
Evaluating the Performance of NVIDIA’s A100
Ampere GPU for Sparse and Batched Computations

Hartwig Anzt∗†, Yuhsiang M. Tsai∗, Ahmad Abdelfattah†, Terry Cojean∗, and Jack Dongarra†‡§
∗Karlsruhe Institute of Technology, {hartwig.anzt, yu-hsiang.tsai, terry.cojean}@kit.edu

†University of Tennessee, {ahmad, dongarra}@icl.utk.edu
‡Oak Ridge National Laboratory

§University of Manchester

Abstract—GPU accelerators have become an important back-
bone for scientific high performance-computing, and the perfor-
mance advances obtained from adopting new GPU hardware are
significant. In this paper we take a first look at NVIDIA’s newest
server-line GPU, the A100 architecture, part of the Ampere
generation. Specifically, we assess its performance for sparse and
batch computations, as these routines are relied upon in many
scientific applications, and compare to the performance achieved
on NVIDIA’s previous server-line GPU.

Index Terms—Sparse Linear Algebra, Sparse Matrix Vector
Product, Batched Linear Algebra, NVIDIA A100 GPU

I. INTRODUCTION

Over the last decade, graphics processing units (GPUs)

have seen an increasing rate of adoption in high-performance

computing (HPC) platforms, and in the June 2020 TOP500

list, more than half of the fastest 10 systems feature GPU

accelerators [1]. At the same time, the June 2020 edition of

the TOP500 is the first edition listing a system equipped with

NVIDIA’s new A100 GPU, the HPC line GPU of the Ampere

generation. Because the scientific HPC community anticipates

this GPU to be the new flagship architecture in NVIDIA’s

hardware portfolio, we take a look at the performance we

achieve on the A100 for sparse and batched computations. The

motivation is that many scientific applications are based on

the discretization of partial differential equations (PDEs) and

the finite element methods used in the discretization process,

resulting in sparse systems often carrying an inherent block

structure. Therefore, the performance of sparse and batched

routines can be seen as indicative of the performance we can

expect for complex scientific computing applications.

For the performance assessment, in Section II we first

benchmark the bandwidth of the A100 GPU for memory-

bound vector operations and compare against NVIDIA’s A100

predecessor, the V100 GPU. In Section III, we review the

sparse matrix vector product (SpMV), a central kernel for

sparse linear algebra, and outline the processing strategy

used in some popular kernel realizations. In Section IV, we

evaluate the performance of SpMV kernels on the A100 GPU

for more than 2,800 matrices available in the SuiteSparse

Matrix Collection [2]. The SpMV kernels we consider in

this performance evaluation are taken from NVIDIA’s latest

release of the cuSPARSE library and the Ginkgo linear algebra

library [3]. In Section V, we compare the performance of

the A100 against its predecessor for complete Krylov solver

iterations, which are popular methods for iterative sparse linear

system solves. As many scientific applications deal with sparse

problems containing a block structure, we recall the idea of

batched routines in Section VI, and evaluate their achieved

performance in Section VII. We conclude in Section IX

with a summary of the performance assessment results and

draw some preliminary conclusions on the performance we

may expect from the A100 GPU for scientific computing

applications.

We emphasize that with this paper, we do not intend to pro-

vide another technical specification of NVIDIA’s A100 GPU,

but instead focus on the reporting of performance we observe

on this architecture for sparse linear algebra operations. Still,

for convenience, we append a table from NVIDIA’s white pa-

per on the NVIDIA A100 Tensor Core GPU Architecture [4],

which lists some key characteristics and compares against the

predecessor GPU architectures. For further information on the

A100 GPU, refer to the white paper [4], and we encourage

the reader to digest the performance results we present side-

by-side with these technical details.

II. MEMORY BANDWIDTH ASSESSMENT

The performance of sparse linear algebra operations on

modern hardware architectures is usually limited by data

access rather than compute power. Consequently, for sparse

linear algebra, the performance-critical hardware characteris-

tics are the memory bandwidth and the access latency. For

main memory access, both metrics are typically somewhat

intertwined, in particular on processors operating in streaming

mode, like GPUs. In this section, we assess the memory access

performance by means of the BabelSTREAM benchmark [5].

We show the BabelSTREAM benchmark results for both

an NVIDIA V100 GPU Figure 1a and an NVIDIA A100

GPU Figure 1b. The figures reflect a significant bandwidth

improvement for all operations on the A100 compared to the

V100. For an array of size 8.2 GB, the V100 reaches, for all

operations, a performance between 800 and 840 GB/s whereas

the A100 reaches a bandwidth between 1.33 and 1.4 TB/s.

Figure 2 shows the data as a ratio between the A100 and

V100 bandwidth performance for all operations. In Figure 2a,

we show the performance ratio for increasing array sizes and

observe the A100 providing a lower bandwidth than the V100

26

2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)

978-0-7381-1048-6/20/$31.00 ©2020 IEEE
DOI 10.1109/PMBS51919.2020.00009

�

�

�
� � �

1

10

100

1000

10 1 100 101 102 103 104

Array Size (MB)

G
B/

s

Function
� Add

Copy
Dot
Mul
Triad

(a) V100

�

�

� � � �

1

10

100

1000

10 1 100 101 102 103 104

Array Size (MB)

G
B/

s

Function
� Add

Copy
Dot
Mul
Triad

(b) A100

Fig. 1: Performance of the BabelSTREAM benchmark on both V100 and A100 NVIDIA GPUs.

