Publications
Export 74 results:
Filters: Author is Abdelfattah, Ahmad [Clear All Filters]
With Extreme Computing, the Rules Have Changed,”
Computing in Science & Engineering, vol. 19, issue 3, pp. 52-62, May 2017.
(485.34 KB)
“Using GPU FP16 Tensor Cores Arithmetic to Accelerate Mixed-Precision Iterative Refinement Solvers and Reduce Energy Consumption
, Frankfurt, Germany, ISC High Performance (ISC18), Best Poster Award, June 2018.
(3.01 MB)
Using GPU FP16 Tensor Cores Arithmetic to Accelerate Mixed-Precision Iterative Refinement Solvers and Reduce Energy Consumption,”
ISC High Performance (ISC'18), Best Poster, Frankfurt, Germany, June 2018.
(3.01 MB)
“Towards Half-Precision Computation for Complex Matrices: A Case Study for Mixed Precision Solvers on GPUs,”
ScalA19: 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, Denver, CO, IEEE, November 2019.
(523.87 KB) (3.42 MB)
“Tensor Contractions using Optimized Batch GEMM Routines
, San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.
(1.64 MB)
A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic,”
SLATE Working Notes, no. 15, ICL-UT-20-08: University of Tennessee, July 2020.
(3.98 MB)
“A survey of numerical linear algebra methods utilizing mixed-precision arithmetic,”
The International Journal of High Performance Computing Applications, vol. 35, no. 4, pp. 344–369, 2021.
“Small Tensor Operations on Advanced Architectures for High-Order Applications,”
University of Tennessee Computer Science Technical Report, no. UT-EECS-17-749: Innovative Computing Laboratory, University of Tennessee, April 2017.
(1.09 MB)
“SLATE Port to AMD and Intel Platforms,”
SLATE Working Notes, no. 16, ICL-UT-21-01, April 2021.
(890.75 KB)
“A Set of Batched Basic Linear Algebra Subprograms and LAPACK Routines,”
ACM Transactions on Mathematical Software (TOMS), vol. 47, no. 3, pp. 1–23, 2021.
“A Set of Batched Basic Linear Algebra Subprograms,”
ACM Transactions on Mathematical Software, October 2020.
“Roadmap for the Development of a Linear Algebra Library for Exascale Computing: SLATE: Software for Linear Algebra Targeting Exascale,”
SLATE Working Notes, no. 01, ICL-UT-17-02: Innovative Computing Laboratory, University of Tennessee, June 2017.
(2.8 MB)
“Progressive Optimization of Batched LU Factorization on GPUs,”
IEEE High Performance Extreme Computing Conference (HPEC’19), Waltham, MA, IEEE, September 2019.
(299.38 KB)
“Performance Tuning and Optimization Techniques of Fixed and Variable Size Batched Cholesky Factorization on GPUs,”
International Conference on Computational Science (ICCS'16), San Diego, CA, June 2016.
(626.21 KB)
“Performance optimization of Sparse Matrix-Vector Multiplication for multi-component PDE-based applications using GPUs,”
Concurrency and Computation: Practice and Experience, vol. 28, issue 12, pp. 3447 - 3465, May 2016.
(3.21 MB)
“Performance, Design, and Autotuning of Batched GEMM for GPUs,”
High Performance Computing: 31st International Conference, ISC High Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings, no. 9697: Springer International Publishing, pp. 21–38, 2016.
(1.98 MB)
“Performance, Design, and Autotuning of Batched GEMM for GPUs,”
The International Supercomputing Conference (ISC High Performance 2016), Frankfurt, Germany, June 2016.
(1.27 MB)
“Performance, Design, and Autotuning of Batched GEMM for GPUs,”
University of Tennessee Computer Science Technical Report, no. UT-EECS-16-739: University of Tennessee, February 2016.
(1.27 MB)
“Parallel Programming Models for Dense Linear Algebra on Heterogeneous Systems,”
Supercomputing Frontiers and Innovations, vol. 2, no. 4, October 2015.
(3.68 MB)
“PAQR: Pivoting Avoiding QR factorization,”
2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS), St. Petersburg, FL, USA, IEEE, 2023.
“PAQR: Pivoting Avoiding QR factorization,”
ICL Technical Report, no. ICL-UT-22-06, June 2022.
(364.85 KB)
“Optimizing Memory-Bound Numerical Kernels on GPU Hardware Accelerators,”
VECPAR 2012, Kobe, Japan, July 2012.
(737.28 KB)
“Optimizing GPU Kernels for Irregular Batch Workloads: A Case Study for Cholesky Factorization,”
IEEE High Performance Extreme Computing Conference (HPEC’18), Waltham, MA, IEEE, September 2018.
