI

Approval:

Andrew R. Siegel, Argonne National Laboratory Date
Director, Applications Development
Exascale Computing Project

Exascale Computing Project (ECP) iv CEED-MS25

Revision Log

Version Creation Date Description Approval Date

1.0 April 3, 2019 Original

Exascale Computing Project (ECP) v CEED-MS25

EXECUTIVE SUMMARY

In this milestone, we created and made publicly available the second full CEED software distribution, release
CEED 2.0, consisting of software components such as MFEM, Nek5000, PETSc, MAGMA, OCCA, etc.,
treated as dependencies of CEED. The release consists of 12 integrated Spack packages for libCEED, mfem,
nek5000, nekcem, laghos, nekbone, hpgmg, occa, magma, gslib, petsc and pumi plus the CEED meta-package.

The artifacts delivered include a consistent build system based on the above 13 Spack packages, doc-
umentation and verification of the build process, as well as improvements in the integration between
different CEED components. As part of CEED 2.0, we also released the next version of libCEED
(v0.4), which contains four new CPU backends, two new GPU backends, CPU backend optimizations,
initial support for operator composition, performance benchmarking, and a Navier-Stokes demo. See
the CEED website, http://ceed.exascaleproject.org/ceed-2.0/ and the CEED GitHub organization,
http://github.com/ceed for more details.

In addition to details and results from these efforts, in this document we report on other project-wide activ-
ities performed in Q2 of FY19, including: a version of the Laghos miniapp for CTS-2 procurement, extensive
GPU performance baseline benchmarking for the Urban and ExaSMR applications, papers, minisimposium
presentations, and other outreach efforts.

Exascale Computing Project (ECP) vi CEED-MS25

http://ceed.exascaleproject.org/ceed-2.0/
http://github.com/ceed

TABLE OF CONTENTS

Executive Summary vi

List of Figures viii

List of Tables ix

1 Introduction 1

2 CEED 2.0 Packages 1
2.1 libCEED 0.4 . 1

2.1.1 New libCEED Backends . 1
2.1.2 Operator Composition . 1
2.1.3 Benchmarking libCEED Performance . 1
2.1.4 Navier-Stokes example . 4

2.2 MFEM 3.4 . 7
2.3 Nek5000 version 19.0-rc2 . 9
2.4 PETSc 3.11 . 10
2.5 OCCA 1.0.8 . 10
2.6 PUMI 2.2.0 . 11
2.7 MAGMA 2.5.0 . 11
2.8 Laghos 2.0 . 11
2.9 HPGMG 0.4 . 11
2.10 gslib v.1.0.4 . 12
2.11 NekCEM . 12

3 CEED 2.0 Testing and Distribution 12
3.1 Mac . 12
3.2 Linux RHEL7 . 13
3.3 Linux Ubuntu . 14
3.4 Cori . 14
3.5 ALCF Theta . 16
3.6 Other machines: OLCF Summit, LLNL TOSS3 and Lassen 17

4 GPU Performance Baselines for CEED Applications 17
4.1 Urban: libParanumal performance on Summit vs. Titan . 17
4.2 Urban: NekCEM performance on Summit vs. Titan . 17
4.3 ExaSMR: Speedup of NekRS on Summit vs. Nek5000 on Titan 19
4.4 ExaSMR: Speedup of Steady Thermal Solver vs. Transient Calculation 19

5 Other Project Activities 20
5.1 Laghos CTS-2 benchmark . 20
5.2 Outreach . 21

6 Conclusion 21

Exascale Computing Project (ECP) vii CEED-MS25

LIST OF FIGURES

1 Pure C Refrence Backends . 2
2 AVX Backends . 2
3 LIBXSMM Backends . 3
4 Pure C Refrence Backends . 3
5 AVX Backends . 4
6 LIBXSMM Backends . 4
7 Advection problem. A blob of energy is advected by a uniform circular flow, with constant

speed |u| = 0.5 m/s. On the left, the initial condition at t = 0 s; on the right, the blob has
been transported for half a circle, at t = 12 s. This simulation has been run with degree
6 polynomials, Q = 8 number of quadrature points along one dimension, 512 elements of
[0, 500]3 m dimension. 6

8 Density current problem. A bubble of cold air in the stratified atmosphere falls under its own
weight and is transported towards the ground by convective currents. In this figure we display
the volume density of the bubble. On the left, the initial condition at t = 0 s; on the right, the
blob has dropped at t = 73 s. This simulation has been run with degree 9 polynomials, Q = 13
number of quadrature points along one dimension, 864 elements of [0, 1000]3 m dimension. . . 7

9 Nek5000+libParanumal (NekRS): Taylor-Green vortex. 18
10 Nek5000+libParanumal (NekRS) performance baseline on Summit. 18
11 NekCEM performance baseline on Summit. 19
12 NekRS vs. Nek5000 performance baseline. 20

Exascale Computing Project (ECP) viii CEED-MS25

LIST OF TABLES

1 Experimental code NekRS run for 1000 timesteps with 8 iterations fixed for velocity and
pressure. The ratio of data size 2.666 (8000/3000). Performance is shown in Figure 10. 17

2 NekCEM run for 1000 timesteps with 5-stage 4th-order Runge-Kutta time stepping. The ratio
of data size 2.777 (5000/1800). Performance is shown in Figure 11. 19

3 Nek5000 OpenACC version run for 100 timesteps of eddy simulations, without fixing iterations.
The ratio of data size 3.222 (1600/500). Performance is shown in Figure 12. 20

4 Time and # iterations required to reach L2 errors at the level of 10−7, using 8 KNL nodes
(512 MPI ranks) on Argonne’s LCRC/Bebop. 20

Exascale Computing Project (ECP) ix CEED-MS25

1. INTRODUCTION

In this milestone, we created and made publicly available the second full CEED software distribution, release
CEED 2.0, consisting of software components such as MFEM, Nek5000, PETSc, MAGMA, OCCA, etc.,
treated as dependencies of CEED. The release consists of 12 integrated Spack packages for libCEED, mfem,
nek5000, nekcem, laghos, nekbone, hpgmg, occa, magma, gslib, petsc and pumi plus the CEED meta-package.
This update included all new developments in the project since the CEED 1.0 release.

The artifacts delivered include a consistent build system based on the above 13 Spack packages, doc-
umentation and verification of the build process, as well as improvements in the integration between
different CEED components. As part of CEED 2.0, we also released the next version of libCEED
(v0.4), which contains four new CPU backends, two new GPU backends, CPU backend optimizations,
initial support for operator composition, performance benchmarking, and a Navier-Stokes demo. See
the CEED website, http://ceed.exascaleproject.org/ceed-2.0/ and the CEED GitHub organization,
http://github.com/ceed for more details.

