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Abstract—The use of low-precision computations is popular
in accelerating machine learning and artificial intelligence (AI)
applications. Hardware architectures, such as high-end graphics
processing units (GPUs), now support native 16-bit floating-point
arithmetic (i.e., half-precision). While half precision provides a
natural 2×/4× speedup against the performance of single/double
precisions, respectively, modern GPUs are equipped with hard-
ware accelerators that further boost the FP16 performance. These
accelerators, known as tensor cores (TCs), have a theoretical peak
performance that is 8×/16× faster than FP32/FP64 performance,
respectively. Such a high level of performance has encouraged
researchers to harness the compute power of TCs outside AI
applications.

This paper presents a mixed-precision dense linear solver
(Ax = b) for complex matrices using the GPU’s TC units.
Unlike similar efforts that have discussed accelerating Ax = b
in real FP16 arithmetic, this paper focuses on complex FP16
precisions. The developed solution uses a “half-complex” pre-
cision to accelerate the solution of Ax = b while maintaining
complex FP32 precision accuracy. The proposed solver requires
the development of a high-performance mixed-precision ma-
trix multiplication (CGEMM-FP16) that accepts half-complex
inputs, and uses the TCs’ full-precision products and FP32
accumulations for the computation. We discuss two designs
and their performance. Similar to the way fast GEMMs power
the performance of LAPACK, the mixed-precision CGEMM-
FP16 can enable the development of mixed-precision LAPACK
algorithms. We illustrate this by integrating both CGEMM-FP16s
into the development of mixed-precision LU factorizations of
complex matrices. Finally, an iterative refinement solver is used to
deliver complex FP32 accuracy using a preconditioned GMRES
solver. Our experiments, conducted on V100 GPUs, show that
the mixed-precision solver can be up to 2.5× faster than a full
single-complex precision solver.

Index Terms—Half precision, Tensor cores FP16 arithmetic,
mixed-precision solvers

I. INTRODUCTION AND RELATED WORK

Many scientific computing applications require the solution
of a linear system of equations Ax = b, where A is a general
dense matrix, b is a right-hand side vector, and x is the solution
vector. The same problem is used in the High Performance
LINPACK (HPL) benchmark,1 which is the standard bench-
mark that is used to rank the fastest 500 supercomputers in

1https://www.netlib.org/benchmark/hpl/

the world.2 The standard LAPACK software [1] provides the
gesv routine for solving Ax = b.

The gesv algorithm consists of two main stages. The first
one is called getrf, which factorizes the matrix A using
the LU factorization with partial pivoting. The factorization
yields the L and U factors, as well as the pivoting vector
ipiv. The second stage is getrs, which solves the linear
system by applying the row interchanges on the right-hand
side (laswp), and performing two triangular solves (trsm)
with respect to L and U . The factorization step is usually
the dominant one, especially when the number of right-hand
sides (nrhs) is small. In fact, given an n × n matrix, the
getrf routine requires 2n3

3 −
n2

2 + 5n
6 floating-point operations

(FLOPs). The operation count of the getrs routine is nrhs
×(2n2 − n). Throughout the paper, we consider nrhs = 1.

Since LU factorization is the dominant step with O(n3)
complexity, there have been several research efforts to op-
timize its performance on parallel architectures. Apart from
the traditional “parallel optimizations” that target faster exe-
cution of critical components of the algorithm—such as matrix
multiplication (GEMM)—there have been other “algorithmic
optimizations” that change the numerical steps of the algo-
rithm itself. One particular algorithmic improvement to gesv
is to perform the factorization using a “reduced precision.”
The factorization step would then be much faster, due to
the reduced data movement as well as the faster execution
of the numerical kernels. As an example, a transition from
double precision (64-bit) to single precision (32-bit) execution
would witness a natural 2× speedup in the factorization
step. However, due to the loss of accuracy in the L and U
factors, the final result of gesv will no longer satisfy the
double-precision accuracy. This is why an extra algorithmic
component, in fact a correction step, is added to gesv.
The correction step iteratively recovers the solution back to
double-precision accuracy if the original matrix A satisfies
certain conditions. The redesigned algorithm is called a mixed-
precision with iterative refinement (MPIR) solver, since it
uses two different precisions and an iterative procedure to

2https://www.top500.org



achieve the required accuracy. Early efforts to implement such
algorithms in LAPACK were introduced by Langou et al. [2],
and Baboulin et al. [3].