�
�

�

�

� �

1.0

1.5

2.0

10 1 100 101 102 103 104

Array Size (MB)

Ba
nd

w
id

th
 R

at
io

 (A
10

0/
V1

00
)

Function
� Add

Copy
Dot
Mul
Triad

(a) Evolution of the A100/V100 ratio for different array sizes.

0.0

0.5

1.0

1.5

Add Copy Dot Mul Triad
Function

Ba
nd

w
id

th
 R

at
io

 (A
10

0/
V1

00
)

Function
Add
Copy
Dot
Mul
Triad

(b) A100/V100 ratio for an array of size 8.2 GB.

Fig. 2: Ratio of the performance improvement of A100 compared to V100 NVIDIA GPUs for the BabelSTREAM benchmark.

GPU for arrays of small size. For large array sizes, the A100

has a significantly higher bandwidth, converging towards a

speedup factor of 1.7 for most memory access benchmarks

(see Figure 2b).

III. SPARSE MATRIX VECTOR PRODUCT

The sparse matrix-vector product (SpMV) is a heavily

used operation in many scientific applications. The spectrum

ranges from the power iteration [6], an iterative algorithm

for finding eigenpairs in Google’s Page Rank algorithm [7],

to iterative linear system solvers like Krylov solvers that

form the backbone of many finite element simulations. Given

this importance, we focus particularly on the performance

of the SpMV operation on NVIDIA’s A100 GPU. However,

the performance not only depends on the hardware and the

characteristics of the sparse matrix, but also on the specific

SpMV format and processing strategy. Generally, all SpMV
kernels aim to reduce the memory access cost (and compu-

tational cost) by storing only the nonzero matrix values [8].

Some formats additionally store a moderate amount of zero

elements to enable faster processing when computing matrix-

vector products [9]. However, independent of the strategy,

since SpMV kernels store only a subset of the elements, they

share the need to accompany these values with information that

enables deduction of their location in the original matrix [10].

We here recall in Figure 3 some widespread sparse matrix

storage formats and kernel parallelization techniques.
A straightforward idea is to accompany the nonzero el-

ements with the respective row and column indices. This

storage format, known as coordinate (COO [8]) format, allows

determining the original position of any element in the matrix

without processing other entries (see the first row in Figure 3).

A standard parallelization of this approach assigns the matrix

rows to the distinct processing elements (cores). However, if

few rows contain a significant portion of the overall nonzeros,

a significant imbalance of the kernel and poor performance

can result. A workaround is to distribute the nonzeros across

the parallel resources (see the right-hand side in Figure 3).

However, as this can result in several processing elements

contributing partial sums to the same vector output entry,

sophisticated techniques for lightweight synchronization are

needed to avoid write conflicts [11].
Starting from the COO format, further reduction of the

storage cost is possible if the elements are sorted row-wise, and

with increasing column order in every row. (The latter condi-

tion is technically not required, but it usually results in better

27

Fig. 3: Overview of sparse matrix formats and SpMV kernel design.

(a) SpMV performance profile on A100.SpMV (b) Performance profile on A100.

Fig. 4: Left: SpMV kernel performance on the A100 GPU considering 2,800 test matrices from the SuiteSparse Matrix Collection.

Right: Corresponding Performance profile for all SpMV kernels considered.

performance.) Then, this compressed sparse row (CSR [8])

format can replace the array containing the row indexes with

a pointer to the beginning of the distinct rows, shown in

the second row in Figure 3. While this generally reduces

the data volume, the CSR format requires extra processing

to determine the row location of a certain element. For a

standard parallelization over the matrix rows, the row location

is implicitly given, and no additional information is needed.

However, similar to the COO format, better load balancing

is available when parallelizing across nonzero elements. This

28

requires the matrix row information and sophisticated atomic

writes to the output vector [12].

A strategy that reduces the row indexing information even

further is to pad all rows to the same number of nonzero

elements and accompany the values only with the column

indices. In this ELL format [9] (the left part of the third

row in Figure 3), the row index of an element can be

deduced from its location in the array storing the values in

consecutive order and the information of how many elements

are stored in each row. While this format is attractive for

vector processors as it enables execution in single instruction,

multiple data (SIMD) fashion with coalesced memory access,

its efficiency heavily depends on the matrix characteristics: for

well-balanced matrices, it optimizes memory access cost and

operation count; but if one or a few rows contain many more

nonzero elements than the others, ELL introduces a significant

padding overhead and quickly becomes inefficient [10].

An attractive strategy to reduce the padding overhead the

ELL format introduces for unbalanced matrices is to decom-

pose the original matrix into blocks containing multiple rows,

and to store the distinct blocks in ELL format. Rows of the

same block contain the same number of nonzero elements,

rows in distinct blocks can differ in the number of nonzero

elements. In this Sliced ELL format ([SELL] [13] see the right

part of the third row in Figure 3), the row pointer can not

completely be omitted like in the ELL case, but a row pointer

to the beginning of every block is needed. In this sense, the

SELL format is a trade-off between the ELL format on the one

side and the CSR format on the other side. Indeed, choosing

a block size of 1 results in the CSR format; choosing a block

size of the matrix size results in the ELL format. In practice,

the block size is adjusted to the matrix properties and the

characteristics of the parallel hardware (i.e., SIMD-with [14]).

Another strategy that balances between the effectiveness

of the ELL SpMV kernel and the more general CSR/COO

SpMV kernels is to combine the formats in a “hybrid” SpMV
kernel [10]. The concept behind this is to store the balanced

part of the matrix in ELL format and the unbalanced part in

CSR or COO format. The SpMV operation then invokes two

kernels, one for the balanced part and one for the unbalanced

part.

