
Performance, Design, and Autotuning of
Batched GEMM for GPUs

Ahmad Abdelfattah1, Azzam Haidar1, Stanimire Tomov1, and
Jack Dongarra123

1 Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville, USA

2 Oak Ridge National Laboratory, Oak Ridge, USA
3 University of Manchester, UK

{aahmad2,haidar,tomov,dongarra}@eecs.utk.edu

Keywords: GEMM, Batched GEMM, HPC, GPU computing, Autotuning

Abstract. The general matrix-matrix multiplication (GEMM) is the
most important numerical kernel in dense linear algebra. It is the key
component for obtaining high performance in most LAPACK routines.
As batched computations on relatively small problems continue to gain
interest in many scientific applications, there becomes a need to have a
high performance GEMM kernel for a batch of small matrices. Such kernel
should be well designed and tuned to handle small sizes, and to main-
tain high performance for realistic test cases found in the higher level
LAPACK routines, and scientific computing applications in general.
This paper presents a high performance batched GEMM kernel on Graph-
ics Processing Units (GPUs). We address batched problems with both
fixed and variable sizes, and show that specialized GEMM designs and
a comprehensive autotuning process are needed to handle problems of
small sizes. For most performance test reported in this paper, the pro-
posed kernels outperform state-of-the-art approaches using a K40c GPU.

1 Introduction

Scientific computing applications extract their high-performance (HP) and effi-
cient use of modern computing architecture excessively through fast linear alge-
bra libraries, and most notably the GEMM routine. Indeed, in the area of dense
linear algebra (DLA), algorithms are designed as much as possible to use GEMM,
e.g., as in the LAPACK library. For example, direct solvers for large dense lin-
ear system and least squares problems require O(n3) floating point operations
(flops), of which O(n3) are in GEMM. Consequently, they run as fast/efficiently
as running GEMM. Application areas that rely on DLA, and therefore GEMM,
are computational electromagnetics, material science, airflow past wings, fluid
flow around ship and other offshore constructions, applications using boundary
integral equations, computational statistic, econometrics, control theory, signal
processing, curve fitting, and many more. Therefore, even a slight improvement
in GEMM, is extremely valuable and has great impact.

2 Ahmad Abdelfattah et al.

Besides the scientific computing areas that directly need large DLA, nu-
merous other applications, e.g., that will normally require sparse linear algebra
computations, use domain decomposition type of frameworks where the overall
computation tend to be cast in terms of many but small enough problems/tasks
to fit into certain levels of the machines’ memory hierarchy. Many times it is ad-
vantageous to represent these small tasks as DLA problems on small matrices,
as in applications such as astrophysics [18], metabolic networks [13], CFD and
the resulting PDEs through direct and multifrontal solvers [23], high-order FEM
schemes for hydrodynamics [6], direct-iterative preconditioned solvers [11], and
some image [19] and signal processing [4]. Moreover, even in the area of DLA
itself, large dense matrices can be broken into tiles and the algorithms expressed
in terms of small tasks over them [3]. Also note that implementation-wise, large
GEMMs are parallelized on current computing architectures, including GPUs,
as many small GEMMs. Under these circumstances, the only way to achieve
good performance is to find a way to group these small inputs together and
run them in large “batches.” The most needed and performance-critical kernel
here is a batched GEMM [5, 8, 10]. Finally, tensor contractions, used to model
multilinear relations in recent areas of high interest like big-data analytics and
machine learning, as well as large scale high-order FEM simulations, can also be
reduced to batched GEMMs [1].

To address the needs for batched linear algebra on new architectures, as
outlined above, we designed high-performance batched GEMM algorithms for
GPUs. We consider batched problems with both fixed and variable sizes. While
we leverage optimization techniques from the classic GEMM kernel for one mul-
tiplication at a time, we also developed a different design scheme for the tuning
process that can flexibly select the best performing set of tuning parameters.
For variable size problems, we propose new interfaces, as well as techniques, to
address the irregularity of the computation. We show that besides the critical
for performance algorithmic designs and innovations, a comprehensive autotun-
ing process is needed in order to handle the enormous complexity of tuning all
GEMM variants resulting from our designs. The complexity is further exacer-
bated by targeting problems for entire ranges of small sizes (vs. for a few discrete
sizes). Using a K40c GPU, the proposed kernels outperform state-of-the-art ap-
proaches (e.g. cuBLAS and MKL libraries) in most of the performance tests
reported in this work.