2. CEED 2.0 PACKAGES

2.1 libCEED 0.4

libCEED version 0.4 was released in March 2019. The notable features of this release are new CPU and GPU
backends, CPU backend optimizations, initial support for operator composition, performance benchmarking,
and a Navier-Stokes demo.

2.1.1 New libCEED Backends

Six new backends are included in this release, four CPU backends and two GPU backends.
The new CPU backends come in two families. The /cpu/self/*/serial backends process one element at a

time and are intended for meshes with a smaller number of high order elements. The /cpu/self/*/blocked

backends process blocked batches of eight interlaced elements and are intended for meshes with higher
numbers of elements. The /cpu/self/avx/* backends rely upon AVX instructions to provide vectorized CPU
performance. The /cpu/self/xsmm/* backends rely upon the LIBXSMM package to provide vectorized CPU
performance.

The /gpu/cuda/* backends provide GPU performance strictly using CUDA. The /gpu/cuda/ref backend
is a reference CUDA backend, providing reasonable performance for most problem configurations. The
/gpu/cuda/reg backend uses a simple parallelization approach, where each thread treats a finite element.
Using just in time compilation, provided by nvrtc (NVidia Runtime Compiler), and runtime parameters, this
backend unroll loops and map memory address to registers. The /gpu/cuda/reg backend achieve good peak
performance for 1D, 2D, and low order 3D problems, but performance deteriorates very quickly when threads
run out of registers.

2.1.2 Operator Composition

Initial aupport for composing libCEED operators was added in version 0.4. The new capability supports
heterogeneous elements, such as mixed mesh or multi-physics problems. Operator composition is currently
only supported by CPU backends. Future releases will extend operator composition to GPU backends and
optimize performance.

2.1.3 Benchmarking libCEED Performance

Performance benchmarking was added using PETSc implementations of Benchmark Problems 1 and 3. This
benchmarking can be used to fine tune the build flags for a particular environment and determine the most
performant backend.

The following benchmark plots were generated on University of Colorado Boulder’s Summit machine using
four full nodes with Intel Xeon E5-2680 v3 processors. Five benchmarking runs were averaged to reduce the

Exascale Computing Project (ECP) 1 CEED-MS25

http://ceed.exascaleproject.org/ceed-2.0/
http://github.com/ceed

noise in the results. The first six plots show the results of Benchmark Problem 1 using reference backends
in pure C and optimized backends using AVX instructions and LIBXSMM. The plots on the left show the
backends using internal vectorization for each element and the plots on the right show the backends using
external vectorization across blocks of eight elements.

102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/ref/serial, petsc-bp1
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(a) Internal Vectorization

102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/ref/blocked, petsc-bp1
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(b) External Vectorization

Figure 1: Pure C Refrence Backends

102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/avx/serial, petsc-bp1
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(a) Internal Vectorization

102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/avx/blocked, petsc-bp1
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(b) External Vectorization

Figure 2: AVX Backends

Exascale Computing Project (ECP) 2 CEED-MS25

102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/xsmm/serial, petsc-bp1
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(a) Internal Vectorization

102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/xsmm/blocked, petsc-bp1
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(b) External Vectorization

Figure 3: LIBXSMM Backends

The next six plots show the results of Benchmark Problem 3 for the same six backends described above.

102 103 104 105 106

Points per compute node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/ref/serial, petsc-bp3
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(a) Internal Vectorization

102 103 104 105 106

Points per compute node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/ref/blocked, petsc-bp3
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(b) External Vectorization

Figure 4: Pure C Refrence Backends

Exascale Computing Project (ECP) 3 CEED-MS25

102 103 104 105 106

Points per compute node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/avx/serial, petsc-bp3
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(a) Internal Vectorization

102 103 104 105 106

Points per compute node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/avx/blocked, petsc-bp3
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(b) External Vectorization

Figure 5: AVX Backends

102 103 104 105 106

Points per compute node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/xsmm/serial, petsc-bp3
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(a) Internal Vectorization

102 103 104 105 106

Points per compute node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8 /cpu/self/xsmm/blocked, petsc-bp3
p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9
p=10
p=11
p=12
p=13
p=14
p=15
p=16

(b) External Vectorization

Figure 6: LIBXSMM Backends

2.1.4 Navier-Stokes example

A new explicit Navier-Stokes example was added to the family of libCEED examples. This example
represents work being done towards a miniapp for a Navier-Stokes solver, that fully exploits libCEED
capabilities. The goal of the libCEED team was to provide users with an example that is more involved
in terms of the physics solved for (therefore, also in terms of the corresponding mathematical description
and QFunction implementation), compared to the existing CEED Bake-off Problems (BPs) (see https:

//ceed.exascaleproject.org/bps/), so that more complex problems of interest to the scientific community

Exascale Computing Project (ECP) 4 CEED-MS25

https://ceed.exascaleproject.org/bps/
https://ceed.exascaleproject.org/bps/

can be efficiently solved by using libCEED.
This example solves the time-dependent Navier-Stokes equations of compressible gas dynamics in a

static Eulerian three-dimensional frame using structured high-order finite element/spectral element spatial
discretizations and explicit high-order time-stepping. The Navier-Stokes example has been developed using
PETSc, so that the pointwise physics (defined at quadrature points) is separated from the parallelization and
meshing concerns.

The mathematical formulation is given in what follows. The compressible Navier-Stokes equations in
conservative form are

∂ρ

∂t
+∇ ·U = 0 , (1a)

∂U

∂t
+∇ ·

(
U ⊗U
ρ

+ P I3

)
+ ρgk̂ = ∇ · σ , (1b)

∂E

∂t
+∇ ·

(
(E + P)U

ρ

)
= ∇ · (u · σ + k∇T) , (1c)

where σ = µ(∇u+ (∇u)T +λ(∇·u)I3) is the Cauchy (symmetric) stress tensor, with µ the dynamic viscosity
coefficient, and λ = −2/3 the Stokes hypothesis constant. In equations (1), ρ represents the volume mass
density, U the momentum density (defined as U = ρu, where u is the vector velocity field), E the total
energy density (defined as E = ρe, where e is the total energy), I3 represents the 3× 3 identity matrix, g the
gravitational acceleration constant, k̂ the unit vector in the z direction, k the thermal conductivity constant,
T represents the temperature, and P the pressure, given by the following equation of state

P = (cp/cv − 1) (E −U ·U/(2ρ)− ρgz) , (2)

where cp is the specific heat at constant pressure and cv is the specific heat at constant volume (that define
γ = cp/cv, the specific heat ratio).

