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Abstract—We present new GPU implementations of the tensor
contractions arising from basis-related computations for high-
order finite element methods. We consider both tensor and non-
tensor bases. In the case of tensor bases, we introduce new kernels
based on a series of fused device-level matrix multiplications
(GEMMs), specifically designed to utilize the fast memory of the
GPU. For non-tensor bases, we develop a tuned framework
for choosing standard batch-BLAS GEMMs that will maximize
performance across groups of elements. The implementations
are included in a backend of the libCEED library. We present
benchmark results for the diffusion and mass operators using
libCEED integration through the MFEM finite element library
and compare to those of the previously best-performing GPU
backends for stand-alone basis computations. In tensor cases,
we see improvements of approximately 10-30% for some cases,
particularly for higher basis orders. For the non-tensor tests, the
new batch-GEMMs implementation is twice as fast as what was
previously available for basis function order greater than five and
greater than approximately 105 degrees of freedom in the mesh;
up to ten times speedup is seen for eighth-order basis functions.

Index Terms—Tensor contractions, finite elements, high-order
methods, matrix-free FEM, GPU, batched linear algebra

I. INTRODUCTION

The Center for Efficient Exascale Discretizations (CEED)

[1] is a co-design center of the Exascale Computing Project,

with the goal of providing scientific application software

with tools for incorporating effective and accurate high-order

discretization methods that fully utilize current and future

high-performance computing hardware. A key focus of the

CEED project is high-order finite element methods with

matrix-free evaluation, which requires less memory and fewer

FLOPs per “matrix”-vector application than standard methods

involving the assembly of sparse matrices for finite element

operators [2], [3]. In addition to high-level finite element

libraries MFEM [4], Nek5000/NekRS [5], and libParanumal

[6], the CEED project is developing libCEED [7], which gives
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Administration) responsible for the planning and preparation of a capable
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exascale computing imperative.

applications a flexible, versatile, low-level API for defining

high-order operators for matrix-free evaluation.

libCEED has multiple backends to provide performance

for a variety of use cases across many CPU and GPU

architectures. The work presented here is developed within

the framework of improving the performance of the libCEED

MAGMA [8], [9] backend, specifically the basis computa-

tions for both tensor and non-tensor bases. We describe new

algorithms for device-level batch-GEMM-type operations for

tensor bases, and present examples of tuning standard batch

GEMM for non-tensor bases. Though the algorithms presented

are designed for high-order finite element methods, the tensor

basis kernels could further be adapted for applications with

tensor contractions of similar sizes.

II. RELATED WORK

Many physical systems of interest can be entirely or par-

tially written in terms of tensor contractions [10]. Accordingly,

there has been much interest recently in efficient algorithms

and code generation for general tensor contractions [11]–[13],

as well as tensor contraction implementations for GPUs [14],

[15]. For tensor contractions arising from high-order finite

element methods, some of the authors have previously investi-

gated the use of batch-GEMMs to perform tensor contractions

[16]. Here, we improve the performance through formulating

a series of tensor contractions to share the same execution

context, thus increasing the memory bandwidth by maximizing

data reuse. Świrydowicz et al. demonstrated highly-tuned opti-

mizations of the specific computations required for the CEED

bake-off problems as part of a corresponding “bake-off kernel”

study [17]; however, these kernels are optimized for each finite

element operator, and cannot be used within libCEED’s more

general framework, which is explained further in Section III.

Instead, we focus solely on the “basis actions” of a fully-

compliant libCEED backend. Our series of fused device-level

batch-GEMM actions is similar to the approach of Springer and

Bientinesi for general tensor contractions on CPUs [18].

III. DESIGN OVERVIEW OF A LIBCEED BACKEND

libCEED aims to define and provide an interface to a

general format representing the operators from high-order

discretizations, for which building a sparse matrix is not the
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most efficient choice for storage or use [7]. This format is

based on an algebraic factorization that can be written for a

general finite element operator A as

A = P T GTBTDBG
︸ ︷︷ ︸

libCEED operations

P. (1)

The P operator is related to the management of a distributed

parallel mesh and is handled by the high-level application

code. libCEED handles local computations, with its func-

tionality accessed through a Ceed struct instance created

by a distributed process. The BTDB sequence of operations

represents, for each local process, the transformation of its

elements to the reference element’s quadrature points and the

subsequent numerical integration of terms in the weak form

of the equation to be solved.