There have been significant research efforts with all these

strategies to optimize the SpMV kernels’ performance on GPU

architectures (see, e.g., [10], [15]–[19] and references therein).

We here focus on the SpMV kernels of the cuSPARSE and

Ginkgo libraries that are well known to belong to the most

efficient implementations available.

IV. SPMV PERFORMANCE ASSESSMENT

For the SpMV kernel performance assessment, we consider

more than 2,800 matrices from the SuiteSparse Matrix col-

lection [2]. Specifically, we consider all real matrices, except

for Figure 4b where we require the matrix to contain more

than 1e5 nonzero elements. On both GPUs, we run the SpMV
kernels from NVIDIA’s cuSPARSE library in version 11.0

(11.0.167) and the Ginkgo open-source library version 1.3 [3]

with additional IDR-solver branch.
On the left-hand side of Figure 4, we show the initial

performance of all considered SpMV kernels on the A100 GPU

for all test matrices: each dot represents the performance one

of the SpMV kernels achieves for one test matrix. While it is

impossible to draw strong conclusions, we can observe that

some CSR-based SpMV kernels exceed 200 GFLOP/s. This is

consistent with the roofline model [20]: if we assume every

entry of a CSR matrix needs 12 bytes (8 bytes for the fp64

values, 4 bytes for the column index, and ignoring the row

pointer), assume all vector entries are cached (ignoring access

to the input and output vectors), and assume a peak memory

bandwidth of 1.4TB/s, we end up with 2nnz · 1,400GB/s
12B/nnz ≈

230GFLOP/s.
On the right-hand side of Figure 4, we show a performance

profile [21] considering all SpMV kernels available in either

cuSPARSE or Ginkgo for real matrices containing more than

1e5 nonzero elements. As this shows, the cusparse_gcsr2
kernel has the largest share in terms of being the fastest

kernel for a problem. However, cusparse_gcsr2 does

not generalize well: cusparse_gcsr2 is more than 1.5×
slower than the fastest kernel for 20% of the problems, and

more than 3× slower than the fastest kernel for 10% of the

problems. Although Ginkgo’s CSR SpMV kernel is not the

fastest choice for as many problems as the cusparse_csr
and the cusparse_gcsr2 kernels, it generalizes better, and

is virtually never more than 2.5× slower than the fastest

kernels among all matrices. The kernels providing the best

performance portability across all matrix problems are the

COO SpMV kernels from Ginkgo and cuSPARSE: only for

10% of the problems are they more than 1.4× slower than

the fastest kernel. As expected, the SELLP SpMV kernel does

not generalize well, but it is the fastest kernel for 20% of the

problems.
We then evaluate the performance improvements when

comparing the SpMV kernels on the newer NVIDIA A100

GPU and the older NVIDIA V100 GPU. Figure 5 visualizes

the speedup factors for NVIDIA’s cuSPARSE library (left-

hand side) and the Ginkgo library (right-hand side). In the

first row of Figure 5 we focus on the CSR performance. As

expected, the CSR SpMV achieves higher performance on the

newer A100 GPU. For both libraries, cuSPARSE and Ginkgo,

the CSR kernels achieve for most matrices a 1.7× speedup

on the A100 GPU—which reflects the bandwidth increase.

However, for many matrices, the speedup exceeds 1.7×. For

Ginkgo, the acceleration of up to 5× might be related to larger

caches on the A100 GPU, allowing for more efficient caching

of the input vector entries. For cuSPARSE, the speedup is

up to 3× in the large matrices. However, A100 cuSPARSE

CSR is slower than V100 cusSPARSE CSR in some cases.

The analysis of the performance improvement for the COO

kernels is presented in the second row of Figure 5. For

matrices with fewer than 500,000 nonzeros, the performance

improvements are about 1.3× for the Ginkgo library and

the cuSPARSE library. For matrices with more than 500,000

29

(a) cuSPARSE CSR SpMV (b) Ginkgo CSR SpMV

(c) cuSPARSE COO SpMV (d) Ginkgo COO SpMV

(e) Ginkgo ELL SpMV (f) Ginkgo hybrid SpMV

Fig. 5: Performance improvement assessment of the A100 GPU over the V100 GPU for SpMV kernels from NVIDIA’s

cuSPARSE library and Ginkgo.

nonzero elements, the performance improvement can be up to

3× in cuSPASRE and 4× in Ginkgo library. In the third row

of Figure 5, we visualize the performance improvements for

Ginkgo’s ELL and hybrid formats that do not have a direct

counterpart in cuSPARSE 11.0. Again, we see that the A100

provides for most matrices about 1.4× higher performance.

However, especially for the ELL SpMV kernel, several matrices

achieved higher performance on V100 than A100.

30

(a) Ginkgo Ell SpMV (b) Ginkgo Classical Csr SpMV

Fig. 6: Performance improvement of the A100 GPU over the V100 GPU for Ell and Classical Csr from Ginkgo with coefficient

of variance of nonzero-per-row.

To find the root of these outliers, we correlate the perfor-

mance improvement in Figure 6 to the coefficient of variation

of the nonzero-per-row metric—that is, the ratio between the

standard deviation of the nonzero-per-row metric and the mean

of the nonzero-per-row metric. Given the strategy Ginkgo’s

ELL kernel balances the work, larger coefficient of variation

tend to introduce small data reads that perform poorly on the

A100 GPU. Even more visible is this effect for the CSR C

SpMV kernel, the classical row-parallelized CSR SpMV kernel

involving one subwarp in each row (see the right-hand side

in Figure 6): irregular sparsity patterns resulting in frequent

loads of small data arrays and reflected in a large coefficient

of variation result in the poor performance of the A100 GPU.

