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Abstract
We present our performance analysis, algorithm designs, and the
optimizations needed for the development of high-performance
GPU-only algorithms, and in particular, for the dense Cholesky
factorization. In contrast to currently promoted designs that solve
parallelism challenges on multicore architectures by representing
algorithms as Directed Acyclic Graphs (DAGs), where nodes are
tasks of fine granularity and edges are the dependencies between
the tasks, our designs explicitly target manycore architectures like
GPUs and feature coarse granularity tasks (that can be hierarchi-
cally split into fine grain data-parallel subtasks). Furthermore, in
contrast to hybrid algorithms that schedule difficult to parallelize
tasks on CPUs, we develop highly-efficient code for entirely GPU
execution. GPU-only codes remove the expensive CPU-to-GPU
communications and the tuning challenges related to slow CPU
and/or low CPU-to-GPU bandwidth. We show that on latest GPUs,
like the P100, this becomes so important that the GPU-only code
even outperforms the hybrid MAGMA algorithms when the CPU
tasks and communications can not be entirely overlapped with GPU
computations. We achieve up to 4,300 GFlop/s in double precision
on a P100 GPU, which is about 7-8× faster than high-end multicore
CPUs, e.g., two 10-cores Intel Xeon E5-2650 v3 Haswell CPUs,
where MKL runs up to about 500-600 Gflop/s. The new algorithm
also outperforms significantly the GPU-only implementation cur-
rently available in the NVIDIA cuSOLVER library.

Categories and Subject Descriptors G.1.3 [Numerical Linear Al-
gebra]: Linear systems (direct and iterative methods)

General Terms Algorithms, Experimentation, Measurement, Per-
formance

Keywords factorization; numerical linear algebra; hardware ac-
celerators; numerical software libraries; one-sided factorization al-
gorithms

1. Introduction
The scientific high performance computing community has faced
dramatic hardware changes since the emergence of multicore ar-
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chitectures. Multicore architectures are now ubiquitous – not only
in the fastest high performance computers in the world, as ranked
in the Top500 list (Strohmaier et al. 1993-2016), but also even in
small portable devices like smart phones and watches. Moreover,
the number of cores on the chip continues to grow, with architec-
tures containing 10s of independent cores or more (referred to as
manycore) becoming common. Latest examples include the new In-
tel Knights Landing (KNL) Xeon Phi processor with up to 72 cores,
and the new manycore P100 GPU accelerator from NVIDIA, fea-
turing 56 multi-processors (MP) with 64 CUDA cores each. This
presents the scientific software community with both a daunting
challenge and a unique opportunity. The challenge arises from the
disturbing mismatch between the design of systems based on this
new chip architecture – many cores with reduced bandwidth and
memory available per core – and the components of the traditional
software stack, such as numerical libraries, on which scientific ap-
plications have relied for their accuracy and performance. The state
of the art, high performance dense linear algebra software libraries,
(i.e., LAPACK (Anderson et al. 1992)) have shown limitations on
multicore architectures (Agullo et al. 2009). The performance of
LAPACK relies on the use of a standard set of Level-3 Basic Lin-
ear Algebra Subprograms (BLAS) (Dongarra et al. 1990) within
which nearly all of the parallelism occurs following the expensive
fork-join paradigm, making it prudent to revisit and/or redesign ex-
isting numerical linear algebra algorithms to be better suited for
such hardware.

The PLASMA library (Parallel Linear Algebra for Scalable
Multi-core Architectures) (Inn 2010) tackles this challenge for
multicore architectures by designing and using tile algorithms to
achieve high performance. These tile algorithms can then be repre-
sented by Directed Acyclic Graphs (DAGs), where nodes are tasks
of fine granularity and edges are the data dependencies between the
tasks. Then, a runtime environment can be used to efficiently sched-
ule the DAG across the multicore platform. Using this methodol-
ogy, PLASMA provides very efficient algorithms for multicore
architectures because the scheduling mechanism provides asyn-
chronous execution of the fine granularity tasks that can remove
the expensive synchronizations associated with fork-join between
large tasks (BLAS done in parallel). There are, however, overheads
of scheduling many fine granularity tasks, and on manycore archi-
tectures like current GPUs and Xeon Phi, hybrid algorithms as in
MAGMA (Tomov et al. 2010; Haidar et al. 2015b; Cao et al. 2013)
have been more advantageous by keeping top level tasks of coarse
granularity, that are, however, split hierarchically into fine grain
data-parallel subtasks (through parallel BLAS implementations).
However, MAGMA schedules the difficult-to-parallelize tasks on
CPUs, and thus is not directly applicable for GPU-only execution.
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The objective of this paper is to revisit the current state-of-the-
art algorithms designed originally for multicore and heterogeneous
architectures (as in the PLASMA and MAGMA libraries (Agullo
et al. 2009) and redesign them for GPU-only execution. We present
our performance analysis and algorithm designs, and the optimiza-
tions needed to achieve this goal of providing high-performance
GPU-only algorithms, and in particular, the dense Cholesky factor-
ization. GPU-only codes are of high interest because they remove
the expensive CPU-to-GPU communications and the tuning chal-
lenges related to slow CPU and/or low CPU-to-GPU bandwidth.
Indeed, we show that on the latest GPUs, like the P100, this be-
comes so important that the GPU-only code even outperforms the
hybrid MAGMA algorithms when the CPU tasks and communica-
tions can not be entirely overlapped with GPU computations.

2. Related Work
The development of GPU-only dense linear algebra algorithms was
avoided in the past because:

• The implementation and optimization of difficult-to-parallelize
parts of the computation could be evaded through the use of
hybrid algorithms, and
• Hybrid algorithms were faster.