A. libCEED Operators

1) The G Operator – Element Restrictions: The libCEED

element restrictions are mappings between what libCEED calls

“L-vectors,” containing all the degrees of freedom that are

local to a process, and “E-vectors,” with degrees of freedom

ordered by element. In an E-vector, nodes on element bound-

aries will be repeated in multiple elements for continuous

finite element spaces. G is defined as the action that takes

an L-vector and returns an E-vector, and GT provides the

corresponding reverse mapping.

2) The B Operator – Basis Actions: The B operator takes

the E-vector produced by the element restriction and computes

values for each basis function at the quadrature points of each

element. The specific action of B on the basis functions is

determined by the operator (e.g. interpolation, gradient). In the

tensor case, this action is represented through a series of one-

dimensional tensor contractions for each element, as detailed

in Section IV-A; for non-tensor bases, we structure the basis

actions as standard dense matrix-matrix multiplications (see

Section V). The transpose operator, BT is handled similarly,

with an additional sum over the dimensional component in

the case of the transpose gradient action. The improvement of

these basis operators is the emphasis of this work.

3) The D Operator – QFunctions: A key difference be-

tween libCEED’s factorized approach and other high-order

finite element implementations is the use of the general user-

defined “QFunction.” This function operates solely on the

quadrature points. It involves computations related to the

mesh transformations and the physics of the equation. This

approach provides greater flexibility and ease of implementing

new operators, at the cost of reducing some opportunities

for optimization. The general interface for providing a user-

defined QFunction also allows the use of QFunctions from

other sources, such as automatic differentiation libraries or the

output from functions in outside software.

B. libCEED Backends and Interoperability

Each libCEED backend implements actions related to the

three main libCEED operators, plus a high-level operator that

combines the libCEED actions as listed in equation 1, and

supplemental functions related to memory management. The

libCEED backend structure aims to minimize code duplication

through delegation. The MAGMA backend, for example, dele-

gates QFunction application to the non-fused CUDA backends.

At the time of this work, only two CUDA backends imple-

mented non-tensor basis actions: cuda-ref, the reference

CUDA backend, and MAGMA. For tensor bases, the best

performance is achieved by operator fusion with runtime com-

pilation in the cuda-gen backend. Here “operator fusion”

refers to creating one kernel to perform the entire high-

level operation, rather than applying each sub-operator (G,

B, D, BT, and GT) separately. Prior to the work detailed

here, the best non-fused CUDA backend was cuda-shared,

so named because it utilizes the GPU’s shared memory to

increase performance. In cases where fusion is not possible

(e.g. not enough GPU memory available for the fused kernel or

the need for a QFunction provided through an external library

or source, which cannot be converted to code for runtime

compilation), it is important to also have fast “stand-alone”

kernels for the computationally-intensive basis actions.

IV. TENSOR BASIS COMPUTATIONS

We begin with some general definitions related to the kernel

design:

• p: Number of nodes in one direction of the tensor basis. It

is equal to (p̂+1), where p̂ is the order of basis functions.

• q: Number of nodes in one direction of the tensor

quadrature rule. It is usually equal to (p̂ + 2) or so, but

could be = p̂ or < p̂.

• P̄ : Total number of nodes in each component in an

element. For the tensor case, it is equal to pdim.

• Q̄: Total number of quadrature nodes in an element. For

the tensor case, it is equal to qdim.

The MAGMA backend currently provides optimized GPU

kernels for three basis actions: interp, grad, and weight,

We will now describe these actions.