2 Related Work

To enable GPUs for a large-scale adoption in the HP scientific computing area,
a fast GEMM had to be developed. This became feasible with the introduc-
tion of shared memory in the GPUs. While general purpose GPU computing
was possible before that, performance was memory bound, as data once read
could not be reused in many computations. The availability of shared mem-
ory made data reuse possible, and the first compute-bound GEMM for GPUs
was developed [22] (in 2008). As the GPUs continued improving, new GEMM

Batched Matrix Multiplication on GPUs 3

algorithms had to be developed to better use to the evolving architecture, es-
pecially its memory hierarchy. In particular, [20] presented a GEMM algorithm
and implementation (in MAGMA, later incorporated in cuBLAS) that applied
hierarchical communications/blocking on all memory levels available at the time,
including a new register blocking. Blocking sizes, along with other performance-
critical choices were parametrized and used in autotuning frameworks [16, 14]
but improvements were limited to certain, very specific matrix sizes. Coding
these multilevel blocking types of algorithms in native machine language was
used to overcome some limitations of the CUDA compiler or warp scheduler
(or both) to achieve better performance [21]. Similarly, assembly implementa-
tions [15, 7] are used today in cuBLAS for Kepler and Maxwell GPUs to obtain
higher performance than corresponding CUDA codes.

Besides the batched GEMM in cuBLAS, there have been a number of research
papers on batched GEMM, developed as needed for particular applications. For
example, a batched GEMM for very small sizes (up to 16) was developed for
high-order finite element method (FEM) [12]. Tensor contraction computations
for large scale high-order FEM simulations were reduced to batched GEMM [1],
obtaining close to peak performance for very small matrices (90+% of a the-
oretically derived peak) using some of the techniques that we developed and
describe in detail here. Matrix exponentiation from the phylogenetics domain
was reduced to batched GEMMs on small square matrices [17], obtaining very
good performance for fixed sizes (4, 20, and 60) in single precision.

3 Batched GEMM Design and Implementation Details

This section discusses the main design and tuning approaches for batched GEMM
kernels that support both fixed and variable sizes. From now on, variable size
batched GEMM is abbreviated as vbatched GEMM. Our goal is to minimize coding
effort and to design one kernel that could be easily adapted for use in both
fixed and variable size batched GEMM. We begin by considering only fixed size
batched problems. We then discuss the modifications we incorporated to handle
a variable size problem at the end of the section.
Routine Interface. Each GEMM in a batch routine has the form of the stan-
dard BLAS GEMM:

C = α · op(A) × op(B) + β · C.

The interface of a batched/vbatched kernel must manage independent multipli-
cations of matrices that are not necessarily stored contiguously in memory. As a
result, the batched kernel requires the address of every individual matrix. It also
requires the size and the leading dimension of every matrix. While such informa-
tion can be passed using single integers in the fixed sizes case, arrays of integers
are needed for the vbatched problems. Our kernels support multiplications with
different values for α and β. We also add an extra input argument batchCount
that indicates the number of matrices in the batch. Table 1 summarizes an exam-
ple of the interface written in the C language for the batched/vbatched DGEMM
routine.

4 Ahmad Abdelfattah et al.

Argument Description BLAS Batched Vbatched

TRANSA op(A) char char char
TRANSB op(B) char char char
M Rows of op(A)/C int int int*
N Columns of op(B)/C int int int*
K Columns of op(A)/rows of op(B) int int int*
α Alpha double double* double*
A Input matrix double* double** double**
LDA Leading dimension of A int int int*
B Input matrix double* double** double**
LDB Leading dimension of B int int int*
β Beta double double* double*
C Input/output matrix double* double** double**
LDC Leading dimension of C int int int*
batchCount Number of matrices N/A int int

Table 1: Interface of batched and vbatched matrix multiplication kernel against
standard BLAS interface (GEMM: C = α · op(A) × op(B) + β · C)

BLKN

BLKk

BLKk

BLKM BLKM

BLKN

M

K

K

N

A C

B

Fig. 1: Example of blocking in the GEMM kernel.