Remarkably, the V100 can better deal with the frequent access

to small data arrays in Figure 2. Ginkgo’s CSR SpMV automat-

ically chooses between the classical CSR C kernel providing

good performance for regular sparsity patterns and the load-

balancing CSR I kernel [12] providing good performance for

unbalanced sparsity patterns.

V. KRYLOV SOLVER PERFORMANCE ASSESSMENT

Krylov methods are among the most efficient algorithms

for solving large and sparse linear systems. When applied

to a linear system Ax = b (with the sparse coefficient

matrix A, right-hand side b, and unknown x), Krylov solvers

started with an initial guess x0 to produce a sequence of

vectors x1, x2, x3, . . . that, in general, progressively reduce the

norm of the residuals rk = b − Axk, eventually yielding an

acceptable approximation to the solution of the system [22].

Algorithmically, every iteration of a Krylov solver is com-

posed of a (sparse) matrix vector product to generate the

new search direction, an orthogonalization procedure, and the

update of the approximate solution and the residual vector. In

practice, Krylov methods are often enhanced with precondi-

tioners to improve robustness and convergence [22]. Ignoring

Fig. 7: Krylov solver acceleration when upgrading from the

V100 GPU to the A100 GPU.

the preconditioner, every iteration can be composed of level-

1 BLAS routines (vector operations) and a level-2 BLAS in

the form of a sparse matrix vector product (SpMV). All these

components—and in virtually all cases also the preconditioner

application—are memory-bound operations.

When upgrading from the V100 to the A100 GPU, for

the vector updates and reduction operations, we can expect

performance improvements corresponding to the bandwidth

improvements observed in Section II. For the basis-generating

SpMV kernel, the improvements are problem-dependent and

may even exceed the 1.7× bandwidth improvement (see

Section IV). The total solver speedup then depends on how

the Krylov method composes the SpMV and vector operations,

and how these components contribute to the overall runtime.

31

In Figure 7, we visualize the performance improvement

observed when upgrading from the V100 to the A100 GPU.

We select 10 test matrices that are large in terms of size

and nonzero elements, different in their characteristics, and

representative for different real-world applications. The Krylov

solvers are all taken from the Ginkgo library [3]; the SpMV
kernel we employ inside the solvers is Ginkgo’s COO SpMV
kernel. For most test problems, we actually observe larger

performance improvements than what the bandwidth ratios

suggest. We also observe that if focusing exclusively on a

single test problem, the speedup factors for the Krylov meth-

ods based on short recurrences (i.e., bicgstab, cg, cgs, fcg, idr)

are all almost identical. These methods are all very similar in

design, and the SpMV kernel takes a similar runtime fraction.

The GMRES algorithm is not based on short recurrences but

builds up a complete search space, and every new search

direction has to be orthogonalized against all previous search

directions. As this increases the cost of the orthogonalization

step—realized via a classical Gram-Schmidt algorithm—the

SpMV accounts for a smaller fraction of the algorithm runtime.

As a result, the speedup for GMRES is often different than

the speedup for the other methods. However, for GMRES the

speedup can exceed the 1.7× bandwidth improvement, as the

A100 features larger caches that can be a significant advantage

for the orthogonalization kernel. Overall, we observe that for

most scenarios we tested, the Krylov solver executes on the

A100 GPU more than 1.8× faster than on the V100 GPU.

VI. BATCHED LINEAR ALGEBRA COMPUTATIONS

Many scientific computing applications such as finite el-

ement simulations or circuit simulation problems result in

sparse or block-sparse matrices. For example, in finite element

discretizations, the unknowns associated with the same (finite)

element are strongly connected and thus form a dense block in

the overall sparse matrix. Depending on the size of the dense

blocks, it can pay off to handle the systems as a collection

of small dense systems, rather than as one sparse matrix.

For the efficient processing of these problems, the so-called

“batched” routines have been developed, which realize the

data-parallel processing of the blocks on multi- and many-

core architectures [23]. In this context, the qualifier “batched”

identifies a procedure that applies the same operation to a

large collection of data entities. In general, the subproblems

(i.e., the data entities) are all small and independent, asking

for a parallel formulation that simultaneously performs the

operation on several/all subproblems in order to yield more

efficient exploitation of the computational resources [24].

Batched routines are especially attractive for reducing the

overall kernel launch overhead on GPUs, as they replace a

sequence of kernel calls with a single kernel invocation. In

addition, if the data for the subproblems is conveniently stored

in the GPU memory, a batched routine can orchestrate more

efficient (coalesced) memory access.

We next assess the performance batched routines achieve

on NVIDIA’s A100 GPU. In this performance evaluation, we

focus on routines that are among the most relevant for scien-

tific computing applications and sparse linear algebra: batched

matrix matrix multiply (Batched DGEMM) [25], [26], batched

LU factorization (Batched DGETRF) [27], [28], batched QR

factorization (Batched DGEQRF) [29], and batched triangular

solve (Batched DTRSV).