A. Tensor Basis Actions

The interp action interpolates the basis functions to the

quadrature points on the reference element. In the three-

dimensional tensor-grid case, we can write the interpolation

operator as a six-dimensional tensor, Jlmnijk, where l,m, n ∈
[1, q] are indices corresponding to the quadrature points and

i, j, k ∈ [1, p] are indices for the basis nodes. This J operator

is the tensor product of its one-dimensional equivalent, Ĵ , a

rank-two tensor of size q × p:

Jlmnijk = Ĵli ⊗ Ĵmj ⊗ Ĵnk. (2)

The interp action takes an input uijk containing values of

a function at the basis nodes of an element and returns vlmn,

the interpolation of this function at the quadrature points.
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The grad action evaluates the gradient of the basis func-

tions at the quadrature points. We represent it as three separate

series of tensor contractions, Dx, Dy , and Dz ,

Dx
lmnijk = D̂li ⊗ Ĵmj ⊗ Ĵnk

Dy
lmnijk = Ĵli ⊗ D̂mj ⊗ Ĵnk

Dz
lmnijk = Ĵli ⊗ Ĵmj ⊗ D̂nk, (3)

where D̂ is again a rank-two tensor of size q×p, corresponding

to the evaluation of the derivative of the one-dimensional basis

functions at each quadrature point on the reference line. The

grad action takes the same input of values, uijk, and produces

vdlmn, the gradient of the input function at the quadrature

points, with the d index referring to the dimension of the

partial derivative.

Unlike the interp and grad actions, the weight action

takes no input, but merely builds the tensor product of the

one-dimensional quadrature weights ŵ to create the three-

dimensional weights, Wlmn, as

Wlmn = ŵl ⊗ ŵm ⊗ ŵn. (4)

The weight action does not have a transpose action, as it

only computes something for the quadrature points, and has

no correlation with the basis nodes.

B. Design Outlines

The GPU kernels for the basis actions share some common

design outlines. First, the core computational work of each

action is implemented using a GPU device routine instead

of a kernel. This enables calling the routine in different

kernels that perform a certain action. For example, a 3D

grad action reads a 1D vector and writes a 3D vector in

a non-transposed mode, and reduces a 3D vector to a 1D

vector in the transposed mode. However, both kernels call the

same device routines. Second, the device-level basis action

operates only on the shared memory or the register file. Any

global memory transactions are handled separately in other

device routines. Third, apart from temporary scalar variables,

no device routine allocates shared memory buffers or register

arrays. These are usually defined at the kernel level, and passed

to the device routines. Fourth, all device routines assume the

same thread configuration. Such a property would allow the

MAGMA backend to fuse multiple actions into one kernel in

future developments.

C. Device-level Arguments

The interp and grad basis actions accept three main

arguments. The first is an input vector u of size pdim per each

component. Due to data layout considerations in libCEED,

we will make a distinction between the components of the

field u (i.e., whether it is scalar- or vector-valued) and the

components added through the non-transpose grad action.

These gradient components will be referred to with dim. The

vector is read-only. We use pdim−1 threads to read the input

vector in a 3D register array rU[dim][ncomp][p]. The
second argument is an input/output vector v of size qdim per

component. We use qdim−1 threads to read/write the vector

using another register array rV[dim][ncomp][q]. The
third argument is one or more constant basis matrices. These

are the Ĵ and D̂ basis matrices defined in IV-A. Regardless

of the transposition mode of the basis action, constant basis

matrices are always stored in p × q buffers in the shared

memory of the GPU.

As mentioned previously, the weight action does not

operate on an input vector u, and uses a constant vector of

the quadrature weights (ŵ) in place of a basis matrix. It has

an output v.

D. Kernel Configurations

Each kernel in the MAGMA backend performs one basis

action by allocating the necessary register arrays and shared

memory, reading the inputs, performing the action, and writing

the output using a sequence of calls to the appropriate device

routines. The developed kernels are batched across indepen-

dent elements, with a default configuration of one thread-block

per element. The thread configuration is max(p, q)dim−1.

However, sometimes this can lead to inefficient use of warps

(e.g., 1D operators would need 1 thread per thread-block).

This is why we allow one thread block to process multiple

elements using parallel groups of threads. The sizes dim,

ncomp, p, and q are compile-time constants that are passed

as C++ template parameters for the kernels. As an example,

consider a 3D interp action with (p, q) = (2, 3). This means

P̄ = 23 = 8, and Q̄ = 33 = 27, and so thread-blocks would

use 33−1 = 9 threads per element. Figure 1 is a high-level

representation of such a basis action.

nco
mp

p=2
U-vector

tx = 0
tx = 1
tx = 2
tx = 3

nco
mp

q=3
V-vector

tx = 0
tx = 1
tx = 2
tx = 3
tx = 4
tx = 5
tx = 6
tx = 7
tx = 8

Fig. 1. A high-level view of a 3D basis action kernel for (p, q) = (2, 3).
The u-vector is read using 4 threads, while the v-vector is read/written using
9 threads.