However, recent need in many applications for many independent
linear algebra problems of small sizes motivated the development
of the so-called batched linear algebra algorithms (Haidar et al.;
Dongarra et al. 2016). Batched LU, QR, and Cholesky were de-
veloped for both fixed matrix sizes (Dong et al. 2014a; Haidar
et al. 2015a; Dong et al. 2014b) and variable sizes (Abdelfattah
et al. 2016b,a) that are GPU-only. The reason for developing them
for GPUs only is that the sizes were so small that there was not
enough computation for the GPU work to overlap the expensive
CPU-to-GPU communications. Regardless of the motivation, since
they were developed, it was possible to easily extend them to com-
pute single large factorizations for GPU-only execution (Abdelfat-
tah et al. 2016a; Haidar et al. 2015c). Rather than these early im-
plementations that resulted from highly-optimized batched factor-
izations for small problems, in this paper we concentrate on and
study in detail specifically GPU-only algorithms. In turn, the al-
gorithm designs and optimizations developed here, outperform sig-
nificantly the early results, including the implementations that were
subsequently made available through the cuSOLVER library from
NVIDIA (NVIDIA Corporation).

Besides extending ideas from the batched linear algebra rou-
tines, manycore algorithms can also be built on ideas from the
hybrid linear algebra algorithms. This was demonstrated for the
case of KNL processors in (Haidar et al. 2016). The difficult-to-
parallelize tasks are the panel factorizations (see Section 3), and
these are the tasks offloaded for execution to the CPUs in the hy-
brid algorithms. As the KNL is self-hosted (i.e., there is no ad-
ditional CPU host), a virtual CPU abstraction was created from a
subset of the KNL cores that enabled hybrid algorithms to run effi-
ciently on homogeneous manycore processors (Haidar et al. 2016).
The panel factorizations can be done in parallel with the trailing
matrix updates in factorizations like QR, LU, and Cholesky (see
Section 3), which is used in the hybrid algorithms to overlap CPU
work and CPU-to-GPU communications with GPU work on the
trailing matrix updates. We will see that similar techniques can be
developed for GPU-only execution, where some of GPU’s MPs will
perform the compute-intensive matrix update, while others (possi-
bly the same) will do the panel factorization through different GPU
streams.

3. Background
In this section, we review the paradigm behind the state-of-the-
art numerical software, namely the LAPACK library for shared-
memory. In particular, we focus on the Cholesky factorization
which is one of the three widely used one-sided factorizations (QR,
LU and Cholesky) in the scientific community. These factoriza-
tions are the main components of solving numerical linear systems
of equations.

The Cholesky factorization (or Cholesky decomposition) is
mainly used as a first step for the numerical solution of the linear
system of equations Ax = b, where A is a symmetric and positive
definite matrix. Such systems often arise in physics applications,
where A is positive definite due to the nature of the modeled physi-
cal phenomenon. The Cholesky factorization of an n×n real sym-
metric positive definite matrix A has the form A = LLT , where L
is an n× n real lower triangular matrix with positive diagonal el-
ements. Due to the symmetry, the matrix can be factorized either
as an upper triangular matrix or as a lower triangular matrix. In
LAPACK, the double precision algorithm is implemented by the
DPOTRF routine. We note that the reference number of operations
for the Cholesky factorization is known to be O( n3

3 ), for that we
used this formula to produce all the Gflop/s mentioned on the fig-
ures which reflect the total elapsed time and thus the higher the
flops the faster the routine is.

3.1 Description and Concept
The LAPACK library provides a broad set of linear algebra opera-
tions aimed at achieving high performance on systems equipped
with memory hierarchies. The factorisation algorithms imple-
mented in LAPACK leverage the idea of blocking to limit the
amount of bus traffic in favor of a high data reuse. LAPACK con-
sists of a sequential algorithm that relies on parallel building blocks
(i.e., the BLAS with its Level-1, 2, and 3 types of operations) in
order to exploit parallelism. Most of these algorithms can be de-
scribed as the repetition of two fundamental phases as shown in
Figure 1:

• Panel factorization: Depending on the linear algebra operation
that must be performed, a number of transformations are com-
puted for a small portion of the matrix – the panel – marked by
the light and dark blue portion of Figure 1;
• Trailing submatrix update: In this step, all the transformations

that have been computed during the panel factorization step
must be applied to the rest of the matrix – the trailing submatrix
– marked by the green and magenta portion of Figure 1. This is
done by means of Level-3 BLAS operations.

Cholesky QR LU

PanelFactorize xPOTF2 xGEQF2 xGETF2
xTRSM

xSYRK xLARFB xLASWP
TrailingMatrixUpdate xGEMM xTRSM

xGEMM

Table 1: Routines for panel factorization and the trailing matrix
update.

This design as a two-phase process is typical for the blocked
algorithms in LAPACK. It consists of organizing the linear algebra
algorithm in such a way that only a small part of the computation
is done in the panel phase, while most is done in the update phase.
The panel factorization can be identified as a sequential execution
task that represents a small fraction of the total number of FLOPS
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Figure 1: Description and concepts of the LAPACK algorithms.

– only θ(n2) are in the panel vs. a total of θ(n3) FLOPS. It is
referenced as a sequence of memory-bound operations and cannot
be parallelized easily. For the Cholesky factorization, this applies
to the potf2 routine, while the trsm is a Level 3 BLAS routine
that can exhibit parallelism. Parallelism in the Cholesky factoriza-
tion is exploited at the Level 3 BLAS routines, which are mainly
used in the trailing matrix update phase. Most of the flops are com-
puted in this phase, and for an optimal, well-designed implemen-
tation, the performance of the factorization should behave similar
to the performance of the Level 3 BLAS routine that the trailing
matrix update uses. This methodology implies a “fork-join” par-
allel model (as shown in Figure 1) since the execution flow of the
matrix factorization represents a sequence of sequential operations
(the panel factorizations) interleaved with parallel ones; namely, the
updates of the trailing submatrices. For the sake of completeness,
we present in Table 1 the BLAS routines that should be substituted
for each of the phases for the three LAPACK factorizations.