Kernel Design. To design a GEMM kernel in CUDA and take advantage of the
available threads, thread blocks and multiprocessors of a GPU, the computation
must be partitioned into blocks of threads (also called thread blocks, or simply
TBs) that execute independently from each other on the multiprocessors of the
GPU. To do that, as shown in Figure 1, the matrix C can be subdivided into
rectangular blocks of size BLKM × BLKN , and each of these blocks computed by
one TB. Specifics on how to do this efficiently, e.g., using hierarchical blocking
of both communications and computations, as noted in Section 2, are given in a
design by Nath et al. [20], which is also available in the MAGMA library [2]. We
use these ideas to build an extended CUDA kernel that is efficient for batched
computations (note that the batched GEMM in cuBLAS also uses this early
MAGMA GEMM kernel). However, some rules change here in the case of small

Batched Matrix Multiplication on GPUs 5

matrices. For example, the standard GEMM kernel design tries to maximize the
use of shared memory while for batched small GEMM, we should minimize the
use of shared memory to allow more than one TB to be executed on the same
multiprocessor. The results obtained by our autotuning framework, described
below, prove this choice.

The TBs computing a single matrix C can be specified as a 2D grid of size

(
⌈

M
BLKM

⌉
,
⌈

N
BLKN

⌉
). A TB processes an entire slice of A and an entire slice of

B to perform the necessary multiplication. The reading from global memory is
blocked, so that the kernel loads a BLKM × BLKK block ofA and a BLKK × BLKN

block of B into shared memory, where the multiplication can benefit from the
fast shared memory bandwidth. Moreover, a double buffering technique is used
to enforce data prefetching into registers, where the computation is additionally
blocked. For multiple/batched GEMMs, each C can be computed independently
by its 2D grid of TBs, similarly to the standard case. Thus, we design a batched
GEMM for a 3D grid of TBs, where one dimension specifies a particular GEMM,
and the 2D subgrid specifies the TBs for computing that particular GEMM.

The kernel has many tuning parameters such as the BLK M, BLK N, and
BLK K illustrated in Figure 1, DIM X and DIM Y used to configure the number of
threads in a TB, among others to specify algorithmic variations. For example, a
key distinction with the case of single GEMM is that matrices can be very small,
e.g., sub-warp in size. Therefore, instead of having multiple TBs working on a
single C matrix, we have parametrized the basic kernel to allow configurations
where a TB computes several GEMMs. This design is critical for obtaining close
to peak performances for very small sizes [1].

Search Space Generation and Pruning. The MAGMA batched GEMM
kernel has a total of 10 tuning parameters, which can produce millions of com-
binations if we use a brute-force generator. In can be computationally infeasible
to search in an enormous design space like this. Therefore, to reduce it, we use
generator rules that accept two sets of constraints in order to prune the param-
eter space. The first set corresponds to the hardware constraints, as defined by
the GPU generation and model. Two examples of such constraints are the maxi-
mum number of threads in a TB (e.g., 1, 024 for a Kepler GPU), and the amount
of shared memory required per TB (48KB). Violation of hardware constraints
usually leads to compilation errors or kernel launch failures.

The second set represents soft constraints that rule out kernel instances that
are unlikely to achieve good performance for batched workloads. Violation of
such constraints can still produce runnable kernels, but they are predictably
not good candidates from a performance perspective. Specifying the rules is
important in order not to mispredict and consequently rule out good candidates.
For example, our experience shows that configurations that use small number
of threads per TB and small amounts of shared memory can be very efficient
for batched computations. The explanation for this observation is that multiple
TBs can run concurrently on the same Streaming Multiprocessor (SM), thus
maximizing throughput. Therefore, we consider kernels that use a number of
threads as small as 32, and rule out kernels that tend to maximize the occupancy