The system (1) can be rewritten in vector form

∂q

∂t
+∇ · F (q) = S(q) , (3)

for the state variables 5-dimensional vector

q =

 ρ
U ≡ ρu
E ≡ ρe

 ← volume mass density
← momentum density
← energy density

(4)

where the flux and the source terms, respectively, are given by

F (q) =

 U
(U ⊗U)/ρ+ P I3 − σ
(E + P)U/ρ− (u · σ + k∇T)

 , (5a)

S(q) = −

 0

ρgk̂
0

 . (5b)

For the spatial discretization, we use high-order finite elements/spectral elements, namely, the high-order
Lagrange polynomials defined over non-uniformly spaced nodes, the Legendre-Gauss-Lobatto (LGL) points

(roots of the pth-order Legendre polynomial Pp). We discretize the domain, Ω ⊂ R3, by letting Ω =
⋃Ne

e=1 Ωe,
with Ne disjoint hexahedral elements. The physical coordinates are x = (x, y, z) ∈ Ωe, while the reference
coordinates are ξ = (ξ, η, ζ) ∈ I = [−1, 1]3. Let the discrete solution be

qN (x, t)(e) =

P∑
k=1

ψk(x)q
(e)
k (6)

Exascale Computing Project (ECP) 5 CEED-MS25

Figure 7: Advection problem. A blob of energy is advected by a uniform circular
flow, with constant speed |u| = 0.5 m/s. On the left, the initial condition at
t = 0 s; on the right, the blob has been transported for half a circle, at t = 12 s.
This simulation has been run with degree 6 polynomials, Q = 8 number of
quadrature points along one dimension, 512 elements of [0, 500]3 m dimension.

with P the number of nodes in the element (e). We use tensor-product bases ψkji = hi(ξ)hj(η)hk(ζ).
For the time discretization, we use an explicit formulation

qn+1
N − qnN

∆t
= −[∇ · F (qN)]n + [S(qN)]n , (7)

solved with the adaptive Runge-Kutta-Fehlberg (RKF4-5) method by default (any explicit time-stepping
scheme avaialble in PETSc can be chosen at runtime).

The Navier-Stokes solver can be built by moving from the CEED main directory

cd libCEED/examples/navier -stokes

and by running

make

For testing and validation purposes the libCEED team has identified a set of problems for the Navier-Stokes
solver (see https://github.com/CEED/libCEED/tree/master/examples/navier-stokes).

The Advection problem. A simplified version of system (1), only accounting for the transport of total
energy, is given by

∂E

∂t
+∇ · (uE) = 0 , (8)

with u the vector velocity field. In this particular test case, a blob of total energy (defined by a characteristic
radius rc) is transported by a uniform circular velocity field. We have solved (8) with no-slip and non-
penetration boundary conditions for u, and no-flux for E. This problem can be run with

./ navierstokes -problem advection

The size of the domain can be specified by the command line options lx, ly, lz, the element resolution
with resx, resy, resz, and the characteristic radius of the energy blob by rc. For instance, a domain
Ω = [0, 3000]3 m can be discretized with elements of 10003 m size, with

./ navierstokes -problem advection -lx 3000 -ly 3000 -lz 3000 -resx 1000 -resy

1000 -resz 1000 -rc 800

See Figure 7 for an example of results obtained for this problem type.

The Density Current problem. For this test problem, a cold air bubble (of radius rc) drops by convection
in a neutrally stratified atmosphere. Its initial condition is defined in terms of the Exner pressure, π(x, t),

Exascale Computing Project (ECP) 6 CEED-MS25

https://github.com/CEED/libCEED/tree/master/examples/navier-stokes

Figure 8: Density current problem. A bubble of cold air in the stratified
atmosphere falls under its own weight and is transported towards the ground by
convective currents. In this figure we display the volume density of the bubble.
On the left, the initial condition at t = 0 s; on the right, the blob has dropped
at t = 73 s. This simulation has been run with degree 9 polynomials, Q = 13
number of quadrature points along one dimension, 864 elements of [0, 1000]3 m
dimension.

and potential temperature, θ(x, t), that relate to the state variables via

ρ =
P0

(cp − cv)θ(x, t)
π(x, t)

cv
cp−cv , (9a)

e =cvθ(x, t)π(x, t) + u · u/2 + gz , (9b)

where P0 is the atmospheric pressure. For this problem, we have used no-slip and non-penetration boundary
conditions for u, and no-flux for mass and energy densities. This problem can be run with

./ navierstokes -problem density_current

Similarly to the advection example, the user can specify the size of the physical domain, the element resolution,
and the characteristic radius of the thermal bubble, together with all other physical parameters involved, at
runtime. See Figure 8 for an example of results obtained for this problem type.

For both problems, the user can specify how often to print outputs (in terms of number of steps), by adding
the command line option -output freq. For instance, to indicate to print outputs every 1000 steps

./ navierstokes -output_freq 1000

By doing so, outputs for the solution in vts format will be generated. Moreover, the libCEED team has
developed checkpoints by printing the last calculated solution and the time stamp at which this solution was
printed in binary format, so that the user can subsequently continue an existing simulation via the command
line option -continue, followed by the step number of the solution checkpoint that is desired to be continued.
For instance, to continue a simulation from the output number 2000

./ navierstokes -continue 2000

For a list of all available options see https://github.com/CEED/libCEED/tree/master/examples/navier-stokes/
README.md.

2.2 MFEM 3.4

The CEED 2.0 distribution includes version 3.4 of MFEM, which adds the following new features compared
to CEED 1.0:

• More general and efficient mesh adaptivity

Exascale Computing Project (ECP) 7 CEED-MS25

https://github.com/CEED/libCEED/tree/master/examples/navier-stokes/README.md
https://github.com/CEED/libCEED/tree/master/examples/navier-stokes/README.md

– Added support for PUMI, the Parallel Unstructured Mesh Infrastructure from https://scorec.

rpi.edu/pumi. PUMI is an unstructured, distributed mesh data management system that is
capable of handling general non-manifold models and effectively supports automated adaptive
analysis. PUMI enables for the first time support for parallel unstructured modifications of MFEM
meshes.

– Significantly reduced MPI communication in the construction of the parallel prolongation matrix in
ParFiniteElementSpace, for much improved parallel scaling of non-conforming AMR on hundreds
of thousands of MPI tasks. The memory footprint of the ParNCMesh class has also been reduced.

– In FiniteElementSpace, the fully assembled refinement matrix is now replaced by default by a
specialized refinement operator. The operator option is both faster and more memory efficient
than using the fully assembled matrix. The old approach is still available and can be enabled, if
needed, using the new method FiniteElementSpace::SetUpdateOperatorType().