3.2 Implementation Design Variants
Several algorithmic variants exist for the one-sided factorizations
described above. The two main ones are called Left Looking (LL)
and Right Looking (RL). They only differ on the location of the
update applications with regards to the panel. At each step, the RL
variant computes the transformations on the current panel, then it
applies these transformations to the trailing submatrix to the right
of the panel (called updates). For example, in Fig. 2a, the light-gray
area represents the portion of the matrix that has already been fac-
torized. The dark gray area corresponds to the panel that is currently
being factorized. On the right side of the current panel, the dashed
area specifies the location of the update portion, after the current
panel has been factorized. For the RL variant, the data located in
this area is actually transient and is constantly updated until the end
of the whole factorization. Algorithm 2 shows the implementation
of the RL variant of the Cholesky factorization. In contrast, Fig. 2b
shows the LL variant (also called the ”lazy” variant), where the
current panel is first updated by applying all the previous transfor-
mations coming from the previous panels (from the left), and then
is factorized. Thus, the updates are not applied to the entire trail-
ing matrix as in the RL variant but are limited only to the current
panel. The matrix is thus completely factorized one panel at a time.
Therefore, the LL variant limits the number of memory accesses
(e.g., panel writes, if the panel is kept in cache until fully updated)
while increasing the reuse of the data located on the panel. The
LL variant is known to be cache friendly, but decreases the paral-
lelism, as the subsequent updates of the remaining matrix columns
are delayed and will be eventually applied as the panel computa-

(a) RL variant. (b) LL variant.

Figure 2: One-sided factorization-looking variants.

tions move forward. Algorithm 1 presents the implementation of
the LL variant of the Cholesky factorization. Note that the QR and
LU factorization will follow the same sequence but with calls to
other BLAS routines. We refer the reader to Table 1 for the name
of the BLAS routines for the QR and the LU factorization.

Algorithm 1 LL Cholesky

1: for i = 0, nb to N do
2: if (i > 0) then
3: {Update current panel Ai:m,i:i+nb}
4: DSYRK:

Ai:i+nb,i:i+nb = Ai:i+nb,i:i+nb−Ai:i+nb,0:i×AT
i:i+nb,0:i

5: DGEMM:
Ai+nb:m,i:i+nb = Ai+nb:m,i:i+nb−Ai+nb:m,0:i×AT

i:i+nb,0:i
6: end if
7: {Panel factorize Ai:m,i:i+nb}
8: DPOTF2 Ai:i+nb,i:i+nb

9: DTRSM Ai+nb:m,i:i+nb = Ai+nb:m,i:i+nb×A−1
i:i+nb,i:i+nb

10: end for

4. Methodology and Algorithmic Advancements
The state-of-the-art methodology for server-class accelerated sys-
tems is based on hybrid algorithms that use both the CPU and
GPU hardware components (Tomov et al. 2010; Agullo et al. 2010;
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Algorithm 2 Right looking Cholesky

1: for i = 0, nb to N do
2: {Panel factorize Ai:m,i:i+nb}
3: DPOTF2 Ai:i+nb,i:i+nb

4: DTRSM Ai+nb:m,i:i+nb = Ai+nb:m,i:i+nb×A−1
i:i+nb,i:i+nb

5: {Update trailing matrix Ai+nb:m,i+nb:m}
6: DSYRK:

Ai+nb:m,i+nb:m = Ai+nb:m,i+nb:m − Ai+nb:m,i:i+nb ×
AT

i+nb:m,i:i+nb
7: end for

Yamazaki et al. 2012; Dongarra et al. 2014; Haidar et al. 2014).
Benchmark software also uses hybridized methods (Fatica 2009).
Typically, small or memory bound tasks on the critical path of the
algorithm are assigned to the CPUs (e.g., panel phase), and large
data-parallel tasks to the GPUs (update phase). This is what we de-
note as the hybrid approach. While this methodology works very
well, it can have significant drawbacks when the balance between
the processor and the accelerator is skewed. A slow CPU for exam-
ple, even after tuning, can make a fast GPU idle. Moreover, this can
be further aggravated by the slow CPU-to-GPU communication.
Also, from an energy point of view, a hybrid approach consumes
power on both the CPU and the GPU since both hardware are com-
puting. Thus, since the power efficiency rate of flops/Watt for the
CPU is typically too low compared to the one for the GPU, one
can expect a degradation in the energy efficiency of the hybrid al-
gorithms. These reasons further motivate the need for an additional
schema that uses only the GPU to perform both the memory bound
and the compute intensive tasks; that is, a variant that uses only
the GPU to perform the whole computation. When the GPU only
is used the CPU is idle and thus its power is too low compared to
the hybrid mode when it is fully loaded. We use a careful study and
analysis of the algorithm to guide our optimizations for the mem-
ory bound operations and to provide a GPU-only implementation
that is very competitive with the hybrid one in term of performance,
and definitely way ahead in terms of energy efficiency.

We have described above that high-performance linear algebra
algorithms can be designed so that their computations use building
block, e.g., BLAS. This is important since the use of BLAS has
been crucial for the high-performance sustainability of major nu-
merical libraries for decades, and therefore we can also leverage
the lessons learned from that success. However, to enable the ef-
fective use of a building block-based approach, there is a need to
develop highly efficient and optimized kernels.

Below we describe our studies and the methodology toward
achieving high-performance GPU algorithms. We recognize three
possible paths that can help boosting the performance of any algo-
rithm or application. First is the algorithmic path, then the kernel
optimization path, and finally the implementation design path.