The ongoing revolution in machine learning applications
and artificial intelligence (AI) sparked a huge demand for
high-performance, half-precision arithmetic (16-bit floating-
point format). Such a demand is due to the fact that most
machine learning algorithms can tolerate the relatively low
accuracy and dynamic ranges of half precision [4]. Running at
half precision also means more performance, not only because
of the faster arithmetic, but also because of the reduction in
memory storage and traffic. NVIDIA’s graphics processing
units (GPUs) introduced half-precision arithmetic with the
Pascal architecture. Pascal implements the “binary16” format
which is defined by the IEEE-754 standard [5]. The Pascal
successor is the Volta architecture, which already powers a
number of supercomputers, including the top two supercom-
puters from the top500 list—the number one, Summit at
Oak Ridge National Laboratory (ORNL),3 and number two,
Sierra at Lawrence Livermore National Laboratory (LLNL).4

Volta comes with hardware acceleration units (called Tensor
Cores) for matrix multiplication in FP16. These tensor cores
are theoretically 12× faster than the theoretical FP16 peak
performance of the preceding architecture. Applications taking
advantage of tensor cores can run up to 4× faster than using
the regular FP16 arithmetic on the same GPU. The vendor
BLAS library, cuBLAS [6], provides a number of matrix
multiplication routines that can take advantage of tensor cores.
Some other efforts introduced open source routines that can
be competitive with cuBLAS [7].

One of the most notable uses of half precision in dense
linear algebra is the design of a new generation of mixed-
precision solvers. The work done by Haidar et al. [8] in-
troduced a mixed-precision solver that is different in several
ways from the ones introduced in [2] and [3]. First, the
new method uses three precisions (double, single, and half
precisions) to solve Ax = b up to double-precision accuracy.
Second, the factorization step is performed in mixed precision,
where everything is computed in single precision except the
trailing matrix updates, which are performed using mixed half-
and single-precision arithmetic. More precisely, the authors
use a “mixed-precision GEMM” from the cuBLAS library,
which accepts the multiplication operands in half precision and
provides the product in single precision. Third, the authors
use a new iterative refinement solver based on the GMRES
method [9] [10], instead of the classic iterative refinement
that is based on triangular solve. The new mixed-precision
solver succeeds in solving problems up to double-precision
accuracy, with up to 4× speedup against an all double-
precision implementation.

In this paper, we extend the mixed-precision solver intro-
duced in [8] to complex matrices. The main challenge of this
work is the absence of support to half-complex arithmetic on

3https://www.olcf.ornl.gov/summit
4https://computing.llnl.gov/computers/sierra

both hardware and software levels. This drives us to develop
a GPU kernel for mixed-precision GEMM that accepts half-
complex inputs, and produces a single-complex output. The
developed kernel is plugged into a mixed-precision linear
solver that can solve Ax = b up to single-complex precision
accuracy. The solver uses an iterative refinement technique
based on a preconditioned GMRES method. The latter is a
more stable way to compute the incremental corrections that
are added iteratively to the solution vector x̂. Our results show
that the developed solution is up to 2.5× faster than a regular
solver that uses a full single-complex precision. This work is
lined up for integration into the MAGMA library [11] [12].

II. BACKGROUND

Before the introduction of half-precision in modern GPUs,
mixed-precision solvers did not target accelerating FP32 sys-
tems (both single and single-complex) due to the lack of a
lower precision. To the best of our knowledge, this is the first
effort that targets accelerating complex systems using “half-
complex” precision.

Classic mixed-precision solvers [2] [3] used to perform the
entire LU factorization in a reduced precision (e.g., FP32). The
refinement phase iteratively updates the solution vector x̂ until
it is accurate enough. At each refinement iteration, three main
steps are performed. The first one is to compute the residual
r = b−Ax in the working precision (e.g., FP64). The second
step is to solve for the correction vector c, such that Ac = r.
This step uses the low precision L and U factors of A. The
last step is to update the solution vector x̂i+1 = x̂i + c. The
three steps are repeated until the residual is small enough.