VII. BATCHED ROUTINES PERFORMANCE ASSESSMENT

For the performance assessment of the batched routines, we

consider two scenarios: collections containing 10,000 dense

problems of very small size (≤ 32), and collections contain-

ing 500 problems of moderate size (up to 1024). Figure 8

and Figure 9 show the two scenarios on the left-hand side

and the right-hand side, respectively. The batched routines

we benchmark are taken from NVIDIA’s cuBLAS library

(v11.0.167) and the MAGMA open-source library (master

commit - 9ce41ca)1, which is version 2.5.3 with cuda 11

compilation fix, on both gpu.
Figure 8a and Figure 8b show the performance of the

batched DGEMM routine. For the small-sized problems,

MAGMA’s batched DGEMM reaches up to 1.6/2.4 ter-

aFLOP/s on the V100/A100 GPUs, respectively. This is

60%/33% faster than cuBLAS DGEMM on both GPUs. This is

due to special optimizations in MAGMA that target extremely

small matrices [26]. For larger problems, the situation is

reversed, and cuBLAS’s batched DGEMM reaches up to 6/18
teraFLOP/s on the two GPUs, which is several times faster

than MAGMA. We also notice that the gap between cuBLAS

and MAGMA on the A100 GPUs is much bigger than on

the V100 GPU. This is because cuBLAS takes advantage of

the A100’s new tensor core units, which can now accelerate

FP64 arithmetic (as opposed to the V100). The MAGMA

batched DGEMM routine does not currently use tensor cores.

Comparing the performance of the batched DGEMM on the

two GPU generations, we notice that for both MAGMA and

cuBLAS, the performance advantages tend to increase with

the problem size. Overall, MAGMA and cuBLAS run up to

1.5× and up to 3× faster on the new A100 GPU, respectively.
Figure 8c and Figure 8d show the performance of the

batched TRSV routine. Overall, the performance increase

for the batched TRSV routine on the A100 is rather small

compared to the expectations. The MAGMA library does

not currently implement specific optimization for very small

problems, which explains the clear cuBLAS advantage. For

medium-size problems, MAGMA has better performance than

cuBLAS with CUDA v11.0.167 library.2

The performance of the batched LU and QR factorization

routines are shown in Figure 9. The MAGMA routines have

clear advantages at almost every size on both GPUs. Very

small problems are specifically targeted in MAGMA with

special kernels that use optimal memory traffic [29]. Medium-

to-large sizes benefit from a blocked implementation that

1We emphasize that the MAGMA routines are currently optimized for
NVIDIA’s V100 GPU.

2We notice that CUDA fixes or improves batched trsv on medium-size
problems in the later version (11.0.229) on V100. MAGMA still has a slight
advantage over it. To keep the same CUDA version on both machines, we
still use CUDA library v11.0.167.

32

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Gf
op
/s

Matrix size (Batch = 10k)

Batched DGEMM, Tesla V100/A100 GPUs, CUDA-11.0

cublas - A100
cublas - V100
magmablas - A100
magmablas - V100

(a) Batched DGEMM

0
2
4
6
8
10
12
14
16
18
20
22

0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

Tf
op
/s

Matrix size (Batch = 500)

Batched DGEMM, Tesla V100/A100 GPUs, CUDA-11.0

cublas - A100
cublas - V100
magmablas - A100
magmablas - V100

(b) Batched DGEMM

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Gf
op
/s

Matrix size (Batch = 10k)

Batched DTRSV, Tesla V100/A100 GPUs, CUDA-11.0

cublas - A100
cublas - v100
magmablas - A100
magmablas - V100

(c) Batched DTRSV

0

50

100

150

200

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Gf
op
/s

Matrix size (Batch = 500)

Batched DTRSV, Tesla V100/A100 GPUs, CUDA-11.0

cublas - A100
cublas - V100
magmablas - A100
magmablas - V100

(d) Batched DTRSV

Fig. 8: Performance of the batched GEMM and TRSV routines, applied to many (10k) small-sized problems (left) and few

(500) moderate-sized problems (right).

leverages the performance of the batched GEMM routine in

cuBLAS. For small sizes, the batched LU factorization is

3.7×/3.6× faster than cuBLAS on the V100/A100 GPUs,

respectively. The asymptotic speedup for larger sizes is about

4×/6×. For the batched QR factorization, MAGMA is about

6.7×/5.8× faster than cuBLAS for very small sizes on the

V100/A100 GPUs, while the asymptotic speedups are more

than 30× on both GPUs. Comparing the two GPU generations,

small problem sizes are handled up to 1.6× faster—which

correlates to the bandwidth improvement—while MAGMA

processes large problems about twice as fast.

VIII. IMPROVEMENT OVERVIEW

We visualize all improvement over A100 against V100 by

boxplot in Figure 10 and Figure 11. We add two reference

lines to help recognizing the performance improvement, one

red line is the base line (1) and the other blue line is the general

memory improvement (1.7). In Figure 10a, ginkgo SpMV does

not always touch the memory improvement because the matrix

sparsity leads memory movement is not enough to achieve

the highest bandwidth. Except for gmres, other solver gives

similar improvement around 1.7 in Figure 10b. In Figure 11a

and Figure 11b, cublas gets a little better improvement than

magma does except for batched dtrsv on 500 batch and

batched dgeqrf on 10k batch.
We also summarizedthe average performance of all routines

and corresponding performance improvement in Figure 12.

The huge improvement of batched dgemm on 500 batch is

related to that A100 supports double precision in tensor core.

On average, every routine except for cublas batched dtrsv

on 500 batch gets the new architecture benefit from higher

bandwidth, performance, or more cache.

IX. CONCLUSION

In this paper, we assessed the performance NVIDIA’s new

A100 GPU achieves for sparse and batched computations.