• Discretization improvements

– Added support for a general high-order-to-low-order refined transfer of GridFunction and true-dof
data from a high-order finite element space defined on a coarse mesh, to a low-order refined space
defined on a refined mesh. The new methods, GetTransferOperator and GetTrueTransferOperator

in the FiniteElementSpace classes, work in both serial and parallel and support matrix-based as
well as matrix-free transfer operator representations. They use a new method, GetTransferMatrix,
in the FiniteElement class similar to GetLocalInterpolation, that allows the coarse FiniteElement

to be different from the fine FiniteElement.

– Added class ComplexOperator, that implements the action of a complex operator through the
equivalent 2 × 2 real formulation. Both symmetric and antisymmetric block structures are
supported.

– Added classes for general block nonlinear finite element operators (deriving from BlockNonlinearForm

and ParBlockNonlinearForm) enabling solution of nonlinear systems with multiple unknowns in
different function spaces. Such operators have assemble-based action and also support assembly of
the gradient operator to enable inversion with Newton iteration.

– Added variable order NURBS: for each space each knot vector in the mesh can have a different
order. The order information is now part of the finite element space header in the NURBS mesh
output, so NURBS meshes in the old format need to be updated.

– In the classes NonlinearForm and ParNonlinearForm, added support for non-conforming AMR
meshes.

– New specialized time integrators: symplectic integrators of orders 1-4 for systems of first order
ODEs derived from a Hamiltonian and generalized-alpha ODE solver for the filtered NavierStokes
equations with stabilization. See classes SIASolver and GeneralizedAlphaSolver in linalg/ode.hpp.

– Inherit finite element classes from the new base class TensorBasisElement, whenever the basis can
be represented by a tensor product of 1D bases.

– Added support for elimination of boundary conditions in block matrices.

• New and updated examples and miniapps

– Added a new serial and parallel example (ex19) that solves the quasi-static incompressible hypere-
lastic equations. The example demonstrates the use of block nonlinear forms as well as custom
block preconditioners.

– Added a new electromagnetics miniapp, Maxwell, for simulating time-domain electromagnetics
phenomena as a coupled first order system of equations.

– A simple local refinement option has been added to the mesh-explorer miniapp (menu option
’r’, sub-option ’l’) that selects elements for refinement based on their spatial location - see the
function region() in the source file.

Exascale Computing Project (ECP) 8 CEED-MS25

https://scorec.rpi.edu/pumi
https://scorec.rpi.edu/pumi

– Added a set of miniapps specifically focused on Isogeometric Analysis (IGA) on NURBS meshes in
the miniapps/nurbs directory. Currently the directory contains variable order NURBS versions of
examples 1, 1p and 11p.

– Added PUMI versions of examples ex1, ex1p, ex2 and ex6p in a new examples/pumi directory. The
new examples demonstrate the PUMI APIs for parallel and serial mesh loading (ex1 and ex1p),
applying BCs using classification (ex2), and performing parallel mesh adaptation (ex6p).

– Added two new miniapps related to DataCollection I/O in miniapps/tools: load-dc.cpp can be
used to visualize fields saved via DataCollection classes; convert-dc.cpp demonstrates how to
convert between MFEM’s different concrete DataCollection options.

– Example 10p with its SUNDIALS and PETSc versions have been updated to reflect the change in
the behavior of the method ParNonlinearForm::GetLocalGradient() and now works correctly on
non-conforming AMR meshes. Example 10 and its SUNDIALS version have also been updated to
support non-conforming AMR meshes.

• Miscellaneous

– Documented project workflow and provided contribution guidelines in the new top-level file,
CONTRIBUTING.md.

– Added (optional) Conduit Mesh Blueprint support of MFEM data for both in-core and I/O
use cases. This includes a new ConduitDataCollection that provides json, simple binary, and
HDF5-based I/O. Support requires Conduit ≥ v0.3.1 and VisIt ≥ v2.13.1 will read the new Data
Collection outputs.

– Added a new developer tool, config/sample-runs.sh, that extracts the sample runs from all
examples and miniapps and runs them. Optionally, it can save the output from the execution to
files, allowing comparison between different versions and builds of the library.

– Support for building a shared version of the MFEM library with GNU make.

– Added a build option, MFEM USE EXCEPTIONS=YES, to throw an exception instead of calling abort on
MFEM errors.

– When building with the GnuTLS library, switch to using X.509 certificates for secure socket
authentication. Support for the previously used OpenPGP keys has been deprecated in GnuTLS
3.5.x and removed in 3.6.0. For secure communication with the visualization tool GLVis, a new set
of certificates can be generated using the latest version of the script glvis-keygen.sh from GLVis.

– Upgraded MFEM to support Axom 0.2.8. Prior versions are no longer supported.

2.3 Nek5000 version 19.0-rc2

The CEED 2.0 distribution includes version 19.0-rc2 of Nek5000 adds the following new features compared to
CEED 1.0:

• Enhanced scalability

– Uncoupled multi-session (neknek) simulations

– Gather scatter operations across sessions

– Gather scatter options across gtp-planes

– par file support for postnek

– mkSIZE to automatically create SIZE file

– Object and boundary handling

– Support ParMETIS partitioner

• Enhanced algorithmic supports

– RANS k-ω and k-ω-SST (experimental)

Exascale Computing Project (ECP) 9 CEED-MS25

– Online mesh-smoother (experimental)

– FEM AMG preconditioner (experimental) p40=3.

– SEMG AMG HYPRE preconditioner (experimental) p40=2.

– Lagrangian phase model - LPM (experimental)

• Miscellaneous

– ElapsedTime option for writeControl (in par)

– Print runtime-statistics every 100 steps

– Support for GNU 8.x compilers

– Support for Cray compilers

– Support for ARM compilers

– CHT support for generic fld reader

– Overwrite core routines in usr

2.4 PETSc 3.11

PETSc 3.11 includes contributions from nearly 90 contributors since v3.8.3 (included in CEED-1.0). Some
notable features for CEED include

• VecScatter support for use of shared memory within a node and for using PetscSF (heavily used for
unstructured mesh operations),

• AVX-512 optimizations and new matrix formats (sliced ELLPACK and MKL inspector-executor),

• higher performance scalable sparse matrix-matrix products and PTAP operations (used by algebraic
multigrid setup),

• improved parallel mesh IO and hierarchical operations,

• pipelined Krylov methods with improved stability properties, and

• Python-3.4+ support (in addition to Python-2.6+).

2.5 OCCA 1.0.8

OCCA has released versions 1.0.0 through 1.0.8 thanks to 6 contributors, which include the following features
and updates

• OKL parser improvements

• Enabled kernel compilation using AMD’s HIP

• Added kernel type safety by giving occa::memory (C++) and occaMemory (C) optional type hints

• Test coverage improvement (57.9% → 70.9%)

• Enabled OKL @attributes through #pragma occa attributes which can be used in regular C / C++
code

• Released initial Python API which supports building OKL kernels through Python’s native function
syntax

Exascale Computing Project (ECP) 10 CEED-MS25

2.6 PUMI 2.2.0

The principal feature of PUMI 2.2.0 is inclusion in the December 2018 XSDK-0.4.0 release. Several additional
developments are listed below.