4.1 Performance Analysis based on Algorithmic Design
Here we study the two designs of the Cholesky algorithm. As seen
above in Section 3.2, the panel factorization of both the left and
right looking algorithms is the same. It consists of calls to potf2 and
trsm. The main difference between the two designs (left or right
looking) is the update phase. Note that, as mentioned above, the
performance of the one-sided factorization (Cholesky, LU, or QR)
is driven by the performance of its update phase. The update phase
of the left looking design enforces locality, and most importantly,
it uses the gemm routine for its operations, while the right looking
variant exhibits more parallelism and uses the syrk routine for its
operations. Historically, it is well known that the left looking update
phase does not exhibit as much parallelism as the right looking

one. This raises the question of whether the right looking should
be considered as the only suitable approach for multicore CPUs or
GPUs.

To answer this, we first point out that this description is not per-
fectly accurate, as it requires an explanation of the meaning that one
design may be more suitable or may exhibit more parallelism than
another. To do this, we describe first some of our analysis and then
show performance results for both designs. For a multicore CPU,
the parallelism is at the core/thread level, and thus parameters such
as L2 cache sizes, use of SIMD/AVX instructions, NUMA node ef-
fect, etc., will have to be considered. For a GPU, the parallelism is
at the thread-block and at the SMX level, and thus a large number
of working thread-blocks is always preferable.

Since the performance should be driven by the update phase,
we studied the operations involved in this phase to find out how
parallelism can be extracted. First of all, the parallelism depends
on the shape of the matrices involved, as well as the size and type
of the operation involved in the update phase. Figure 3 shows the
matrix shapes of both the gemm and the syrk operations, which
represent the left and right looking variants, respectively. It is true
that the syrk can exhibit more parallelism, but, we can also ex-
tract parallelism from the gemm shape when nb is “acceptable”
(where the acceptable nb is hardware and software dependent –
it depends on the implementation of the gemm and the syrk rou-
tines, the caches size, and other GPU/CPU hardware features; we
will show that nb=128, 256, 512 are good choices). Moreover, the
performance also depends on the implementation of these two rou-
tines. Due to the higher need for gemm and since other Level-3
BLAS can be derived from gemm, most BLAS libraries – such as
cuBLAS, MAGMA, MKL, GOTO, and ATLAS – are optimized
for their gemm routine for all precisions and shapes, before the
other Level-3 BLAS routines, (e.g., their syrk routine). Figures 4
and 5 show the performance of the gemm and the syrk routines in
both single and double precision, for the shapes required by the
Cholesky update phase for a large value of n = 10,000 and for
different values of nb ranging from 32 to 1,024 on two different
GPU architectures (the Nvidia K40c and the P100). The perfor-
mance shown in these figures establishes the performance upper
bound for the Cholesky factorization.

From these figures one can conclude that:

• First, in order to reach the upper bound of the update routine
on GPUs – either gemm or syrk– the nb should be large. The
minimal nb where the gemm or syrk reaches good performance
is about nb= 256 or nb= 512 in double precision, and nb= 512
or nb = 1,024 in single precision for both architectures;
• Second, we note that when designing a GPU library, before

struggling on optimizing kernels or overall implementation, one
should study and understand the performance roofline bound of
the algorithm;
• Third, one can also notice that these Level 3 BLAS routines

are optimized by the vendor, and sometimes the vendor focuses
their optimization for one specific shape, or one precision, or
just one of the routines.

Since the single precision showed larger difference between
the two update routines, we picked up a nb = 512 and showed
in Figure 6 and 7 the performance of the update phase of the left
and the right looking Cholesky factorization step by step during the
process for a matrix of size n = 20480. In other words, timing the
performance of the update phase from inside the Cholesky code
for a nb = 512 in single precision on both the Nvidia K40c and
P100 GPU. This experiments is representative since it illustrates
the performance through the factorization steps where also we can
easily figure out the expected performance for any matrix size. For
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Figure 3: The shape of the update operation for both Left and Right
looking design.
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Figure 4: The performance of the gemm and syrk routine for the
shape required by the update of either the left or right looking
design when varying the size of nb in both single and double
precision on a Nvidia K40c GPU.
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Figure 5: The performance of the gemm and syrk routine for the
shape required by the update of either the left or right looking
design when varying the size of nb in both single and double
precision on a Nvidia P100 GPU.

example we can expect that the left looking variant is always faster
then the right looking one on single precision on K40c GPU.
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Figure 6: The performance of the gemm and syrk routine for the
shape required by the update of either the left or right looking
design when varying the size of nb in both single and double
precision on a Nvidia K40c GPU.

step i (e.g., factorized portion)
512  2048 4096 8192 12800 16384 20480

G
flo

p/
s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

left looking update (sgemm)
right looking update (ssyrk)

Figure 7: The performance of the gemm and syrk routine for the
shape required by the update of either the left or right looking
design when varying the size of nb in both single and double
precision on a Nvidia P100 GPU.

4.2 Performance Analysis based on Kernel Optimization
After we studied the performance of the update phase and con-
verged on the possible choices of nb that provide good perfor-
mance, we could concentrate on optimizing the potf2 kernel for
the possible nb sizes. The potf2 performance requirement is to have
the cost of the panel phase small; otherwise, the performance model
will not be driven by the update phase. Indeed, slow potf2 can re-
sult in a dramatic slowdown since the potf2 is a memory bound op-
eration, which even when highly optimized is still about 100 times
less than a Level 3 BLAS operation (on current GPUs). For hybrid
algorithms which are not the focus of this paper, but are mentioned
for completeness and comparison, the potf2 routine is performed
on the CPU, which is overlapped with GPU work on the update
phase (usually relying on optimized potf2 from vendors; e.g., the
MKL from Intel). Thus, the panel cost is hidden, which means that
the hybrid approach can reach the peak of the level 3 BLAS update
routine (syrk or gemm), provided that the updates fully overlap
the CPU work and the CPU-to-GPU communications. We note that
in the case where the CPU and/or the CPU-to-GPU connection is
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very slow as compared with the GPU, the potf2 might not always
be overlapped. For the GPU-only approach, the performance of the
potf2 routine can dramatically affect the performance.