(729.87 KB)
“Optimizing Batch HGEMM on Small Sizes Using Tensor Cores
, San Jose, CA, GPU Technology Conference (GTC), March 2019.
(2.47 MB)
Novel HPC Techniques to Batch Execution of Many Variable Size BLAS Computations on GPUs,”
International Conference on Supercomputing (ICS '17), Chicago, Illinois, ACM, June 2017.
(1.04 MB)
“MAtrix, TEnsor, and Deep-learning Optimized Routines (MATEDOR)
, Washington, DC, NSF PI Meeting, Poster, April 2018.
(2.4 MB)
Matrix Multiplication on Batches of Small Matrices in Half and Half-Complex Precisions,”
Journal of Parallel and Distributed Computing, vol. 145, pp. 188-201, November 2020.
(1.3 MB)
“MATEDOR: MAtrix, TEnsor, and Deep-learning Optimized Routines
, Dallas, TX, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), Research Poster, November 2018.
(2.55 MB)
Massively Parallel Automated Software Tuning,”
48th International Conference on Parallel Processing (ICPP 2019), Kyoto, Japan, ACM Press, August 2019.
(911.88 KB)
“MAGMA Templates for Scalable Linear Algebra on Emerging Architectures,”
The International Journal of High Performance Computing Applications, vol. 34, issue 6, pp. 645-658, November 2020.
“MAGMA: Enabling exascale performance with accelerated BLAS and LAPACK for diverse GPU architectures,”
The International Journal of High Performance Computing Applications, June 2024.
“MAGMA Batched: A Batched BLAS Approach for Small Matrix Factorizations and Applications on GPUs,”
Innovative Computing Laboratory Technical Report, no. ICL-UT-16-02: University of Tennessee, August 2016.
(929.79 KB)
“Linear Algebra Software for Large-Scale Accelerated Multicore Computing,”
Acta Numerica, vol. 25, pp. 1-160, May 2016.
“libCEED: Fast algebra for high-order element-based discretizations,”
Journal of Open Source Software, vol. 6, no. 63, pp. 2945, 2021.
“Investigating the Benefit of FP16-Enabled Mixed-Precision Solvers for Symmetric Positive Definite Matrices using GPUs,”
International Conference on Computational Science (ICCS 2020), Amsterdam, Netherlands, Springer, Cham, June 2020.
(702.38 KB)
“Implementation of the C++ API for Batch BLAS,”
SLATE Working Notes, no. 07, ICL-UT-18-04: Innovative Computing Laboratory, University of Tennessee, June 2018.
(1.07 MB)
“hipMAGMA v2.0
: Zenodo, July 2020.
hipMAGMA v1.0
: Zenodo, March 2020.
High-Performance Tensor Contractions for GPUs,”
International Conference on Computational Science (ICCS'16), San Diego, CA, June 2016.
(2.36 MB)
“High-Performance Tensor Contractions for GPUs,”
University of Tennessee Computer Science Technical Report, no. UT-EECS-16-738: University of Tennessee, January 2016.
(2.36 MB)
“High-performance Matrix-matrix Multiplications of Very Small Matrices,”
22nd International European Conference on Parallel and Distributed Computing (Euro-Par'16), Grenoble, France, Springer International Publishing, August 2016.
“High-performance Cholesky Factorization for GPU-only Execution,”
Proceedings of the General Purpose GPUs (GPGPU-10), Austin, TX, ACM, February 2017.
(872.18 KB)
“High-Order Finite Element Method using Standard and Device-Level Batch GEMM on GPUs,”
2020 IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA): IEEE, November 2020.
(1.3 MB)
“Harnessing GPU's Tensor Cores Fast FP16 Arithmetic to Speedup Mixed-Precision Iterative Refinement Solvers and Achieve 74 Gflops/Watt on Nvidia V100
, San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.
(2.96 MB)
A Guide for Achieving High Performance with Very Small Matrices on GPUs: A Case Study of Batched LU and Cholesky Factorizations,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 5, pp. 973–984, May 2018.
(832.92 KB)
“GPU-based LU Factorization and Solve on Batches of Matrices with Band Structure,”
SC-W 2023: Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, Denver, CO, ACM, November 2023.
“GPU algorithms for Efficient Exascale Discretizations,”
Parallel Computing, vol. 108, pp. 102841, 2021.
“Fast Cholesky Factorization on GPUs for Batch and Native Modes in MAGMA,”
Journal of Computational Science, vol. 20, pp. 85–93, May 2017.
(3.6 MB)
“Fast Batched Matrix Multiplication for Small Sizes using Half Precision Arithmetic on GPUs,”
33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, IEEE, May 2019.
(675.5 KB)
“Factorization and Inversion of a Million Matrices using GPUs: Challenges and Countermeasures,”
Procedia Computer Science, vol. 108, pp. 606–615, June 2017.
(643.44 KB)
“