As most sparse linear algebra algorithms are memory bound,

we initially present results for the STREAM bandwidth

benchmark, then provide a very detailed assessment of the

sparse matrix vector product performance for both NVIDIA’s

cuSPARSE library and the Ginkgo open-source library, and

ultimately run complete Krylov solvers combining vector

operations with sparse matrix vector products and orthogo-

nalization routines. As many sparse problems coming from

finite element simulations carry an inherent bock structure,

we also assess the performance the A100 delivers for batched

routines. We consider both the batched routines available in

33

0
100
200
300
400
500
600
700
800

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Gf
op
/s

Matrix size (Batch = 10k)

Batched DGETRF, Tesla V100/A100 GPUs, CUDA-11.0

cublas - A100
cublas - v100
magmablas - A100
magmablas - V100

(a) Batched DGETRF

0

500

1000

1500

2000

2500

3000

3500

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Gf
op
/s

Matrix size (Batch = 500)

Batched DGETRF, Tesla V100/A100 GPUs, CUDA-11.0

cublas - A100
cublas - V100
magmablas - A100
magmablas - V100

(b) Batched DGETRF

0
100
200
300
400
500
600
700
800
900
1000
1100
1200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Gf
op
/s

Matrix size (Batch = 10k)

Batched DGEQRF, Tesla V100/A100 GPUs, CUDA11.0

cublas - A100
cublas - V100
magmablas - A100
magmablas - V100

(c) Batched DGEQRF

0
500
1000
1500
2000
2500
3000
3500
4000

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Gf
op
/s

Matrix size (Batch = 500)

Batched DGEQRF, Tesla V100/A100 GPUs, CUDA11.0

cublas - A100
cublas - V100
magmablas - A100
magmablas - V100

(d) Batched DGEQRF

Fig. 9: Performance of batched LU and QR factorizations, applied to many (10,000) small-sized problems (left) and few (500)

moderate-sized problems (right).

(a) SpMV Improvement (b) Solver Improvement

Fig. 10: SpMV and Solver Performance Speedup Boxplot of A100 against V100. There are two reference lines, red line is the

base = 1 and blue line is the speedup of memory in general = 1.7

NVIDIA’s cuBLAS library and the MAGMA open-source

library. Compared to the predecessor, the A100 GPU provides

a 1.7× higher memory bandwidth, achieving almost 1.4 TB/s

for large input sizes. The larger caches on the A100 allow for

even higher performance improvements in complex applica-

tions like the sparse matrix vector product. Ginkgo’s Krylov

iterative solver runs in most cases more than 1.8× faster on

the A100 GPU than on the V100 GPU. The batched routines

34

(a) Magma Batched Routine Improvement (b) cuBLAS Batched Routine Improvement

Fig. 11: Batched Routine Performance Speedup Boxplot of A100 against V100. There are two reference lines, red line is the

base = 1 and blue line is the speedup of memory in general = 1.7

Fig. 12: Overview of the average performance of A100 against V100.

available in cuBLAS and MAGMA can run 1.45× to 1.8×
faster on the A100 GPUs. With double-precision support in

A100 tensor core, the batched DGEMM (mid-size problem

batch 500) achieves up to 18 teraFLOP/s which is 3× the

performance on NVIDIA’s V100 GPU.

ACKNOWLEDGMENTS

This work was supported by the “Impuls und Vernetzungs-

fond” of the Helmholtz Association under grant VH-NG-1241

and by the Exascale Computing Project (17-SC-20-SC), a

collaborative effort of the U.S. Department of Energy Office

of Science and the National Nuclear Security Administration.

The authors would like to thank the Steinbuch Centre for

Computing (SCC) of the Karlsruhe Institute of Technology

for providing access to an NVIDIA A100 GPU.

35

REFERENCES

[1] The Top 500 List, http://www.top.org/.
[2] SuiteSparse, “Matrix Collection,” https://sparse.tamu.edu, 2018, Ac-

cessed in April 2018.
[3] H. Anzt, T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak,

T. Ribizel, Y. M. Tsai, and E. S. Quintana-Ortı́, “Ginkgo: A modern
linear operator algebra framework for high performance computing,”
2020.

[4] Nvidia, “NVIDIA A100 Tensor Core GPU Architecture
,” https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/nvidia-ampere-architecture-whitepaper.pdf, June 2020.

[5] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “Gpu-
stream v2.0: Benchmarking the achievable memory bandwidth of many-
core processors across diverse parallel programming models,” in High
Performance Computing, M. Taufer, B. Mohr, and J. M. Kunkel, Eds.
Cham: Springer International Publishing, 2016, pp. 489–507.

[6] G. M. D. Corso, “Estimating an eigenvector by the power
method with a random start,” SIAM J. Matrix Anal. Appl.,
vol. 18, no. 4, pp. 913–937, Oct. 1997. [Online]. Available:
https://doi.org/10.1137/S0895479895296689

[7] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond: The
Science of Search Engine Rankings. Princeton, NJ, USA: Princeton
University Press, 2012.

[8] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition. Philadelphia, PA: SIAM, 1994.

[9] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis, ser. SC ’09. New York, NY, USA: ACM, 2009, pp. 18:1–
18:11. [Online]. Available: http://doi.acm.org/10.1145/1654059.1654078

[10] H. Anzt, T. Cojean, C. Yen-Chen, J. Dongarra, G. Flegar, P. Nayak,
S. Tomov, Y. M. Tsai, and W. Wang, “Load-Balancing Sparse Matrix
Vector Product Kernels on GPUs,” ACM Trans. Parallel Comput., vol. 7,
no. 1, Mar. 2020. [Online]. Available: https://doi.org/10.1145/3380930

[11] G. Flegar and H. Anzt, “Overcoming load imbalance for irregular
sparse matrices,” in Proceedings of the Seventh Workshop on
Irregular Applications: Architectures and Algorithms, ser. IA3’17.
New York, NY, USA: ACM, 2017, pp. 2:1–2:8. [Online]. Available:
http://doi.acm.org/10.1145/3149704.3149767

[12] G. Flegar and E. S. Quintana-Ortı́, “Balanced csr sparse matrix-vector
product on graphics processors,” in Euro-Par 2017: Parallel Processing,
F. F. Rivera, T. F. Pena, and J. C. Cabaleiro, Eds. Cham: Springer
International Publishing, 2017, pp. 697–709.