6 Ahmad Abdelfattah et al.

per TB, e.g., the ones using more than 512 threads per TB. We point out that this
is the opposite of a previous work that targeted classic GEMM operations [14],
where the soft constraints were set to rule out kernels using less than 512 threads.
Our search space generator ended up with 6, 400 eligible GEMM kernels.
Test cases. A classical test case for a GEMM kernel is to tune for square
matrices which seems to be good choice for other shape for large matrices. How-
ever, this scenario rarely appears in higher-level LAPACK routines, such as the
LU and QR factorizations, where the multiplication usually involves rectangular
matrices (tall-skinny and short-wide matrices), with relatively small values of
K compared to M and N. For small matrices computation, K gets even smaller.
For example, the batched LU factorization [9] uses a panel of width up tp 128,
but it performs the panel factorization recursively as two panels of width 64,
each factorized as two panels of width 32. Eventually, each panel of width 32 is
factorized as four panels of size 8. Figure 2 shows this recursive nested blocking
in the batched LU factorization for small matrices. As a results, in addition to
the square sizes, we define our test cases to have discrete small values of K (8,
16, 32, etc.), while varying M and N.

P	

a	

n	

e	

L	

Trailing 	

matrix	

update	

sub panel 1a	

Factored part of A	

128	

sub trailing m
atrix 1b	

sub trailing m
atrix 2b	

sub panel 2a	

64	

32	
 32	

sub trailing m
atrix 1b	

64	

(a) Recursive nested blocking fashion.

P	

a	

n	

e	

L	

32	

done	

4	

done	

sub trailing m
atrix 	

done	

sub panel 	

8	

sub trailing m
atrix 	

sub panel 	

8	

done	

sub panel 	

4	

done	

done	

sub trailing m
atrix 	

sub panel 	

8	

8	

(b) Classical blocking fashion.

Fig. 2: Recursive nested panel factorization in batched LU

For simplicity, all performance tests are conducted for fixed size batched
computations, so that we can specify a winning kernel instance for every tested
size. The vbatched GEMM kernel is assumed to have the same tuning decision
as the fixed size batched GEMM.
Autotuning output anaylsis. For every test case – specified by precision,
transposition mode that we call shape, and (M, N, K) sizes – we run all eligible
GEMM kernels. We developed an automated selection process that sorts all ker-
nels according to their performances at each data point, and stores the ID of the
kernel instance with the best performance. After repeating the same step for all
data points, the automated process selects the five (this number can be chosen
by the user) most frequent kernel instances that scored the best performance
across all data points. We plot also the maximal and the minimal performance
obtained by all the kernels at every data point. For a fixed size GEMM: for

Batched Matrix Multiplication on GPUs 7

every shape (e.g., NN, NT, etc), every test case (e.g., square, tall-skinny k=8
tall-skinny k=32, wide, etc), one or multiple winning version can be selected such
a way to provide the best performance for all the range of sizes. For variable size
GEMM: for every shape, we select one winning version that scores a performance
within 5-10% of the best achievable performance and that fit all the sizes for a
specific test case. The details for these choices are described below.

Performance Sensitivity and Software Framework. Figure 3 shows ex-
ample performance graphs for some test cases, where the five best performing
kernel instances are nominated by our selection process. We observe that not
only different test cases have different winning versions, but also a single test
case may have two or three winning versions according to the ranges of M and
N. Unlike tuning for big matrices [14], which ended up with four kernels across
all test cases, we observe that the performance is very sensitive for small ma-
trices that it is required to have an efficient software framework that can call
the correct winning version for each test case. Such framework should be able to
handle large number of versions while preserving reasonable programming and
coding effort. It should also provide an easy-to-modify code structure for future
tuning experiments.

Template-based Design. The original tuning of the classic GEMM kernels [20]
resulted in finding a few versions, best for different cases. Each version is instan-
tiated in a separate file where the corresponding tuning parameters are listed
using compile-time macros (#define). This structure is impractical if we have
a large number of kernel versions. As an example, assume a kernel that has
only five tuning parameters, and is defined in a header file called gemm.h. Fig-
ures 4 and 5 show an example code for the generation of a single GEMM version
(dgemm v0). Another drawback of such design is that a kernel version must have
all shapes covered. This is an unnecessary restriction, since we might need more
kernels for the NN shape than the NT shape, for example. It is more flexible to
decouple GEMM shapes from each other.