• Travis CI nightly testing (3450a945)

• User documentation of mesh and geometric model support (https://github.com/SCOREC/core/wiki/
Geometric-Models, https://github.com/SCOREC/core/wiki/Mesh-Generation)

• Field cloning (6f3c3926)

• Generalizations of field accumulation (d783b19e)

• Compatibility with Simmetrix SimModSuite 12.0.180811 (06df5a0f)

• Support for discontinuous Galerkin methods with Simmetrix meshes (1727b32b)

2.7 MAGMA 2.5.0

The CEED 2.0 distribution includes developments from the MAGMA 2.4 release (on 06/25/18) and the latest
MAGMA 2.5 release (on 01/02/2019). This includes routines for batched computations and support for the
fast FP16 Tensor Cores arithmetic in Nvidia V100 GPUs, namely:

• Batched device interface routines for use in tensor contractions;

• Performance improvements across many batch routines, including batched TRSM, batched LU, batched
LU-nopiv, and batched Cholesky;

• Batched GEMM with support for strided access of the matrices;

• GEMM in FP16 arithmetic (HGEMM) as well as auxiliary functions to cast matrices from FP32 to
FP16 storage (magmablas slag2h) and from FP16 to FP32 (magmablas hlag2s);

• Mixed-precision solver that is able to provide an FP64 solution with up to 4X speedup using the fast
FP16 Tensor Cores arithmetic in the Nvidia V100 GPUs.

2.8 Laghos 2.0

The CEED 2.0 distribution includes version 2.0 of Laghos, which introduces four new variants of the miniapp,
namely,

• pure CUDA version, where the major computation kernels are rewritten in CUDA without utilizing any
intermediate abstraction layers;

• OCCA version, based on the OCCA abstraction layer;

• RAJA version, based on the RAJA abstraction layer;

• AMR version, demonstrating dynamic adaptive mesh refinement for moving curved meshes of arbitrary
order.

2.9 HPGMG 0.4

HPGMG 0.4 includes several improvements to the FV and FE variants, including

• AVX-512 support for FE,

• CEED BP solver configurations and extra quadrature points for FE,

• removal of FE process grid restriction for larger prime factors, and

• layout flexibility and padding/alignment support for FV.

Exascale Computing Project (ECP) 11 CEED-MS25

https://github.com/SCOREC/core/commit/3450a945
https://github.com/SCOREC/core/wiki/Geometric-Models
https://github.com/SCOREC/core/wiki/Geometric-Models
https://github.com/SCOREC/core/wiki/Mesh-Generation
https://github.com/SCOREC/core/commit/6f3c3926
https://github.com/SCOREC/core/commit/d783b19e
https://github.com/SCOREC/core/commit/06df5a0f
https://github.com/SCOREC/core/commit/1727b32b

2.10 gslib v.1.0.4

gslib v1.0.4 includes major features and improvements:

• Added support for gs float in Fortran gs.

• Updated testing unit with new header files.

2.11 NekCEM

Newly supported features of NekCEM include the following:

• Multi-session run support for large-scale parameter studies that represent structural differences between
optical devices. This has been tested up to millions of parameter studies for phase analysis of metals.

• Structural support for OLCF/Summit runs; Measure performance on Summit, in comparison to Titan.
(See Section 4.2)

3. CEED 2.0 TESTING AND DISTRIBUTION

The CEED 2.0 distribution consists of 12 Spack packages (plus a CEED meta-package), documented at
https://ceed.exascaleproject.org/ceed-2.0/. In this section we review the configuration settings for
several common and leadership computing architectures.

3.1 Mac

The configuration file below, also included as ceed2-darwin-highsierra-x86 64-packages.yaml in the CEED
2.0 distribution, provides a sample packages.yaml file based on Homebrew, that should work on most Macs.
(You can use MacPorts instead of Homebrew if you prefer.)

1 packages:

2 all:

3 compiler: [clang]

4 providers:

5 blas: [veclibfort]

6 lapack: [veclibfort]

7 mpi: [openmpi]

8 openmpi:

9 paths:

10 openmpi@3 .0.0: ~/brew

11 buildable: False

12

13 cmake:

14 paths:

15 cmake@3 .10.2: ~/brew

16 buildable: False

17 cuda:

18 paths:

19 cuda@9 .1.85: /usr/local/cuda

20 buildable: False

21 libx11:

22 paths:

23 libx11@system: /opt/X11

24 version: [system]

25 buildable: False

26 libxt:

27 paths:

28 libxt@system: /opt/X11

29 version: [system]

30 buildable: False

31 xproto:

32 paths:

33 # see /opt/X11/lib/pkgconfig/xproto.pc

34 xproto@7 .0.31: /opt/X11

Exascale Computing Project (ECP) 12 CEED-MS25

https://ceed.exascaleproject.org/ceed-2.0/

35 version: [7.0.31]

36 buildable: False

37 python:

38 paths:

39 python@2 .7.10: /usr

40 buildable: False

41 zlib:

42 paths:

43 zlib@1 .2.11: /usr

44 buildable: False

The packages in /brew were installed with brew install package. If you don’t have Homebrew, you can
install it and the needed tools with:

git clone https:// github.com/Homebrew/brew.git

cd brew

bin/brew install openmpi cmake python zlib

The packages in /usr are provided by Apple and come pre-built with Mac OS X. The cuda package is
provided by NVIDIA and should be installed separately by downloading it from NVIDIA. We are using the
Clang compiler, Open MPI, and Apple’s BLAS/LAPACK accelerator library.

3.2 Linux RHEL7

The configuration file below, also included as ceed2-linux-rhel7-x86 64-packages.yaml in the CEED 2.0
distribution, provides a sample ‘packages.yaml‘ file that can be adapted to work on a RHEL7 Linux desktop

1 packages:

2 all:

3 compiler: [gcc]

4 providers:

5 mpi: [openmpi]

6 blas: [netlib -lapack]

7 lapack: [netlib -lapack]

8 netlib -lapack:

9 paths:

10 netlib -lapack@system: /usr/lib64

11 buildable: False

12 openmpi:

13 paths:

14 openmpi@3 .0.0: ~/local

15 buildable: False

16

17 cmake:

18 paths:

19 cmake@3 .10.2: ~/local

20 buildable: False

21 cuda:

22 paths:

23 cuda@9 .1.85: ~/local/cuda

24 buildable: False

25 libx11:

26 paths:

27 libx11@system: /usr

28 version: [system]

29 buildable: False

30 libxt:

31 paths:

32 libxt@system: /usr

33 version: [system]

34 buildable: False

35 xproto:

36 paths:

37 xproto@7 .0.32: /usr

38 version: [7.0.32]

39 buildable: False

40 python:

Exascale Computing Project (ECP) 13 CEED-MS25

41 paths:

42 python@2 .7.14: /usr

43 buildable: False

44 zlib:

45 paths:

46 zlib@1 .2.11: /usr/lib64

47 buildable: False

The above file uses user-installed Open MPI, CMake and CUDA packages, with the rest of the CEED
prerequisites installed via the yum package manager.