The work done by Haidar et al. [8] shows that a similar
approach is not often successful when FP16 is considered. The
low accuracy and dynamic range of FP16 make it difficult
for classic mixed-precision solvers to converge successfully.
The proposition was then to perform a mixed-precision LU
factorization. Such a factorization uses FP32 arithmetic except
for the performance-critical rank-k updates. These updates
(C = C − A × B) are performed using a mixed-precision
GEMM kernel from the cuBLAS library, such that A and B
are demoted to FP16, and C is accumulated in FP32.

Even though the factorization was more accurate than a
full FP16 factorization, the classic iterative refinement (IR)
technique often fails to converge (e.g., following the classic
mixed precision solvers’ convergence theory [2]).

An alternative approach, which further improves the numer-
ical stability and convergence of the overall mixed-precision
solver, is to solve the correction equation (Ac = r) using an
iterative method, such as GMRES [13]. The resulting overall
solver thus uses two nested refinement loops, which is also
often referred to as ”inner-outer” iterative solvers [14] [15].
The recent work by Carson and Higham [9] [10] analyzes this
type of solver when three precisions are used (e.g., {FP16,
FP32, FP64} or {FP16, FP64, FP128} for {factorization,
working precision, residual precision}, respectively). They
prove that, if a preconditioned GMRES is used to solve the
correction equation, then forward and backward errors in the



order of 10−8/10−16 are achievable if the condition number
of A satisfies k∞(A)< 108/1012, respectively. The work
in [8] implements a simplified version of GMRES with just
two precisions, typically using the working precision as the
residual precision. By preconditioning GMRES using the low-
precision factors of A, FP64 accuracy can be achieved for
matrices with condition numbers up to 105.

LU Factorization – FP32

IR – Triangular Solve IR – Preconditioned 
GMRES

MP-GEMM
CFP32 = CFP32 – AFP16 ✕ BFP16

Classic
IR

IR+GMRES

Fig. 1. A simplified overview of the proposed mixed-precision solver

Figure 1 shows the proposed solution to extend the work
in [8] to support complex precisions. Our focus is to solve
Ax = b up to single-complex precision accuracy. In this
context, we need an LU factorization in single-complex preci-
sion (cgetrf) that uses a mixed-precision complex GEMM
C = C − A × B, such that A and B are demoted to half-
complex precision, while C is accumulated in single-complex
precision. In addition, we implement both the classic IR and
GMRES-based IR (IRGMRES) solvers for comparisons of the
numerical behavior. Note that both iterative refinement solvers
are implemented using one precision (single-complex). Al-
though the paper does not discuss double-complex precisions,
its support is relatively straightforward. The same factorization
routine would be used without change, and the new required
component is the GMRES solver in double-complex precision.
In the following sections, we discuss the main components of
our design, with an emphasis on the different design choices
that would impact the overall performance.

III. MIXED-PRECISION MATRIX MULTIPLICATION

The main performance key in our design is the mixed-
precision GEMM kernel. While the cuBLAS library supports
such an operation for real matrices, no similar functionality
exists for complex problems. In order to address this problem,
we consider two different approaches based on the data layout.

A. Interleaved vs. Split-Complex layouts

In order to use the cuBLAS library, a user must use
“split-complex” computation, meaning that the real and the
imaginary parts of A, B, and C must be separated and then
merged back when performing the rank-k updates. This applies
not only to the cuBLAS library, but also to its lightweight
GEMM library cuBLASLt5, and to the open-source CUT-
LASS library.6 Considering dense linear algebra algorithms,

5https://docs.nvidia.com/cuda/cublas/index.html#using-the-cublasLt-api
6https://github.com/NVIDIA/cutlass

split-complex computations are far from beneficial due to
the following reasons. First, all the existing linear algebra
numerical libraries assume an interleaved layout, meaning that
the real and the imaginary parts of each element are contiguous
in memory. It is not practical to rewrite entire algorithms using
split-complex computations to make use of the tensor cores.
Second, while it is relatively easy to develop the GEMM
kernel using the split-complex format, other linear algebra
components might not be as straightforward. Examples are
triangular solve and the pivoting stage in the LU factorization.
In these routines, it is more convenient to use the standard
interleaved layout. Third, complex compute-bound kernels
normally reach the peak performance of the underlying hard-
ware earlier than their counterparts that use real arithmetic.
This is because complex kernels have more arithmetic intensity
than real arithmetic kernels. As an example, the real FP16
scalar operation (c = c + a × b) costs 2 FLOPs (1 addition
and 1 multiplication), which results in 2