[13] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop,
“A unified sparse matrix data format for efficient general sparse
matrix-vector multiplication on modern processors with wide SIMD
units,” SIAM J. Scientific Computing, vol. 36, no. 5, pp. C401–C423,
2014. [Online]. Available: http://dx.doi.org/10.1137/130930352

[14] H. Anzt, S. Tomov, and J. Dongarra, “Implementing a Sparse Matrix
Vector Product for the SELL-C/SELL-C-σ formats on NVIDIA GPUs,”
University of Tennessee, Tech. Rep. ut-eecs-14-727, March 2014.

[15] S. Dalton, S. Baxter, D. Merrill, L. Olson, and M. Garland, “Optimizing
sparse matrix operations on gpus using merge path,” in 2015 IEEE
International Parallel and Distributed Processing Symposium, May
2015, pp. 407–416.

[16] D. Merrill, M. Garland, and A. S. Grimshaw, “High-performance and
scalable GPU graph traversal,” TOPC, vol. 1, no. 2, pp. 14:1–14:30,
2015. [Online]. Available: https://doi.org/10.1145/2717511

[17] D. Merrill and M. Garland, “Merge-based parallel sparse matrix-vector
multiplication,” in Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, ser.
SC ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 58:1–58:12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3014904.3014982

[18] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayappan,
“Adaptive sparse tiling for sparse matrix multiplication,” in Proceedings
of the 24th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2019, Washington, DC, USA,
February 16-20, 2019, 2019, pp. 300–314. [Online]. Available:
https://doi.org/10.1145/3293883.3295712

[19] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
PageRank citation ranking: Bringing order to the Web,” in
Proceedings of the 7th International World Wide Web Conference,
Brisbane, Australia, 1998, pp. 161–172. [Online]. Available:
citeseer.nj.nec.com/page98pagerank.html

[20] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498785

[21] N. Gould and J. Scott, “A note on performance profiles for
benchmarking software,” ACM Trans. Math. Softw., vol. 43, no. 2, Aug.
2016. [Online]. Available: https://doi.org/10.1145/2950048

[22] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, and
M. Köhler, “Preconditioned Krylov solvers on GPUs,” Parallel
Computing, vol. 68, pp. 32–44, oct 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819117300777

[23] A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. J. Dongarra,
“Batched matrix computations on hardware accelerators based on
GPUs,” IJHPCA, vol. 29, no. 2, pp. 193–208, 2015. [Online].
Available: https://doi.org/10.1177/1094342014567546

[24] H. Anzt, J. Dongarra, G. Flegar, E. S. Quintana-Ortı́, and A. E. Tomás,
“Variable-size batched gauss-huard for block-jacobi preconditioning,”
Procedia Computer Science, vol. 108, pp. 1783 – 1792,
2017, international Conference on Computational Science, {ICCS}
2017, 12-14 June 2017, Zurich, Switzerland. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050917307731

[25] A. Abdelfattah, A. Haidar, S. Tomov, and J. J. Dongarra, “Performance,
design, and autotuning of batched GEMM for gpus,” in High
Performance Computing - 31st International Conference, ISC High
Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings,
2016, pp. 21–38. [Online]. Available: https://doi.org/10.1007/978-3-
319-41321-1 2

[26] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou,
and J. J. Dongarra, “High-Performance Matrix-Matrix Multiplications
of Very Small Matrices,” in Euro-Par 2016: Parallel Processing -
22nd International Conference on Parallel and Distributed Computing,
Grenoble, France, August 24-26, 2016, Proceedings, 2016, pp. 659–671.
[Online]. Available: https://doi.org/10.1007/978-3-319-43659-3 48

[27] A. Abdelfattah, A. Haidar, S. Tomov, and J. J. Dongarra, “Factorization
and Inversion of a Million Matrices using GPUs: Challenges and
Countermeasures,” in International Conference on Computational
Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland, ser.
Procedia Computer Science, vol. 108. Elsevier, 2017, pp. 606–615.
[Online]. Available: https://doi.org/10.1016/j.procs.2017.05.250

[28] A. Abdelfattah, S. Tomov, and J. J. Dongarra, “Progressive Optimization
of Batched LU Factorization on GPUs,” in 2019 IEEE High Performance
Extreme Computing Conference, HPEC 2019, Waltham, MA, USA,
September 24-26, 2019. IEEE, 2019, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/HPEC.2019.8916270

[29] A. Abdelfattah, A. Haidar, S. Tomov, and J. J. Dongarra, “Batched
one-sided factorizations of tiny matrices using gpus: Challenges and
countermeasures,” J. Comput. Sci., vol. 26, pp. 226–236, 2018.
[Online]. Available: https://doi.org/10.1016/j.jocs.2018.01.005

36

APPENDIX A

NVIDIA V100/A100 ARCHITECTURE

Features V100 A100

GPU Architecture NVIDIA Volta NVIDIA A100
SMs 80 108
TPcs 40 54
FP32 Cores/SM 64 64
FP64 Cores/SM 32 32
INT32 Cores/SM 64 64
GPU Boost Clock 1530 MHz 1410 MHz
Peak FP16 TFLOPS 31.4 78
Peak FP32 TFLOPS 15.7 19.5
Peak FP64 TFLOPS 7.8 9.7
Texture Units 320 432
Memory Interface 4096-bit HBM2 5120-bit HBM2
Memory Data Rate 877.5 MHz DDR 1215 MHz DDR
Memory Bandwidth 900 GB/sec 1555 GB/sec
L2 Cache 6144 KB 40960 KB
Shared Memory Size/SM 96 KB 164 KB
Register File Size 256 KB 256 KB
Transistors 21.1 billion 54.2 billion

TABLE I: NVIDIA GPU architecture comparison [4].