3.3 Linux Ubuntu

A very similar file, ceed2-ubuntu18.10-packages.yaml provides Spack configuration for the Ubuntu distribution:

1 packages:

2 all:

3 compiler: [gcc]

4 providers:

5 mpi: [mpich]

6 blas: [openblas]

7 lapack: [openblas]

8 openblas:

9 paths:

10 openblas@system: /usr/lib

11 buildable: False

12 mpich:

13 paths:

14 mpich@3 .3: /usr/local

15 buildable: False

16

17 cmake:

18 paths:

19 cmake@3 .12.1: /usr

20 buildable: False

21 libx11:

22 paths:

23 libx11@system: /usr

24 version: [system]

25 buildable: False

26 libxt:

27 paths:

28 libxt@system: /usr

29 version: [system]

30 buildable: False

31 xproto:

32 paths: # See /usr/share/pkgconfig/xproto.pc for version

33 xproto@7 .0.32: /usr

34 buildable: False

35 python:

36 paths:

37 python@3 .6.7: /usr

38 buildable: False

39 zlib:

40 paths:

41 zlib@1 .2.11: /usr/lib

42 buildable: False

In this case we use GCC and other development packages via apt install and with MPICH installed
separately (as needed to use containerized HPC environments like Shifter and Singularity). You can use
docker pull jedbrown/ceed-base to get a build environment that is ready for spack install ceed.

3.4 Cori

The CEED2.0 installation on Cori (NERSC) via the Spack package manager can be obtained by down-
loading the Spack configuration file for Cori, that can be found on the CEED website https://ceed.

exascaleproject.org/ceed-2.0/.

Exascale Computing Project (ECP) 14 CEED-MS25

https://ceed.exascaleproject.org/ceed-2.0/
https://ceed.exascaleproject.org/ceed-2.0/

After downloading the file, it needs to be renamed from ceed2-cori-packages.yaml to packages.yaml and
placed in the folder /.spack/ or /.spack/<platform>/ on Cori. This file contains information on the
packages that the CEED2.0 installation requires, so that the user does not need to install them from scratch,
which can take a long time. The Spack configuration file for Cori is the following

1 packages:

2 all:

3 compiler: [gcc@7 .3.0, intel@18 .0.5.274]

4 providers:

5 mpi: [mpich]

6 mkl: [intel -mkl]

7 blas: [intel -mkl , cray -libsci]

8 scalapack: [intel -mkl , cray -libsci]

9 pkgconfig: [pkg -config]

10 mpich:

11 modules:

12 mpich@3 .2% gcc@7 .3.0 arch=cray -cnl9 -haswell: cray -mpich

13 mpich@3 .2% intel@18 .0.5.274 arch=cray -cnl9 -haswell: cray -mpich

14 buildable: False

15 intel -mkl:

16 buildable: false

17 paths:

18 intel -mkl@2018 .3.222% intel: /opt/intel

19 intel -mkl@2018 .3.222% gcc: /opt/intel

20 pkg -config:

21 buildable: false

22 paths:

23 pkg -config@0 .28: /usr

24 cmake:

25 modules:

26 cmake@3 .14.0% gcc@7 .3.0 arch=cray -cnl9 -haswell: cmake

27 cmake@3 .14.0% intel@18 .0.5.274 arch=cray -cnl9 -haswell: cmake

28 buildable: False

29 libx11:

30 paths:

31 libx11@system: /usr

32 version: [system]

33 buildable: False

34 libxt:

35 paths:

36 libxt@system: /usr

37 version: [system]

38 buildable: False

39 xproto:

40 paths: # See /usr/lib64/pkgconfig/xproto.pc for version

41 xproto@7 .0.28: /usr

42 buildable: False

43 python:

44 paths:

45 python@2 .7.13: /usr

46 buildable: False

47 boost:

48 modules:

49 boost@1 .69.0% gcc@7 .3.0 arch=cray -cnl9 -haswell: boost

50 boost@1 .69.0% intel@18 .0.5.274 arch=cray -cnl9 -haswell: boost

51 buildable: False

52 m4:

53 modules:

54 m4@1 .4.17% gcc@7 .3.0 arch=cray -cnl9 -haswell: m4

55 m4@1 .4.17% intel@18 .0.5.274 arch=cray -cnl9 -haswell: m4

56 buildable: False

57 openssl:

58 modules:

59 openssl@1 .1.0a%gcc@7 .3.0 arch=cray -cnl9 -haswell: openssl

60 openssl@1 .1.0a%intel@18 .0.5.274 arch=cray -cnl9 -haswell: openssl

61 buildable: False

62 perl:

63 paths:

Exascale Computing Project (ECP) 15 CEED-MS25

64 perl@5 .18.2% gcc@7 .3.0 arch=cray -cnl9 -haswell: /usr

65 perl@5 .18.2% intel@18 .0.5.274 arch=cray -cnl9 -haswell: /usr

66 buildable: False

67 autoconf:

68 modules:

69 autoconf@2 .69% gcc@7 .3.0 arch=cray -cnl9 -haswell: autoconf

70 autoconf@2 .69% intel@18 .0.5.274 arch=cray -cnl9 -haswell: autoconf

71 buildable: False

72 automake:

73 modules:

74 automake@1 .15% gcc@7 .3.0 arch=cray -cnl9 -haswell: automake

75 automake@1 .15% intel@18 .0.5.274 arch=cray -cnl9 -haswell: automake

76 buildable: False

3.5 ALCF Theta

The configuration file below, also included as ceed2-theta-packages.yaml in the CEED 2.0 distribution,
provides a sample ‘packages.yaml‘ for the Theta system at ALCF.