E. Tensor Contraction as Batch GEMM

The interp and grad basis actions call a tensor con-

traction function at their core. The reference CPU backend in

libCEED implements the tensor contraction as follows:
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int tensor_contract(
int A, int B, int C, int J,
const double* s, CeedTransposeMode tmode,
int Add,
const double *x, double* y)

{
int tstride0 = B, tstride1 = 1;
if (tmode == CEED_TRANSPOSE) {
tstride0 = 1; tstride1 = J;

}

if (!Add)
for (int q=0; q<A*J*C; q++)

y[q] = (CeedScalar) 0.0;

for (int a=0; a<A; a++)
for (int b=0; b<B; b++)

for (int j=0; j<J; j++) {
CeedScalar tq = s[j*tstride0 + b*tstride1];
for (int c=0; c<C; c++)
y[(a*J+j)*C+c] += tq * x[(a*B+b)*C+c];

}
return 0;

}

This serial CPU code can be interpreted as a batch GEMM op-

eration. Recall that GEMM is defined as (C̄m×n = αĀm×k ×
B̄k×n+βC̄m×n). Figure 2 is a GEMM -like interpretation of the

code above. Each of the x and y vectors can be represented

using an array of independent matrices, of sizes C×B and

C×J, respectively. The constant B×J matrix s represents

the constant basis matrix for such contraction. The variables

stride0 and stride1 handle the transposition of the s
matrix. The Add option can be handled through the scalar β
in the GEMM equation. At all times, the scalar α is set to one.

C

B

B

J

A
=
3

C

J

x

s (or sT)

y

Fig. 2. Batch GEMM representation of a single tensor contraction in libCEED .

F. Example: 3D interp and grad Basis Actions

The interp and grad basis actions are represented as a

sequence of tensor contractions. The 3D interp action per-

forms three tensor contractions (i.e. three batch GEMMs), while

the grad action requires nine batch GEMMs (three for each

dimension). We consider an example of a 3D interp basis

action for (p, q) = (2, 3), and for one component only. The

three batch GEMMs are shown in Figures 3 through 5. As

the computation progresses, the batch size becomes smaller

(divided by p), but the individual matrix size becomes larger

(rows multiplied by q, and columns fixed at p, except for

the final output). The intermediate outputs are transformed

in shared memory as a pre-processing step before the next

product.

The first product uses the u-vector as an input, which is

represented as a batch of single-row matrices (size 1×p). Each

thread possesses one row of the u-vector, and independently

computes the corresponding single-row output matrix (size 1×
q).

Fig. 3. First product in a 3D interpolation basis action. For (p, q) = (2, 3),
the first product is a batch DGEMM with 4 operations of size (m, n, k) =
(1, 3, 2).

The output matrices of the first product are transformed

in shared memory into a batch p of q × p matrices. The

transformation also reorganizes the threads so that they are

properly indexed in their respective GEMM operations. The

output is a batch p of q × q matrices.

Fig. 4. Second product in a 3D interpolation basis action. For (p, q) = (2,
3), the second product is a batch DGEMM with 2 operations of size (m, n,
k) = (3, 3, 2).

The final product is one GEMM operation, so the batch size

is one. The output of the second product is transformed into

a single matrix of size (q2 × p). The final output is a q2 × q
matrix that is stored in the rV register array.

Fig. 5. Third product in a 3D interpolation basis action. For (p, q) = (2, 3),
the third product is single DGEMM operation of size (m, n, k) = (9, 3, 2).