APPENDIX B

ARTIFACT DESCRIPTION/ARTIFACT EVALUATION

A. Summary of the Experiments Reported

We ran SpMV, Krylov solver, and Batched Routine on

Summit (V100 GPU) and KIT HoreKa (A100 GPU) using

CUDA library v11.0.167, Ginkgo library v1.3.0 with IDR

branch, MAGMA master branch (commit 9ce41ca, which fixes

cuda11 compilation issue based on MAGMA v2.5.3)

B. Artifact Availability

• Software Artifact Availability: All author-created soft-

ware artifacts are maintained in a public repository under

an OSI-approved license.

• Hardware Artifact Availability: There are no author-

created hardware artifacts.

• Data Artifact Availability: Some author-created data ar-

tifacts are NOT maintained in a public repository or are

NOT available under an OSI-approved license

• Proprietary Artifacts:No author-created artifacts are pro-

prietary.

C. Author artifacts

• Ginkgo: https://ginkgo-project.github.io

(repo: https://github.com/ginkgo-project/ginkgo)

@misc{anzt2020ginkgo,

title = {Ginkgo: A Modern Linear Operator Algebra

Framework for High Performance Computing},

author = {Hartwig Anzt and Terry Cojean and Goran

Flegar and Fritz Göbel and Thomas Grützmacher and

Pratik Nayak and Tobias Ribizel and Yuhsiang Mike Tsai

and Enrique S. Quintana-Ortı́},

year = {2020},

eprint = {2006.16852},

archivePrefix = {arXiv},

primaryClass = {cs.MS}
}

• MAGMA: https://icl.cs.utk.edu/magma

(repo: https://bitbucket.org/icl/magma/src/master)

@article{tdb10,

title = {{Towards dense linear algebra for hybrid GPU

accelerated manycore systems}},

author = {Stanimire Tomov and Jack Dongarra and Marc

Baboulin},

booktitle = {Parallel Matrix Algorithms and Applica-

tions},

doi = {10.1016/j.parco.2009.12.005},

issn = {0167-8191},

journal = {Parallel Computing},

month = jun,

number = {5-6},

pages = {232–240},

posted-at = {2010-12-17 09:48:58},

priority = {2},

volume = {36},

year = {2010}
}

D. V100 Experimental Setup

• Relevant hardware details: System name - Summit;

POWER9 CPUs ; NVIDIA VOLTA 100 GPUs;

• Operating systems and versions

• Compilers and versions: gcc/g++ v6.4.0; nvcc v11.0.167

• Applications and versions: Ginkgo v1.3.0 with IDR

branch, MAGMA master branch (commit 9ce41ca, which

fixes cuda11 compilation issue based on MAGMA v2.5.3)

• Libraries and versions: CUDA Library v11.0.167

• Key algorithms: SpMV(Coo, Csr, Ell, Hybrid, Sellp),

Krylov solver(BiCGSTAB, CG, CGS, FCG, GMRES,

IDR), Batched routine(gemm, trsv, getrf, geqrf)

• Input datasets and versions: all real matrices from SuiteS-

parse

E. A100 Experimental Setup

• Relevant hardware details: System name - HoreKa; AMD

EPYC 7742 64-Core CPUs ; NVIDIA Ampere 100

GPUs;

• Operating systems and versions: Ubuntu 18.04.4 LTS

• Compilers and versions: gcc/g++ v7.5.0; nvcc v11.0.167

• Applications and versions: Ginkgo v1.3.0 with IDR

branch, MAGMA master branch (commit 9ce41ca, which

fixes cuda11 compilation issue based on MAGMA v2.5.3)

• Libraries and versions: CUDA Library v11.0.167

• Key algorithms: SpMV(Coo, Csr, Ell, Hybrid, Sellp),

Krylov solver(BiCGSTAB, CG, CGS, FCG, GMRES,

IDR), Batched routine(gemm, trsv, getrf, geqrf)

• Input datasets and versions: all real matrices from SuiteS-

parse

37

F. Artifact Evaluation

• Performed verification and validation studies: In SpMV,

we check the result with Ginkgo’s Coo; In Krylov solver,

we use NaN as the required residual to enforce the

same maximum iteration, so do not use the checks; In

Batched routine, we compare the MAGMA results with

cuBLAS’s.

• Validated the accuracy and precision of timings: In SpMV

and Batched routine, we ran several times to get the

average time for more reliable time. However, the time

should be still reliable because we have warmup iteration

to avoid the initial issue and solvers involving many

kernels to reduce the effect of unbalanced time of each

kernel.

• Used manufactured solutions or spectral properties: N/A

• Quantified the sensitivity of your results to initial con-

ditions and/or parameters of the computational environ-

ment: We apply some warmup iterations to avoid the

initial issue.

• Describe controls, statistics, or other steps taken to make

the measurements and analyses robust to variability and

unknowns in the system: N/A

38