Therefore, we use CUDA C++ templates to enable a unified code base for
the batched/vbatched GEMM kernels. Templates enable an easy instantiation
of a kernel with a specific precision and tuning parameters. Figure 6 shows an
example for the DGEMM routine using templates. Each set of tuning parameters
is described as an array of integers. In addition, switching among versions be-
comes as simple as changing a single number, namely the kernel ID passed to the
instance macro. The only cost, which is paid once, is the need to generate all
possible combinations of tuning parameters using the space generator. Once this
step is finished, any future changes to the code in Figure 6 become very simple.
As opposed to the previous approach, there is no need to keep the same number
of kernels across all shapes, or keep different DGEMM versions in separate files.

Now we describe how we move from the fixed size batched GEMM to the
vbatched GEMM. There are two main approaches to address a vbatched
problem on GPUs. The first assumes that a vbatched kernel is launched directly
from the CPU side. Since the launch involves configuration of TBs, the kernel
must be configured to accommodate the largest matrix dimensions in the batch.

8 Ahmad Abdelfattah et al.

��

����

����

����

����

�����

�� ���� ���� ���� ���� ����

�
�
�
�
��

�����

����������
����������
����������

����������
����������
����������

����������

(a) SGEMM, square

��

����

����

����

����

����

����

����

�� ���� ���� ���� ���� ����

�
�
�
�
��

�����

����������
����������
����������

����������
����������
����������

����������

(b) DGEMM, square

��

���

����

����

����

����

����

�� ���� ���� ���� ���� ����

�
�
�
�
��

�����

����������
����������
����������

����������
����������
����������

����������

(c) SGEMM, k=8

��

���

����

����

����

�� ���� ���� ���� ���� ����

�
�
�
�
��

�����

����������
����������
����������

����������
����������
����������

����������

(d) DGEMM, k=8

��

����

����

����

����

�����

�� ���� ���� ���� ���� ����

�
�
�
�
��

�����

����������
����������
����������

����������
����������
����������

����������

(e) SGEMM, k=64

��

����

����

����

����

����

����

�� ���� ���� ���� ���� ����

�
�
�
�
��

�����

����������
����������
����������

����������
����������
����������

����������

(f) DGEMM, k=64

Fig. 3: GEMM performance of the five most frequent, best performing kernels in
selected test cases. Each instance is associated with an ID and the number of
occurrences. batchCount=500.

As a result, subgrids assigned to smaller matrices will have some threads (or
even full TBs) with no work. We developed an Early Termination Mechanisms
(ETMs) to solve this problem. An ETM is a lightweight software layer that iden-
tifies, at the beginning of a kernel launch, threads with no work and immediately
terminates them to avoid over-occupancy and memory access violations. ETMs
are implemented at the level of a thread, so that each thread can independently
determine whether it should proceed with execution or no. Note that such ap-
proach requires these maximal dimensions to be known on the CPU side prior
to the kernel launch.

Batched Matrix Multiplication on GPUs 9

1 #define TYPE double
2

3 #define PARAM_NN_0 (2)
4 #define PARAM_NN_1 (32)
5 #define PARAM_NN_2 (16)
6 #define PARAM_NN_4 (8)
7 #define PARAM_NN_5 (1)
8

9 #define PARAM_NT_0 (4)
10 #define PARAM_NT_1 (16)
11 #define PARAM_NT_2 (32)
12 #define PARAM_NT_4 (4)
13 #define PARAM_NT_5 (0)
14 /* Parameters of other shapes */
15

16 #include "gemm.h"
17

18 void dgemm_v0(/* input arguments */)
19 {
20 /* some code */
21 if(shape == "nn")
22 dgemm_v0_nn(/* arg */)
23 else if (shape == "nt")
24 dgemm_v0_nt(/* arg */)
25 /* other shapes */
26 }

Fig. 4: Generating one version of the DGEMM kernel for all shapes. Each version
must be stored in a separate file.

1 void dgemm(/* input arguments */)
2 {
3 if(/* condition 1 */)
4 dgemm_v0(/* arg */)
5 else if (/* condition 2 */)
6 dgemm_v1(/* arg */)
7 /*
8 Repeat as many times as necessary
9 */

10 }

Fig. 5: DGEMM wrapper that calls different DGEMM versions.