A 3D grad basis action can be viewed as performing the

interp action three times for each dimension idim ∈{1, 2,
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3}. There are some differences, though. First, the grad basis

action takes two basis matrices instead of one: dinterp1d,

which is the one-dimensional interpolation operator Ĵ , and

dgrad1d, the one-dimensional gradient matrix D̂. Second,

three batch GEMMs take place for each value of idim. The

dgrad1d matrix is used in the first batch GEMM for idim= 0,

in the second batch GEMM for idim= 1, and in the third

batch GEMM for idim= 2. Otherwise, the dinterp1d matrix

is used; this corresponds to the combination of Ĵ and D̂ in

Eq. 3. Third, for the non-transposed mode, we read one u-

vector for all values of idim, and produce three different v-

vectors. Fourth, for the transposed mode, we read a different

u-vector for each value of idim, and accumulate the result

across idim into one v-vector.

V. NONTENSOR BASIS COMPUTATIONS

In the case of non-tensor bases, the operators for the

interp, grad, and weight actions cannot be represented

as tensor products of one-dimensional matrices. Instead, in

libCEED, the user provides matrices corresponding to the

interpolation (J), gradient (D), and quadrature weights (W ) at

every quadrature node in the one-, two-, or three-dimensional

element. This means the weight action for non-tensor is no

longer a computation; we will focus solely on interp and

grad . The interp action for an element is now a standard

matrix-matrix multiplication,

vl = Jliui, (5)

with input u and output v represented as vectors, since they

are no longer ordered on a tensor grid. The matrix Jli will be

of size Q̄× P̄ . The grad action is similar, except the gradient

matrix D is of size (dim × Q̄) × P̄ , with dim blocks of Q̄
rows for each component of the gradient.

Because we need to compute these matrix multiplications

for every element, we can think of an input vector for multiple

elements as a matrix Uie, with each column representing an

element. Then the interpolation action for all elements can be

written as one large matrix-matrix multiplication,

Vle = JliUie, (6)

and similarly for the grad action. In the case of a vector-

valued field, we can replace the index e with E = e+ c ∗Ne,

where c ∈ [1, ncomp] is the component and Ne is the total

number of elements being processed by the basis action.

A. Standard vs. Batch GEMM

As we have formulated the non-tensor basis action in terms

of standard matrix multiplication, the actions can be performed

with standard GEMM calls. Figure 6 shows the typical shape

of the GEMM call in libCEED. The dimensions of the matrices

(m, n, k) usually involve small values of m and k, but a large

value of n. While the size range may vary, we consider the

typical dimensions in the libCEED bake-off problems.

Ideally, a single GEMM operation would be enough to

reach the GPU peak performance (e.g. using cublasDgemm).

However, the large value of n compared to the small m

and k values can hinder performance. Therefore, we also

consider performing the DGEMM operation in Figure 6 as a

batch DGEMM operation, splitting the problem across the n
dimension to potentially create a more balanced workload for

the GPU. The batch has the same Ā, with different B̂ and

Ĉ matrices within a fixed stride from each other. Factoring

n into batchCount×η, describing the number of batch

GEMM calls and the number of columns in each B̂ and Ĉ
(η), facilitates performance tuning for the batch GEMM call.

Transforming the DGEMM in Figure 6 into a batch DGEMM does

not require setting up pointer arrays that may impact the

performance. Both cuBLAS and MAGMA provide stride-

based batch DGEMM kernels.

A or AT

B

C

m
=
 
p

k = q

n = nelem ncomp

Fig. 6. Shape of the DGEMM operation for the non-tensor basis action in
libCEED.

Figures 7, 8, and 9 show three different behaviors for

the best performing DGEMM configuration on three different

problem sizes. The (P̄ , Q̄) sizes are typical in the standard

MFEM benchmarks for libCEED . We also assume a relatively

large n =ncomp×nelements=10, 000 in order to test the

asymptotic performance of the GPU. Each figure marks the

achieved performance of the “non-batch” DGEMM kernel in the

cuBLAS and MAGMA libraries with horizontal dashed lines.

Each figure also shows various performance numbers for the

batch DGEMM kernels in both libraries according to different

(batchCount, η) pairs. By trying out different combinations

of (batchCount, η), we can find some cases where the batch

kernels achieve better performance than a single DGEMM.