The potf2 routine operates on a square submatrix of size nb,
which is the algorithm step size, and consists of three types of
operations – dot products, matrix-vector products, and scaling of
vectors. If the submatrix cannot fit in fast memory, potf2 is a
memory bound kernel since it is an unblocked routine. This means
that a square matrix of size nb is factorized column by column
in an unblocked fashion. Since the kernel consists of a sequential
process (e.g., the column i+1 cannot be factorized before finishing
the factorization of column i), it involves a lot of synchronizations.
Since nb is small (less or equal to 1,024), the potf2 factorization
usually needs only one thread-block on the GPU, and thus the other
GPU resources might be unused. If this challenge is not addressed,
the inherently slow potf2 (even when it is optimal), can become
orders of magnitude slower, e.g., considering that there are 56 MP
on a P100 and only one MP may end up being used.

C

ib	

ib	

m-i	

m
-i	

lb	

A

Figure 8: left-looking Cholesky factorization

Algorithm 3 The fused potf2 kernel.
1: for i = 0, ib to m = nb do
2: rAk← A(i:m,0:lb); rC← 0
3: for k = 0, lb to m− i do
4: rAkk← rAk
5: sB← rAk(i:lb,k:k+lb) inplace transpose

6: barrier()
7: rA1← A(i:m,k+lb:k+2lb) prefetching
8: rC← rC + rAkk×sB multiplying
9: barrier()

10: end for
11: sC← rA1 - rC
12: factorize sC
13: end for

We first implemented this routine on GPUs and found that
its performance is about 3 Gflop/s for double precision on both
architectures. We then performed a detailed performance study
based on the collection and analysis of machine counters. Counter
readings were taken using performance tools (NVIDIA’s CUPTI
and PAPI CUDA component (Malony et al. 2011).

While previously the unblocked potf2 algorithm was imple-
mented with outer loops going from 1 to nb running on the CPU,
calling the computational kernels on the GPU, we discovered that
fusing the operations of potf2 into one kernel call is needed for
performance. Moreover, to increase data reuse, and hence mini-
mize communications, we concluded that adding an internal layer
of blocking for the potf2 is necessary. The purpose of the fusion
optimization is to minimize the load/store to the main memory and
increase the data reuse at the thread-block level. The inner block-
ing is needed because it allows the operation to be performed on

an inner block of size nb× ib, which in turn decreases the num-
ber of register/shared memory required relative to when the whole
nb× nb is in register/shared memory, and thus it allows the fac-
torization of matrix with large nb size (for example nb > 64 for
double precision). The inner blocking can also provide a very good
performance similar to if the whole data is in shared memory by
implementing techniques such as double buffering and prefetching.
The inner blocking layer can be viewed as the Cholesky algorithm
described in Algorithm 2 or 1 but at a kernel level, where all the
calls are within one kernel. We discovered that blocking at the ker-
nel level should follow a left-looking Cholesky factorization, with
a blocking size ib, which is known to minimize data writes (in this
case from GPU shared memory to GPU main memory).

When the kernel’s working data is small, the computation asso-
ciated with it becomes memory bound. Thus, fusing the four ker-
nels of one iteration of Algorithm 1 (into one GPU kernel), will
minimize the memory traffic, increase the data reuse from shared
memory, and reduce the overhead of launching multiple kernels.
Using a left-looking Cholesky algorithm, the update writes the
panel of step k of size m-i×ib in the fast shared memory instead
in the main memory, and so the merged potf2 routine can reuse
the panel from the shared memory. Note that nb and ib control the
amount of the required shared memory; they are critical for the
overall performance, and thus can be used to (auto)tune the imple-
mentation.

We developed an optimized and customized fused kernel that
first performs the update (syrk and gemm operations), and keeps
the updated panel in shared memory to be used by the factorization
step. The cost of the left looking algorithm is dominated by the
update step (syrk and gemm). The panel C, illustrated in Figure 8,
is updated as C = C− A× BT . In order to decrease its cost, we
implemented a double buffering scheme that performs the update
in steps of lb, as described in Algorithm 3. We mention that we
prefix the data array by “r” and “s” to specify register and shared
memory, respectively. We prefetch data from A into register array
rAk while a multiplication is being performed between register
array rAkk and the array sB stored in shared memory. Since the
matrix B is the shaded portion of A, our kernel avoids reading it
from the global memory and transposes it in place to the shared
memory sB. Once the update is finished, the factorization (potf2
and trsm) is performed as one operation on the panel C, held in
shared memory.

In order to develop Algorithm 3, a first step is to decide whether
the main loop (e.g., the loop over i at line 1 of Algorithm 3) is
on the CPU or on the GPU (inside the kernel). In this context,
we developed loop-inclusive and loop-exclusive kernels. The loop-
inclusive kernel is launched once from the CPU side, meaning
that the loop iteration over ib of Algorithm 3 are unrolled inside
the kernel. The motivation behind the loop-inclusive approach is
to maximize the reuse of data, not only in the computation of
a single iteration but also among iterations. More important is
that when it is as one kernel, one can think of overlapping it
with computation that might happen on another stream. If the
factorization consists of many kernels, we might not see the overlap
with other computation, since once the first kernel launch finishes,
the GPU scheduler might schedule another queued thread-block
than the one of the factorization, resulting in a non overlapped
execution. Since the panel factorization requires only one thread-
block, this means that resources might be lost. The loop-exclusive
kernel executes one iteration of Algorithm 3 at each launch. The
amount of shared memory decreases per launch (shared memory
configurations are based on m− i) starting from the same amount
of shared memory as the loop-inclusive at the first launch. In the
loop-exclusive kernel, we will have to re-load the previous panel
from main memory.
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4.3 Performance Optimization based on Kernel Tuning
The autotuning process of the developed kernels has one tuning pa-
rameter to consider (ib). Since the range of values for ib is intended
to be small, we conducted a sweep of all possible values of ib up
to 32. In general, we can define different best-performing values of
ib with different GPUs. The autotuning experiment is offline and
needs to be conducted once per GPU model/architecture. Figure 9
shows the tuning results for both the loop-inclusive and the loop-
exclusive kernels for different values of ib and for different values
of m.