8 = 0.25 FLOP/byte
ratio. Using complex FP16 arithmetic, the same operation
would cost 8 FLOPs. The product a × b costs 6 FLOPs (4
multiplications and 2 additions), and the update of c costs
2 more additions. This results in 8

16 = 0.5 flop/byte ratio
(double the arithmetic intensity of the real operation). To
justify this experimentally, Figure 2 shows the performance,
relative to the theoretical peak performance, of the cuBLAS
sgemm and cgemm routines. The performance test is con-
ducted using the rank-k update operation that exists in the
LU factorization. The figure shows that the cgemm routine
is closer to the peak performance than the sgemm routine.
Using split-complex computation results in lower arithmetic
intensity, and potentially lower performance. In other words,
a split-complex cgemm will be bound by the performance of
the sgemm kernel.
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Fig. 2. Performance (as percentage of the peak) of the cuBLAS sgemm and
cgemm routines.

B. Mixed-Precision Half-Complex GEMM

This is why we developed a new GPU kernel that performs
mixed-precision complex GEMM. The kernel accepts A and B
in half-complex precision, and produces C in single-complex
precision. Similar to [7], the kernel uses the tensor core



operations by calling the CUDA WMMA device functions.
Since there is no standard type for half-complex precision,
we use the CUDA vector type (half2), which exactly fits
our requirements for the kernel development. The low 16-
bits serve for the real part, and the high 16-bits serve for the
imaginary part. Before calling the kernel, the input matrices
A and B are demoted from single-complex precision to half-
complex precision using lightweight kernels. Since the tensor
core units perform only real arithmetic, the developed kernel
is built on the concept of reading the matrices in the standard
interleaved layout (half-complex precision), and then splitting
the real and imaginary parts just before sending them to the
tensor cores. The resulting output of the tensor cores is merged
back to single-complex before writing it to the main memory.

The work distribution across thread blocks is similar to pre-
vious GEMM designs in the MAGMA library [16], [17]. Each
thread block is responsible for computing a BLK_M×BLK_N
block of the matrix C. To accomplish this, each thread block
reads the corresponding block rows and block columns of A
and B. The design of each thread block is drastically different
from traditional GEMM kernels. The traversal of A and B is
made in steps of BLK_K. At each step, a BLK_M×BLK_K of
A (half-complex precision) is multiplied by BLK_K×BLK_N
of B (half-complex precision) to produced a partial result that
is accumulated to a block of C (single-complex precision).
The A and B blocks are read first into half2 register
arrays, and then the real and imaginary parts are separated
into shared-memory buffers. The shared-memory buffers can
then be passed to the device-level tensor core functions. The
partial product for A×B is conducted using four tensor core
multiplications (Ar×Br, Ar×Bi, Ai×Br, and Ai×Bi). To
extract the results from tensor cores, shared-memory buffers
are used. Register arrays are then used to assemble the final
result into single-complex precision. A thread block uses a
2D DIM_X×DIM_Y thread configuration. Since the tensor
cores support very few GEMM sizes, we use the double-
sided recursive blocking technique [7] to decouple the GEMM
blocking sizes (BLK_M, BLK_N, and BLK_K) from the tensor
core sizes (TC_M, TC_N, and TC_K).

In order to have a fair study, we developed a similar routine
based on the cuBLAS library. The latter solution uses the
mixed-precision GEMM kernel in cuBLAS that assumes A
and B are in half precision, and C is single precision. We
developed simple lightweight kernels to separate and merge
the real and imaginary components in the main memory. The
rank-k update in the LU factorization is C = C − A × B,
which can be performed using four calls to cuBLAS.

In order to have a fair comparison, we developed two
GEMM driver routines that can be plugged directly into the
standard LU factorization algorithm (cgetrf). The require-
ments are: (1) Single-complex precision inputs and outputs
(e.g., like a standard cgemm); (2) Converge to/from half-
precision underneath transparently; and (3) Standard “inter-
leaved” layout for both inputs and outputs so that we can
conveniently execute other steps of the LU factorization algo-
rithm. The first of the two driver routines uses our developed

MAGMA kernel with the necessary conversions from single-
complex to half-complex precisions. The second driver routine
uses cuBLAS with the necessary precision conversion routines,
as well as the split and merge routines.
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Fig. 3. Performance of the cgemm routine when accelerated internally with
FP16 arithmetic. Results are shown for rank-k updates on a Tesla V100 GPU.