0

100

200

300

400

500

600

700

800

900

1000

1100

(1
0,
10
00
)

(1
6,
62
5)

(2
0,
50
0)

(2
5,
40
0)

(4
0,
25
0)

(5
0,
20
0)

(8
0,
12
5)

(1
00
,1
00
)

(1
25
,8
0)

(2
00
,5
0)

(2
50
,4
0)

(4
00
,2
5)

(5
00
,2
0)

(6
25
,1
6)

(1
00
0,
10
)

(1
25
0,
8)

(2
00
0,
5)

(2
50
0,
4)

(5
00
0,
2)

(batchcount, )

magma-batched

cublas-batched

cublas dgemmcublas dgemm

magma dgemmmagma dgemm

Fig. 7. Performance of different DGEMM configurations using cuBLAS and
MAGMA. Results are shown for (P̄ , Q̄) = (27, 64) on a Tesla V100 GPU
using CUDA 10.1 Toolkit.
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For relatively small sizes (Figure 7), the batch DGEMM rou-

tine in MAGMA is the best performing kernel. Medium sizes

such as the ones in Figure 8 show a winning scenario for the

batch cuBLAS kernel. As we increase the sizes of (P̄ , Q̄), we

reach an asymptotic behavior, where the non-batch cuBLAS

DGEMM is on par with its batch variant. Both of the cuBLAS

kernels are within 85% of the GPU peak performance. In this

case, it is usually better to call the non-batch kernel, since the

subdivision size η that achieves the best performance might

not fully divide the original n.
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Fig. 8. Performance of different DGEMM configurations using cuBLAS and
MAGMA. Results are shown for (P̄ , Q̄) = (125, 216) on a Tesla V100 GPU
using CUDA 10.1 Toolkit.

All the autotuning sweeps for the best performing

(batchCount, η) pair against the regular DGEMM kernels

were conducted offline. The collected results led to the de-

velopment of a very lightweight layer that selects the best

performing kernel out of the four variants that have been tested

during the offline sweep. Although the non-tensor basis actions

usually trail the tensor basis mode in performance (because

of the extra computation, scaling with P̄ Q̄ rather than ∼ p̂4

for the tensor case), the former is more portable due to the

reliance on standard kernels that are usually highly optimized

by vendors and widely-used open source libraries.

VI. LIBCEED BENCHMARKS: BAKE-OFF PROBLEMS

To compare and improve performance across a number

of high-level finite element libraries involved in the project,

CEED defined a series of bake-off problems (BPs) [19]. The

BPs centered on variations of solving the positive definite

Helmholtz equation,

−∇ · μ∇u+ βu = f inΩ, (7)

with μ and f nonnegative functions in the domain Ω. For

BP1, μ is taken to be zero and β to be one, which results in

solving an interpolation problem with a standard mass matrix.

For BP3, μ is one and β is zero, creating a diffusion problem

with the standard stiffness matrix. In terms of the basis actions,

BP1 will test interp, while BP3 tests grad.

The results in Fischer et al. [19] focused on optimized im-

plementations for the matrix-free calculations of each operator
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Fig. 9. Performance of different DGEMM configurations using cuBLAS and
MAGMA. Results are shown for (P̄ , Q̄) = (729, 1000) on a Tesla V100
GPU using CUDA 10.1 Toolkit.

as implemented in Nek5000, MFEM, libParanumal, and deal.ii

[20], without reliance on libCEED. Our results here compare

the performance of standard “non-fused” libCEED backends

as described in III-B on two problems modeled after BP1 and

BP3. We use an implementation of the mass and diffusion

problems provided through MFEM’s integration with libCEED

backends [21]. One slight variation is that the BPs in [19] used

homogeneous Neumann conditions for BP1 and homogeneous

Dirichlet conditions for BP3, while we use Dirichlet conditions

for both. Furthermore, the implementation in [19] used diag-

onally preconditioned CG, while the implementation we used

does not have any preconditioning.

VII. PERFORMANCE RESULTS

We now discuss the performance results of the MAGMA

basis actions, comparing to the previously best-performing

libCEED CUDA backends for each case, tensor and non-

tensor. Because libCEED’s computations are at the local level,

we demonstrate backend performance improvements on a sin-

gle GPU. The main implication of large-scale MPI parallelism

for our work is a decrease in the local problem size per GPU

(the x-axis on e.g. Fig. 10). For in-depth discussion of strong

scaling for the CEED BPs, see [19].