As expected, we observe a relatively low performance for
the loop-exclusive kernel. Since the tile factorization consists of
launching one thread-block, minimizing the amount of required
shared memory do not have any important effect here. Figure 9
shows that for the same ib the loop-inclusive technique is always
better than the loop-exclusive. The best configuration was obtained
with the loop-inclusive approach for ib = 16.
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Figure 9: Performance tuning of loop-inclusive(incl) and loop-
exclusive(excl) dpotf2 kernel on a Nvidia P100 GPU.

4.4 Performance Optimization based on Algorithmic
Recursion

We have discussed above that nb is preferred to be large (for
example nb = 512) in order to extract high performance from the
update routine – either gemm or syrk. We have also proposed,
implemented, optimized, and tuned a customized kernel to perform
the potf2 on GPU. The best tuned ib for the potf2 kernel is ib =
16, as shown in Figure 9. This will limit the size of the tile that
can be factorized using this parameter to nb <= 256 due to the
register/shared memory constraints needed for holding the panel
and for prefetching. A small nb might affect the performance of
the update phase and thus might result in lower performance than
expected. Going with larger nb means that we need to use small
ib, which in turn means using a kernel below its possible peak
performance, and this also might result in lower performance than
expected.

Thus, one attractive algorithmic design that can overcome this
issue is the implementation of a recursive algorithm. The idea here
to to split recursively the tile of size nb× nb into smaller pieces
till when the potf2 performs very well. This way we can factorize
tile with large nb by recursion over the factorization of tiles of
smaller recnb while continuing to gain high performance result
from the potf2 kernel. Figure 10 and 11 show the performance of
the potf2 kernel described in Section 4.3, and the recursive potf2
kernel described here, where the most inner recursion will call the
optimized kernel of Section 4.3. The results are shown for both

GPU architecture for double precision. We can easily see that the
recursive implementation is needed for large nb
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Figure 10: Effect of the recursive design of the dpotf2 routine on a
Nvidia K40c GPU.
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Figure 11: Effect of the recursive design of the dpotf2 routine on a
Nvidia P100 GPU.

4.5 Performance Optimization based on Implementation
Design

In the previous section we described how to analyze and find the
performance roofline for an algorithm, as well as how to design a
GPU-only version of it by optimizing the critical kernel (potf2)
in such a way as to improve it and make it reach its limit. As
shown above the tile factorization (potf2 routine) needs only one
thread-block. However, even if this kernel requires a small amount
of computational time, having the GPU running only one thread-
block for this amount of time is considered from our point of view
as an inefficiency and waste of resources. Also losing resources for
a short time is not as dramatic as having a non optimized kernel, but
we think we could take advantage of the idle resources. Moreover,
in this paper we are proposing a methodology and if the potf2
routine requires small percentage of time, the other panel routines
for the other factorization (such as getf2 and geqr2) might not, and
thus we might see a dramatical performance degradation.

For that, we propose to further modify the design in order to
achieve closer to optimal performance. In fact we propose to over-
lap the memory bound operation with the compute intensive op-
erations by implementing a lookahead (Strazdins 1998) technique
(e.g., overlapping the tile factorization (potf2 routine) with the up-
date phase). The idea here is similar to the hybrid model but where
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the potf2 runs on GPUs instead of CPUs. For that, we split the up-
date into two parts. The update of the next tile (where potf2 has to
operate) and the update of the remaining. Once the update of the
next tile is finished (for example, lets say at step i, once the update
of the tile of step i+ 1 where the potf2 operate is done, the potf2
kernel operating on step i+1 can start on a separate CUDA stream
as the update of the remaining portion of step i. In Figure 12 and 13,
we show a snapshot of the Nvidia profiler for the right looking im-
plementation, where we show the potf2 panel is overlapped with
the update phase. Since the font and the color of traces are enforced
by the Nvidia profiler, we clarified the figures by highlighting and
noting the kernels and their sequence to show the overlap. We pro-
vided a high quality figures such a way that a zoom in the pdf will
show the detailed font of the profiler. The trsm do not need to be
overlapped since it is by itself a Level 3 BLAS routine. It run on
the same stream as the potf2 routine to guarantee dependency.

potf2 step i+1 

update step i 
trsm step i+1 

potf2 step i+2 

update step i+1 

Figure 12: Nvidia profiler snapshot showing the lookahead potf2
computation executed on stream 15 overlapped with the update
phase running on stream 16 for the right looking GPU-only variant.

potf2 step i+1 

update step i 

trsm step i+1 
potf2 step i+2 

update step i+1 

Figure 13: Nvidia profiler snapshot showing the lookahead potf2
computation executed on stream 15 overlapped with the update
phase running on stream 16 for the left looking GPU-only variant.

5. Performance Discussions
In this section, we evaluate our proposed design in both of its
flavors (left and right) and compare it with the best hybrid (CPU-
GPU) and CPU only implementations. Performance experiments
are conducted on a two-socket 10-core Intel Xeon E5-2650 v3
(Haswell), running at 2.3 GHz, and two Nvidia GPUs – the Kepler
K40c (15 MP x 192 @ 0.88 GHz), and the Pascal P100 (56 MP x
64 @ 1.19 GHz). We show comparison for both single and double
precision arithmetic. The hybrid performance numbers are the best
obtained among the right or the left looking variant for each data
point. The CPUs results were the best obtained over several runs
as well and with/without the numactl interleave option. Our aims is
not to compare the GPU with the CPU but we present the results
obtained by a recent multicore CPUs system to make the paper self
contained and to show performance on two types of hardware that
have roughly the same cost.