1 packages:

2 cmake:

3 paths:

4 cmake@3 .5.2% gcc@8 .2.0 arch=cray -CNL -mic_knl: /usr

5 cmake@3 .5.2% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /usr

6 buildable: False

7 python:

8 paths:

9 python@2 .7.13% gcc@8 .2.0 arch=cray -CNL -mic_knl: /usr

10 python@2 .7.13% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /usr

11 buildable: False

12 pkg -config:

13 paths:

14 pkg -config@0 .28% gcc@8 .2.0 arch=cray -CNL -mic_knl: /usr

15 pkg -config@0 .28% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /usr

16 buildable: False

17 autoconf:

18 paths:

19 autoconf@2 .69% gcc@8 .2.0 arch=cray -CNL -mic_knl: /usr

20 autoconf@2 .69% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /usr

21 buildable: False

22 automake:

23 paths:

24 automake@1 .13.4% gcc@8 .2.0 arch=cray -CNL -mic_knl: /usr

25 automake@1 .13.4% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /usr

26 buildable: False

27 libtool:

28 paths:

29 libtool@2 .4.2% gcc@8 .2.0 arch=cray -CNL -mic_knl: /usr

30 libtool@2 .4.2% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /usr

31 buildable: False

32 m4:

33 paths:

34 m4@1 .4.16% gcc@8 .2.0 arch=cray -CNL -mic_knl: /usr

35 m4@1 .4.16% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /usr

36 buildable: False

37 intel -mkl:

38 paths:

39 intel -mkl@16 .0.3.210% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /opt/intel

40 buildable: False

41 mpich:

42 modules:

43 # requires ’module load cce’ otherwise gives parsing error

44 mpich@7 .6.3% gcc@8 .2.0 arch=cray -CNL -mic_knl: cray -mpich /7.6.3

45 mpich@7 .6.3% intel@16 .0.3.210 arch=cray -CNL -mic_knl: cray -mpich /7.6.3

46 buildable: False

47 boost:

48 paths:

Exascale Computing Project (ECP) 16 CEED-MS25

49 boost@1 .64.0% gcc@8 .2.0 arch=cray -CNL -mic_knl: /soft/libraries/boost /1.64.0/ gnu

50 boost@1 .64.0% intel@16 .0.3.210 arch=cray -CNL -mic_knl: /soft/libraries/boost /1.64.0/

intel

51 buildable: False

52 all:

53 providers:

54 mpi: [mpich]

55 compiler: [gcc@8 .2.0]

3.6 Other machines: OLCF Summit, LLNL TOSS3 and Lassen

For Spack configurations tested on other machines, please consult the CEED 2.0 release website https:

//ceed.exascaleproject.org/ceed-2.0.

4. GPU PERFORMANCE BASELINES FOR CEED APPLICATIONS

In responding to the needs of ECP Urban and ExaSMR teams, we measured baseline performance of our
current versions of Nek and libParanumal codes on Summit, in comparison to Titan.

4.1 Urban: libParanumal performance on Summit vs. Titan

A number of performance improvements were recently implemented in libParanumal’s incompressible Navier-
Stokes flow solver, including improved JIT compilation of OCCA for 1000s of MPI ranks, experiments with
overlapping additive Schwarz and communication avoiding, pipelined preconditioned conjugate gradient
solvers. With these changes, the libParanumal solver matched the NekBone miniapp within 10% in CPU
mode. In GPU mode, the libParanumal solver demonstrated weak GPU scaling at approximately 90% on 1/2
of both Summit and Titan.

An experimental version (NekRS) has been under development that is based on integration of Nek5000 +
libParanumal. As a part of collaboration with ECP Urban team, we measured the speedup of NekRS on
Summit (vs. Titan) for incompressible Navier-Stokes solver for Taylor-Green vortex simulations shown in
Figure 9 and demonstrated the baseline performance in Figure 10.

Our testing setups for baseline performance on Summit and Titan are summarized in Table 1. We
performed simulations for 1000 timesteps with 8 iterations fixed for velocity and pressure. We measured
maximum size per GPU, n = EN3 with N = 7, keeping the ratio 2.666 (8000/3000) which is equivalent
to the ratio of the memory size per GPU, 16GB on Summit and 6GB on Titan. While the total #GPUs
are 27648 on Summit and 18688 on Titan, we keep the same ratio with 1.479. We achieve 4.92× speedup
in simulation time and 7.2× speedup in DOFs/sec per step as shown in Figure 10. From the ratio of the
memory bandwidth (900GB/s on Summit and 250GB/s on Titan), the speedup in timing would be ∼ 5.3
and the theoretical speedup would be 8.8x (5.3× 1.5) on Summit with 1.5× more resources.

Table 1: Experimental code NekRS run for 1000 timesteps with 8 iterations fixed
for velocity and pressure. The ratio of data size 2.666 (8000/3000). Performance
is shown in Figure 10.

system E per GPU N n = EN3 DOFs = 4× n per GPU
Summit 8000 7 2.7 M 10.8 M
Titan 3000 7 1.0 M 4 M

4.2 Urban: NekCEM performance on Summit vs. Titan

As a part of collaboration with ECP Urban team, we also measured the speedup of NekCEM on Summit
(vs. Titan). NekCEM’s GPU implementation is based on OpenACC and the code is fully explicit solver
which is highly optimized. We use the similar experimental setup and demonstrate the baseline performance
for periodic traveling wave simulations shown in Figure 11. Our testing setups for baseline performance
on Summit and Titan are summarized in Table 2. We performed 1000 timesteps, involving stage 4th-order

Exascale Computing Project (ECP) 17 CEED-MS25

https://ceed.exascaleproject.org/ceed-2.0
https://ceed.exascaleproject.org/ceed-2.0

Figure 9: Nek5000+libParanumal (NekRS): Taylor-Green vortex.

Figure 10: Nek5000+libParanumal (NekRS) performance baseline on Summit.

Runge-Kutta scheme and measured maximum size per GPU, n = E(N + 1)3 with N = 11, keeping the
ratio 2.777 (5000/1800). We had n = 5000 × 123 = 8.6 million grid points per GPU on Summit and
n = 1800×123 = 3.1 million grid points per GPU on Titan with the total degree of freedoms DOFs = 6×n×
(#GPUs)) for the 6 components from electric and magnetic fields. Titan’s #GPUs is chosen 76% of Summit,

Exascale Computing Project (ECP) 18 CEED-MS25

Figure 11: NekCEM performance baseline on Summit.

reflecting full machine GPU ratios. We achieve 5.2× speedup in simulation time and 7.6× speedup in
DOFs/sec per step as shown in Figure 11.

Table 2: NekCEM run for 1000 timesteps with 5-stage 4th-order Runge-Kutta
time stepping. The ratio of data size 2.777 (5000/1800). Performance is shown
in Figure 11.

system E per GPU N n = E(N + 1)3 DOFs = 6× n per GPU
Summit 5000 11 8.6 M 51.6 M
Titan 1800 11 3.1 M 18.1 M

4.3 ExaSMR: Speedup of NekRS on Summit vs. Nek5000 on Titan

In responding to the need of ExaSMR team, we measured performance baseline the speedup from the newly
developed NekRS vs the previously developed OpenACC-based Nek5000. Table 3 shows the experimental
setup for Nek5000 OpenACC version.