A. Tensor Results

For the tensor benchmark tests, we consider a three-

dimensional block mesh and standard Q-type hexahedral finite

elements using the Gauss-Lobatto-Legendre (GLL) nodes. We

use basis function orders of p̂ ∈ [1, 8]. The experiments were

conducted with a Tesla V100 GPU with CUDA 10.2.89.

The results of the mass problem (BP1) and diffusion prob-

lem (BP3) for the cuda-shared and MAGMA backends

are shown in Figures 10 and 11, respectively. A representative

subset of tested basis function orders is shown for clarity.

The y-axis, which shows the number of degrees of freedom

(DOFs) in the mesh times the number of conjugate gradient

(CG) iterations divided by time in the solver, represents the

rate at which MFEM using the specified libCEED backend
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was able to process the necessary data to apply the matrix-

free operator; alternatively, we can consider this the rate at

which the implementation is able to do the necessary work for

solving the problem. In Figures 12 and 13 we show the ratio of

Fig. 10. MAGMA and cuda-shared backend performance for tensor-basis
mass problem (BP1).

Fig. 11. MAGMA and cuda-shared backend performance for tensor-basis
diffusion problem (BP3).

this “DOFs processing rate” metric for the MAGMA backend

divided by that of cuda-shared. The benefit of MAGMA’s

fused batch-BLAS approach is greatest for higher orders of

basis functions, particularly for the diffusion problem using

the grad action, where several cases show approximately 1.2

times speedup; many more are within the range of 1.1 times.

This is important because orders 7 and higher are routinely

used, e.g., for incompressible flow simulations [3], [5].

B. Non-tensor Results

To compare the non-tensor performance, the meshes of the

tensor benchmarks were modified to use P -type tetrahedron

elements, with each element of the hexahedral mesh divided

into six tetrahedrons. In Figures 14 and 15 we consider

the performance of the backends in terms of the rate of

DOFs processed in the CG solver. (Again, a representative

subset of basis function orders was chosen to simplify the

Fig. 12. Ratio of DOFs processed by MAGMA to the cuda-shared back-
end for the mass problem (BP1).

Fig. 13. Ratio of DOFs processed by MAGMA to the cuda-shared back-
end for the diffusion problem (BP3).

figures.) Now we are comparing the MAGMA backend’s

tuned batch GEMM approach to the cuda-ref backend, as

cuda-shared does not implement non-tensor bases. In

Fig. 14. MAGMA and cuda-ref backend performance for non-tensor mass
problem (BP1).

Figure 16, we show the ratio of the metric for MAGMA

compared to cuda-ref, this time with BP1 and BP3 on the
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Fig. 15. MAGMA and cuda-ref backend performance for non-tensor
diffusion problem (BP3).

same plot. We see similar trends as in the tensor case, in that

there is a greater benefit of the MAGMA backend’s approach

for higher orders of basis functions, with a clear change in

behavior for both BP1 and BP3 for p̂ > 3. A notable difference

between the tensor case, however, is the continued increase of

speedup for MAGMA as the number of elements in the mesh

increases (larger number of DOFs), where MAGMA can be

up to 10 times faster than cuda-ref for p̂ = 8.

Fig. 16. Ratio of DOFs processed by MAGMA to the cuda-ref backend
for the mass (dash/star) and diffusion (solid/×).

VIII. CONCLUSION AND FUTURE WORK

We have presented improvements to a GPU backend for

high-order matrix-free operator in libCEED. The backend is

based on the MAGMA library. It uses both standard and

customized batch matrix multiplication in order to perform

different basis actions as defined in libCEED. The customized

fused batch GEMM proves to outperform other GPU backends

that provide a similar functionality for the tensor basis. Non-

tensor basis actions are implemented using standard GEMM rou-

tines from both MAGMA and cuBLAS, which enable them

outperform other backends as well. Future directions include

adding support for AMD GPUs based on the HIP program-

ming model, improving the GPU occupancy for relatively low-

order problems, and designing a standard API for the device-

level batch GEMM, which users can integrate into customized

tensor contraction kernels.
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