Let’s first comment on the single precision spotrf routine illus-
trated in Figures 14 and 16. As expected from the performance of
the update routines (gemm and syrk) depicted in Figure 4 for the
K40c and in Figure 5 for the P100, the left and right looking vari-
ants provide slightly different performance numbers. The left look-
ing variant is advantageous for large matrices. This is because the
sgemm routine outperforms the ssyrk routine for nb >= 512 and
large n, while the right looking variant is advantageous for small
sizes where parallelism is needed. The effect of the left looking
variant on large size is better seen for the K40c GPU (Figure 14)
since the difference between the sgemm and ssyrk is more pro-
nounced for this GPU. When comparing the achieved performance
by the GPU-only routine with the roofline bound illustrated in Fig-
ures 4 and 5, we can conclude that our GPU-only design is optimal
and reaches close to the roofline peak. When comparing it with
the hybrid routine that uses the CPU for the potf2 factorization
and hides its cost completely, we can also settle that the GPU-only
implementation is one of the best. We also compare it with the cu-
SOLVER Cholesky factorization, which is a GPU-only implemen-
tation provided by Nvidia. It can be seen that we easily outperform
the vendor routine by a factor of more than 10% in single precision.
Comparing it with the CPU-only implementation on such recent
CPU, we can easily deduct a factor of 8 and 3 on the P100 and the
K40c, respectively.

We performed the same experiments for double precision arith-
metic and illustrated the results in Figures 15 and 17. In double pre-
cision the difference between the right and left looking is smoother.
This is due to the fact that the gemm and the syrk routines were
very well optimized and tuned for double precision. Attractively,
the GPU-only routine is able to achieve performance similar to the
hybrid one, which means that our proposed potf2 kernel can be
considered optimal because the hybrid routine overlaps the cost of
this kernel. Note that, the cost of the potf2 kernel, when optimized
and tuned, is minimal and less than 5% of the total time. Our pro-
posed design remains better than the cuSOLVER optimized routine
on both the K40c and the P100. The difference on the K40c is more
noticeable and is around 10%, while on the P100 is about 5%-10%.
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Figure 14: Performance comparison of the GPU-only, hybrid CPU-
GPU and CPU-only Cholesky factorization on the Nvidia K40c
GPU using single precision spotrf routine.

6. Conclusions and Future Work
In this paper, we presented the methodology of implementing nu-
merical linear algebra routines on the contemporary hardware plat-
forms that feature accelerators. We have provided sufficient evi-
dence that memory bound routines can be designed, optimized,
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matrix size
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Figure 15: Performance comparison of the GPU-only, hybrid CPU-
GPU and CPU-only Cholesky factorization on the Nvidia K40c
GPU using double precision dpotrf routine.
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Figure 16: Performance comparison of the GPU-only, hybrid CPU-
GPU and CPU-only Cholesky factorization on the Nvidia P100
GPU using single precision spotrf routine.
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Figure 17: Performance comparison of the GPU-only, hybrid CPU-
GPU and CPU-only Cholesky factorization on the Nvidia P100
GPU using double precision dpotrf routine.

and tuned for GPU architecture in a way to be competitive with
CPUs and reach their theoretical limits. We show our methodol-
ogy successfully applied on the development of high performance
Cholesky factorization that is designed to run only on GPUs. The

proposed work can deliver high performance against state-of-the-
art solutions using multicore CPUs, or hybrid (CPU-GPU), or even
vendor optimized GPU-only routines. Future directions consist of
following the same methodology to develop other highly needed
routines, such as the QR and the LU factorizations.

Acknowledgments
This material is based upon work supported by the National Sci-
ence Foundation under Grant No. ACI-1339822, the Department
of Energy, and NVIDIA.

References
A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra. Performance tuning

and optimization techniques of fixed and variable size batched cholesky
factorization on gpus. In International Conference on Computational
Science (ICCS’16), San Diego, CA, 06-2016 2016a.

A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra. On the development
of variable size batched computation for heterogeneous parallel archi-
tectures. In The 17th IEEE International Workshop on Parallel and Dis-
tributed Scientific and Engineering Computing (PDSEC 2016), IPDPS
2016, Chicago, IL, 05-2016 2016b. IEEE, IEEE.

E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov. Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects. J. Phys.:
Conf. Ser., 180(1), 2009.

E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault,
and S. Tomov. Faster, Cheaper, Better – a Hybridization Methodology to
Develop Linear Algebra Software for GPUs. In W. mei W. Hwu, editor,
GPU Computing Gems, volume 2. Morgan Kaufmann, Sept. 2010.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA,
1992. http://www.netlib.org/lapack/lug/.

C. Cao, J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov. clmagma:
High performance dense linear algebra with opencl. In The ACM Inter-
national Conference Series, Atlanta, GA, may 13-14 2013. (submitted).

T. Dong, A. Haidar, P. Luszczek, A. Harris, S. Tomov, and J. Dongarra. LU
Factorization of Small Matrices: Accelerating Batched DGETRF on the
GPU. In Proceedings of 16th IEEE International Conference on High
Performance and Communications (HPCC 2014), August 2014a.

T. Dong, A. Haidar, S. Tomov, and J. Dongarra. A fast batched Cholesky
factorization on a GPU. In Proc. of 2014 International Conference on
Parallel Processing (ICPP-2014), September 2014b.

J. Dongarra, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and A. YarKhan.
Model-driven one-sided factorizations on multicore accelerated systems.
International Journal on Supercomputing Frontiers and Innovations, 1
(1), June 2014.