Figure 3 shows the performance comparisons between
the MAGMA-based routine (cgemm-fp16-magma), and the
cuBLAS-based routine (cgemm-fp16-cublas). All perfor-
mance comparisons represent rank-k updates for discrete val-
ues of k (i.e., the blocking size of the factorization). Typically,
the blocking size is a tuning parameter for the algorithm, and is
chosen to guarantee a close-to-the-peak GEMM performance
without causing a “too wide” panel during the factorization



stage. Typical values for k are 256 to 512 in single-complex
precision.

Ideally, the MAGMA routine should outperform the
cuBLAS routine regardless of the matrix sizes, due to the
increased arithmetic intensity. This is observed for relatively
small k, with around 70% performance advantage for k = 256,
and around 24% improvement for k = 512. However, we
observe that the cuBLAS routine has some winning scenarios
when k is larger than ≈ 850. The explanation to this behavior
is two-fold. First, the cuBLAS SGEMM kernel is highly
optimized with assembly-based implementations [18] [19]. Its
performance scales very well for large sizes, with an asymp-
totic performance that is close to the GPU peak. Second, the
MAGMA kernel uses device-level application programming
interfaces (APIs) for utilizing the tensor cores. These APIs
impose some restriction on the multiplication sizes, as well as
the leading dimensions of the shared-memory buffers, which
creates a huge number of shared-memory bank conflicts.

IV. FACTORIZATION STRATEGY AND PERFORMANCE

Another aspect of the developed solution is the execution
strategy of the LU factorization. For almost a decade, the LU
factorization in the MAGMA library was designed to take
advantage of both the CPU and GPU. This hybrid design uses
a lookahead technique that splits the trailing matrix update
into two updates. The first one updates the next panel, which
is sent to the CPU. The CPU factorizes the received panel
while the GPU is performing the second (and usually larger)
update. To achieve the best performance out of this design,
the GPU must be kept busy performing rank-k updates, which
means that execution time of the second update on the GPU
must be greater than the time needed to factorize the panel
plus the time needed send the panel back and forth between
CPU and the GPU.
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Fig. 4. Performance of the single-complex LU factorization in the MAGMA
library. Results are shown on a 20-core Haswell CPU and a Tesla V100 GPU.
MAGMA is built using CUDA 10.1 and MKL 2018.0.1

Hybrid designs require a relatively fast CPU so that the GPU
does not go into idle states. If the panel factorization on the
CPU is not fast enough, hybrid factorization might experience
a slowdown in performance. This issue has been addressed

with the introduction of native (GPU-only) factorizations,
which do not rely on the CPU except for scheduling the
execution on the GPU. Native LU factorization has been
discussed in [20]. It can be faster than the hybrid design if
the CPU does not send the factorized panel back to the GPU
on time. Figure 4 shows a comparison between both designs
for the single complex LU factorization (cgetrf). Although
the hybrid design uses a very optimized CPU factorization
(from the Intel MKL library), it trails the performance of the
native factorization for small sizes. This is because the trailing
updates are very fast on the GPU (mostly cgemm calls). The
hybrid design needs a large matrix so that it can hide the CPU
activity within the GPU workload.

A. Mixed-Precision LU Factorization

Now we investigate what happens when we replace the
cgemm calls in the LU factorization with the mixed-precision
kernels discussed in Section III. Recall that we have two
solutions (based on MAGMA and cuBLAS), as well as two
factorization strategies (hybrid and native), which yields four
combinations in total. Whenever cuBLAS is used, the blocking
size of the factorization is set to at least 1024. Otherwise, it
will be slower than its MAGMA variant anyway. When the
MAGMA mixed-precision GEMM is used, the blocking size
is set to at most 512.