Figure 12 demonstrates the current baseline measurement showing ∼ 11× speedup from newer version of
NekRS on Summit, compared to the old Nek5000 OpenACC version on Titan.

However we used less than 10% for the Nek5000 OpenACC version. With the recent AMG support
enabled in Nek5000 OpenACC version, CEED team plans to measure with larger elements counts using 50%
of Titan and Summit for 17× 17 rods geometry, in collaboration with ExaSMR team.

Our testing setups for baseline performance of Nek5000 on Summit and Titan are summarized in Table 3.
We performed Nek5000 OpenACC version running 100 timesteps of eddy simulations without fixing iterations
and measured maximum size per GPU, n = EN3 with N = 14, keeping the ratio 3.222 (1600/500). We used
n = 1600× 143 = 3.6 million grid points per GPU on Summit and n = 500× 143 = 3.1 million grid points
per GPU on Titan. The total degree of freedoms is DOFs = 4 × n× (#GPUs)) with 4 fields (3 velocity
components and 1 pressure). We chose Titan’s #GPUs as 76% of Summit.

4.4 ExaSMR: Speedup of Steady Thermal Solver vs. Transient Calculation

In collaboration with ExaSMR team, we performed the spectral element simulations with Nek5000 for all
LES, RANS, and pseudo-RANS simulations. The recently proposed Nek5000 steady-state solver has been
used for solving the temperature field in the pseudo-RANS approach and has proved significantly faster than
transient schemes. Prediction of thermal quantities is compared with classical linear and nonlinear RANS

Exascale Computing Project (ECP) 19 CEED-MS25

Table 3: Nek5000 OpenACC version run for 100 timesteps of eddy simulations,
without fixing iterations. The ratio of data size 3.222 (1600/500). Performance is
shown in Figure 12.

system E per GPU N n = EN3 DOFs = 4× n per GPU
Summit 1600 14 8.6 M 34.4 M
Titan 500 14 3.1 M 12.4 M

Figure 12: NekRS vs. Nek5000 performance baseline.

models. LES for the full-length rods has also been performed and are used as a reference. Results of the
proposed method are demonstrated in Table 4 with significant improvements (∼ 7×) with respect to those
obtained with RANS.

Table 4: Time and # iterations required to reach L2 errors at the level of 10−7,
using 8 KNL nodes (512 MPI ranks) on Argonne’s LCRC/Bebop.

iter CPU time [min]
Case tol = 10−2 tol = 10−4 tol = 10−6 tol = 10−2 tol = 10−4 tol = 10−6

BDF1 75275 34456 23026 154 97 114
BDF2 63854 31854 22371 130 90 106
BDF3 57163 30063 22095 117 85 103

SS 60 12

5. OTHER PROJECT ACTIVITIES

5.1 Laghos CTS-2 benchmark

The CEED team at LLNL developed a version of the Laghos miniapp to be used in the second edition of the
Commodity Technology Systems procurement process. These systems leverage industry advances and open
source software standards to build, field, and integrate Linux clusters of various sizes into production service.
The CTS-2 version of Laghos features RAJA backend, improved robustness and figure of merit computation,
and is available at https://github.com/CEED/Laghos/releases/tag/cts2.

Exascale Computing Project (ECP) 20 CEED-MS25

https://github.com/CEED/Laghos/releases/tag/cts2

5.2 Outreach

CEED researchers were involved in a number of outreach activities, including participation in the SIAM
CSE19 conference, where CEED organized two minisymposiums (16 talks total) on Exascale Software for
High-Order Methods and Exascale Applications with High-Order Methods and CEED researchers participated
in various additional minisymposiums related to Batched BLAS, meshing, DG methods, matrix-free solvers,
and more. CEED organized a successful breakout session on high-order methods and application at the ECP
third annual meeting in Houston and we begun the planning for CEED’s 3rd annual meeting to be held at
Virginia Tech in August 2019.

6. CONCLUSION

The deliverable for this milestone was the release of CEED 2.0 – the CEED software distribution consisting
of integrated libraries and software packages enabling efficient high-order discretizations on unstructured
grids provided through the CEED website, the CEED GitHub organization, and Spack.

The artifacts delivered include a consistent build system based on 12 Spack packages + a the CEED
meta-package, documentation and verification of the build process, as well as improvements in the integration
between different CEED components. See the CEED website, http://ceed.exascaleproject.org/ceed-2.
0/ and the CEED GitHub organization, http://github.com/ceed for more details. As part of CEED 2.0,
we also released the next version of libCEED (v0.4), which contains four new CPU backends, two new GPU
backends, CPU backend optimizations, initial support for operator composition, performance benchmarking,
and a Navier-Stokes demo.

In addition to details and results from these efforts, in this document we report on other project-wide activ-
ities performed in Q2 of FY19, including: a version of the Laghos miniapp for CTS-2 procurement, extensive
GPU performance baseline benchmarking for the Urban and ExaSMR applications, papers, minisimposium
presentations, and other outreach efforts.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC,
a collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security
Administration—responsible for the planning and preparation of a capable exascale ecosystem—including
software, applications, hardware, advanced system engineering, and early testbed platforms—to support the
nation’s exascale computing imperative.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344, LLNL-TR-771107.

Exascale Computing Project (ECP) 21 CEED-MS25

http://ceed.exascaleproject.org/ceed-2.0/
http://ceed.exascaleproject.org/ceed-2.0/
http://github.com/ceed

	Executive Summary
	List of Figures
	List of Tables
	Introduction
	CEED 2.0 Packages
	libCEED 0.4
	New libCEED Backends
	Operator Composition
	Benchmarking libCEED Performance
	Navier-Stokes example

	MFEM 3.4
	Nek5000 version 19.0-rc2
	PETSc 3.11
	OCCA 1.0.8
	PUMI 2.2.0
	MAGMA 2.5.0
	Laghos 2.0
	HPGMG 0.4
	gslib v.1.0.4
	NekCEM

	CEED 2.0 Testing and Distribution
	Mac
	Linux RHEL7
	Linux Ubuntu
	Cori
	ALCF Theta
	Other machines: OLCF Summit, LLNL TOSS3 and Lassen

	GPU Performance Baselines for CEED Applications
	Urban: libParanumal performance on Summit vs. Titan
	Urban: NekCEM performance on Summit vs. Titan
	ExaSMR: Speedup of NekRS on Summit vs. Nek5000 on Titan
	ExaSMR: Speedup of Steady Thermal Solver vs. Transient Calculation

	Other Project Activities
	Laghos CTS-2 benchmark
	Outreach

	Conclusion