J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham,
J. Hogg, P. Valero-Lara, S. D. Relton, S. Tomov, and M. Zounon. A
proposed API for Batched Basic Linear Algebra Subprograms. MIMS
EPrint 2016.25, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK, Apr. 2016. URL http://eprints.
ma.man.ac.uk/2464/.

J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A set of level
3 basic linear algebra subprograms. ACM Trans. Math. Softw., 16(1):
1–17, Mar. 1990. ISSN 0098-3500. doi: 10.1145/77626.79170. URL
http://doi.acm.org/10.1145/77626.79170.

M. Fatica. Accelerating linpack with cuda on heterogenous clusters. In Pro-
ceedings of 2Nd Workshop on General Purpose Processing on Graphics
Processing Units, GPGPU-2, pages 46–51, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-517-8. doi: 10.1145/1513895.1513901. URL
http://doi.acm.org/10.1145/1513895.1513901.

A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. Dongarra. Batched
matrix computations on hardware accelerators based on GPUs. In-
ternational Journal of High Performance Computing Applications,
doi:10.1177/1094342014567546, 02/2015 .

9 2017/7/4

http://www.netlib.org/lapack/lug/
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
http://doi.acm.org/10.1145/77626.79170
http://doi.acm.org/10.1145/1513895.1513901


A. Haidar, C. Cao, A. Yarkhan, P. Luszczek, S. Tomov, K. Kabir, and
J. Dongarra. Unified development for mixed multi-gpu and multi-
coprocessor environments using a lightweight runtime environment. In
Proceedings of the 2014 IEEE 28th International Parallel and Dis-
tributed Processing Symposium, IPDPS ’14, pages 491–500, Washing-
ton, DC, USA, 2014. IEEE Computer Society. ISBN 978-1-4799-
3800-1. doi: 10.1109/IPDPS.2014.58. URL http://dx.doi.org/10.
1109/IPDPS.2014.58.

A. Haidar, T. Dong, S. Tomov, P. Luszczek, and J. Dongarra. Framework for
batched and gpu-resident factorization algorithms to block householder
transformations. In ISC High Performance, Frankfurt, Germany, 07-
2015 2015a. Springer, Springer.

A. Haidar, J. Dongarra, K. Kabir, M. Gates, P. Luszczek, S. Tomov, and
Y. Jia. Hpc programming on intel many-integrated-core hardware with
magma port to xeon phi. Scientific Programming, 23, 01-2015 2015b.
ISSN 1058-9244. doi: 10.3233/SPR-140404.

A. Haidar, S. Tomov, P. Luszczek, and J. Dongarra. Magma embedded: To-
wards a dense linear algebra library for energy efficient extreme comput-
ing. In 2015 IEEE High Performance Extreme Computing Conference
(HPEC 15), (Best Paper Award), Waltham, MA, 09-2015 2015c. IEEE,
IEEE.

A. Haidar, S. Tomov, K. Arturov, M. Guney, S. Story, and J. Dongarra. Lu,
qr, and cholesky factorizations: Programming model, performance anal-
ysis and optimization techniques for the intel knights landing xeon phi.
In IEEE High Performance Extreme Computing Conference (HPEC’16),
Waltham, MA, 09-2016 2016. IEEE, IEEE.

PLASMA Users’ Guide, Parallel Linear Algebra Software for Multicore Ar-
chitectures, Version 2.0. Innovative Computing Laboratory, University
of Tennessee, 2010. http://icl.cs.utk.edu/projectsfiles/
plasma/pdf/users_guide.pdf.

A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland,
R. Dietrich, D. Poole, and C. Lamb. Parallel performance measurement
of heterogeneous parallel systems with gpus. In Proc. of ICPP’11,
pages 176–185, Washington, DC, USA, 2011. IEEE Computer Society.
ISBN 978-0-7695-4510-3. doi: 10.1109/ICPP.2011.71. URL http:
//dx.doi.org/10.1109/ICPP.2011.71.

NVIDIA Corporation. cuSOLVER 8.0, 2016. Available at http://docs.
nvidia.com/cuda/cusolver/.

P. E. Strazdins. Lookahead and algorithmic blocking techniques compared
for parallel matrix factorization. In 10th International Conference on
Parallel and Distributed Computing and Systems, IASTED, Las Vegas,
USA, 1998.

E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer. TOP500 supercom-
puter sites, 1993-2016. Available from: http://www.top500.org/.

S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for
hybrid gpu accelerated manycore systems. Parellel Comput. Syst. Appl.,
36(5-6):232–240, 2010. DOI: 10.1016/j.parco.2009.12.005.

I. Yamazaki, S. Tomov, and J. Dongarra. One-sided dense matrix
factorizations on a multicore with multiple {GPU} accelerators.
Procedia Computer Science, 9(0):37 – 46, 2012. ISSN 1877-
0509. doi: http://dx.doi.org/10.1016/j.procs.2012.04.005. URL
http://www.sciencedirect.com/science/article/pii/
S1877050912001263. Proceedings of the International Conference on
Computational Science, {ICCS} 2012.

10 2017/7/4

http://dx.doi.org/10.1109/IPDPS.2014.58
http://dx.doi.org/10.1109/IPDPS.2014.58
http://icl.cs.utk.edu/projectsfiles/plasma/pdf/users_guide.pdf
http://icl.cs.utk.edu/projectsfiles/plasma/pdf/users_guide.pdf
http://dx.doi.org/10.1109/ICPP.2011.71
http://dx.doi.org/10.1109/ICPP.2011.71
http://docs.nvidia.com/cuda/cusolver/
http://docs.nvidia.com/cuda/cusolver/
http://www.top500.org/
http://dx.doi.org/10.1016/j.parco.2009.12.005
http://www.sciencedirect.com/science/article/pii/S1877050912001263
http://www.sciencedirect.com/science/article/pii/S1877050912001263