We begin with Figure 5, which shows the performance
results for native factorization. The performance graphs of the
two mixed-precision factorizations are nearly the same. There
is a very slight advantage for using magma-cgemm-fp16
for matrices smaller than 20k in size. Such an advantage
goes to cuBLAS for larger matrices. Both factorizations have
about 2.5× speedup against the full-precision factorization. An
interesting observation here is that despite the clear advantage
for the cuBLAS-based GEMM for a 1024 blocking size
(Figure 3), this advantage does not quite propagate to the
native factorization. Recall that we must use large blocking
sizes for cublas-cgemm-fp16 so that it is advantageous
over magma-cgemm-fp16. This large blocking size results
in very wide panels that are being factorized in full precision.

Figure 6 shows the performance results for hybrid ex-
ecution, where we observe a clear advantage for using
magma-cgemm-fp16. As mentioned before, very wide pan-
els can cause performance drops. In hybrid factorizations,
these wide panels are factorized on the CPU rather than
on the GPU. Moreover, since the trailing updates are now
much faster due to the use of half precision, it becomes
more difficult to hide the CPU activity, which is done in full
precision. This results in idle states for the GPU, and an overall
slowdown in performance. Since we can use thinner panels
for magma-cgemm-fp16 without observable performance
penalties, the CPU has less work to do in full precision, which
means more opportunity for hiding its workload. There is a
25% performance improvement when magma-cgemm-fp16
is used for hybrid factorizations.

By combining Figures 5 and 6, we observe that, for matrix
sizes smaller than 20k, it is best to use native factorization
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Fig. 5. Performance of the mixed-precision LU factorization using native
execution. Results are shown on a 20-core Haswell CPU and a Tesla V100
GPU. MAGMA is built using CUDA 10.1 and MKL 2018.0.1
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Fig. 6. Performance of the mixed-precision LU factorization using hybrid
execution. Results are shown on a 20-core Haswell CPU and a Tesla V100
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with the MAGMA GEMM kernel. For sizes larger than that,
we should switch to hybrid execution using the MAGMA
GEMM kernel. Note that these decisions vary from one system
to another. For example, if a faster CPU is used along with an
optimized CPU software, hybrid factorizations may have the
advantage over a wider range of sizes. On the other hand,
a slower CPU may force abandoning hybrid factorizations
altogether.

V. ITERATIVE REFINEMENT: CLASSIC VS. GMRES-BASED

Now that we have discussed the factorization stage, our at-
tention now turns to the solution stage. The detailed discussion
about the numerical behavior of IR and IRGMRES can be
found in [8]. We experimentally tested the two approaches
for the solution phase on several types of matrices. Our
conclusion is that IR converges only for problems with very
small condition numbers. Otherwise, the IRGMRES provides
a more stable solution that works well for condition numbers
in the order of 105. As an example, Figure 7 shows the
convergence of both solvers on a relatively large matrix with

k∞(A)= 105 and clustered singular values. The classic IR
technique has a very slow convergence rate and eventually fails
to reach a solution within the allowed number of iterations.
The IRGMRES converges within just 10 iterations. Our final
solution, therefore, will use IRGMRES only for a more robust
numerical behavior.
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Fig. 7. Convergence history of both IR and IRGMRES on a matrix of
size 20k. k∞(A)= 105. Clustered distribution of singular values (σi =
1, 1, · · · , 1

k∞(A)
).

VI. FINAL PERFORMANCE RESULTS

This section shows the final performance of our mixed-
precision complex solver (MP-cgesv). The developed solu-
tion solves Ax = b up to single-complex precision accuracy
using a mixed-precision LU factorization. The latter is acceler-
ated using mixed-precision matrix multiplication that utilizes
the FP16 compute power of the tensor cores on the GPU. All
performance tests are conducted on a dual-socket Intel Haswell
CPU, with 10 cores per socket (Intel Xeon E5-2650 v3 running
at 2.3GHz), and a Tesla V100 PCIe GPU. The solution is
developed as part of the MAGMA library, which is compiled
using CUDA 10.1 and Intel MKL 2018.0.1 (for fast hybrid
executions). Similar to the work done on real precisions [8],
the performance tests span different types of matrices with
different properties and different condition numbers.

Figure 8 shows the final performance in a “best case”
scenario. The matrices used in this test are diagonally dom-
inant with a small condition number. This type of matrices
are numerically easy to solve. The solution phase with the
preconditioned GMRES requires no more than one iteration
to converge. The overhead of the solution phase is, therefore,
almost negligible compared with the factorization phase. We
observe an asymptotic speedup of 2.5× against the classic
cgesv using fixed single-complex precision.

Figure 9 shows the performance on another type of easy
problem. The matrices used in this test have positive eigen-
values and their singular values have an arithmetic distribu-
tion, such that σi = 1 − ( i−1

n−1 )(1 −
1

k∞(A) ), i = 1 · · ·n.
The condition number is order of 105. The preconditioned
GMRES solver requires 3 iterations on average to converge.
The overhead of the solution phase is still minimal, but the
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Fig. 8. Performance for diagonally dominant matrices. k∞(A)≤ 102. Results
are shown on a 20-core Haswell CPU and a Tesla V100 GPU.

performance is not quite as high as in Figure 8. The asymptotic
speedup is reduced to 2.4×.
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Fig. 9. Performance for matrices with positive eigenvalues and arithmetic dis-
tribution of singular values (σi = 1−( i−1
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)), k∞(A)≈4.3e+5.

Results are shown on a 20-core Haswell CPU and a Tesla V100 GPU.

In Figure 10, we slightly increase the difficulty by using
a logarithmic uniform distribution of singular values, while
maintaining positive eigenvalues and a condition number of
105. The new distribution of eigenvalues indeed affects our
solution. We observe speedups only for matrices larger than
8k in size. The total number of iterations is between 9 and
12 across all the test points. This results in about a 10%
performance drop with respect to the best case scenario in
Figure 8, and an asymptotic speedup of 2.3× against the
classic cgesv routine.

We discuss Figures 11 and 12 together. Figure 11 shows a
similar performance behavior on a different type of problem.
The matrices have a condition number in the order of 104, with
a clustered distribution of singular values. The eigenvalues are
not necessarily positive or real. The GMRES-based refinement
stage requires 9 to 10 iterations, and an asymptotic speedup of
2.2× is observed. In Figure 12 we maintain the same condition
number, but change the singular-value distribution. This is
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Fig. 10. Performance for matrices with positive eigenvalues and loga-
rithmic uniform distribution of singular values (log(σi) uniform between
log( 1

k∞(A)
) and log(1)), k∞(A)≈1e+5. Results are shown on a 20-core

Haswell CPU and a Tesla V100 GPU.

a possible “worst case” scenario, where we barely observe
any performance advantage for mixed-precision solvers. The
required number of iterations grows consistently with the
matrix size, ranging between 7 and 135 iterations. The large
number of iterations consumes the performance advantage of
the factorization phase, which causes the overall performance
to significantly drop. A slim 10% speedup is observed for
problems larger than 22k×22k. Below this size, it is actually
better to use the full-precision solver.
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), k∞(A)≈4.3e+4. Results are shown on a 20-core Haswell

CPU and a Tesla V100 GPU.

The take away message from this section is that the perfor-
mance of mixed-precision solvers depends on several matrix
properties, such as the condition number, the distribution of
singular values, and the eigenvalue properties. In general, a
very large problem gives an advantage for mixed-precision
solvers. The performance gain in the mixed-precision fac-
torization stage is significant, which gives room to execute
more GMRES iterations without a big impact on the overall
performance.
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VII. CONCLUSION AND FUTURE WORK

This paper introduced a mixed-precision linear solver that
can accelerate the solution of complex linear systems by
performing half-complex computations on the GPU. The
developed solution solves Ax = b up to single-complex
precision accuracy by taking advantage of the tensor core
units on NVIDIA Volta GPUs. Thanks to a complex mixed-
precision GEMM kernel, the LU factorization runs up to 2.5×
faster than a full-precision factorization. Iterative refinement
based on a preconditioned GMRES ensures numerical stability
across a wide range of problems, and enables the overall solver
to run up to 2.5× faster than the full-precision solver.

Solving up to double-complex precision accuracy is rel-
atively simple. The factorization stage remains the same,
while only the IRGMRES needs to be rewritten to compute
the correction equation in double-complex precision. Other
future directions include a comprehensive autotuning of the
mixed-precision GEMM kernel, and improving the numerical
robustness of the solver by means of matrix scaling [21].
We also hope that our results encourage the vendors to
consider standard half-complex computation using interleaved
data layouts.
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