The second approach is based on the relatively new CUDA GPUs technology
called dynamic parallelism. It enables a GPU kernel to launch another GPU
kernel. In this case, a vbatched kernel is launched from the GPU side. The CPU
role is to launch a parent kernel with a total number of CUDA threads equal to

10 Ahmad Abdelfattah et al.

1 #define NN_V_0 2, 32, 16, 8, 1
2 #define NN_V_1 4, 8, 32, 4, 1
3

4 #define NT_V_0 4, 16, 32, 4, 0
5 #define NT_V_1 8, 24, 16, 2, 1
6 /* other version definitions */
7

8 #define instance(shape,v) shape ## _V_ ## v
9 #include "gemm_kernel_template.h"

10

11 void dgemm(/* input arguments */){
12 /* some code */
13 switch(shape)
14 {
15 case "nn":
16 if(/* condition nn-1 */)
17 gemm_template<double, instance(NN,0)>(/* arg */);
18 else if (/* condition nn-2 */)
19 gemm_template<double, instance(NN,1)>(/* arg */);
20 /* other conditions */
21 break;
22 case "nt":
23 if(/* condition nt-1 */)
24 gemm_template<double, instance(NT,0)>(/* arg */);
25 else if (/* condition nt-2 */)
26 gemm_template<double, instance(NT,1)>(/* arg */);
27 /* other conditions */
28 break;
29 /* Repeat for all shapes */
30 }
31 /* some code */
32 }

Fig. 6: DGEMM routines using templates with flexible switching.

the number of matrices in the batch. Each CUDA thread then launches a GPU
GEMM kernel for one matrix based on its dimensions. As opposed to the first
approach, dynamic parallelism waives the need to know the largest dimensions
across all matrices. However, it assumes that the underlying CUDA runtime
will schedule execution of the child kernels efficiently on the GPU, which is not
always the case, as described in Section 4. Dynamic parallelism is a technology
that is available only on GPUs with compute capability 3.5 (Kepler) or higher.

The vbatched GEMM kernel uses the same code base as the fixed size batched
routine, with the use of either ETMs or dynamic parallelism. Examples for both
approaches are highlighted in Figure 7. Shown are the output matrices of three
independent GEMMs. The first approach (ETMs) requires knowledge about the
maximum values of M, N, and K across all matrices. Note that such values do not

Batched Matrix Multiplication on GPUs 11

necessarily belong to one matrix. Based on these values, it determines the GEMM
kernel version to be called. As shown in Figure 7(a), all matrices are processed
using a single kernel that is called from the CPU. Each subgrid is responsible
for one matrix. All matrices are subdivided using the same blocking size. The
ETM layer is responsible for terminating TBs marked by ×, which do not have
any work. The second approach, which is based on dynamic parallelism, lets
the CPU launch a parent kernel with a number of master threads. Each master
thread launches a GEMM kernel for its assigned matrix, and it chooses the best
working GEMM instance for it. Consequently, this approach allows matrices to
be subdivided using different blocking sizes.

×	

×	

×	 ×	 ×	

×	

×	

×	

×	

×	 ×	 ×	

×	

3×3 subgrid
(:, :, 0)

3×3 subgrid
(:, :, 1)

3×3 subgrid
(:, :, 2)

vbatched kernel(CPU)
(3, 3, 3) grid configuration

(a) Using max. information with ETMs

parent kernel(CPU)
(1, 1, 3) grid configuration

th.(0, 0, 0)
GEMM(GPU)

(2, 3, 1) grid

th.(0, 0, 1)
GEMM(GPU)

(3, 3, 1) grid

th.(0, 0, 2)
GEMM(GPU)

(2, 1, 1) grid

(b) Using dynamic parallelism

Fig. 7: Approaches for vbatched GEMM.

4 Performance Results and Analysis

System Setup. Performance tests are conducted on a machine equipped with
two 8-core Intel Sandy Bridge CPUs (Intel Xeon E5-2670, running at 2.6 GHz),
and a Kepler generation GPU (Tesla K40c, running at 745 MHz, with ECC on).
CPU performance tests use Intel MKL Library 11.3.0. GPU performance tests
use CUDA Toolkit 7.0. Due to space limitations, we show results for double
precision only. We point out that the proposed tuned kernels support all other
precisions, with roughly similar performance behavior. The performance of the
MAGMA GEMM kernel is compared against the cuBLAS batched GEMM kernel,
the cuBLAS classic GEMM kernel offloaded to concurrent streams, and the MKL
GEMM kernel running on 16 CPU cores. The MKL library is configured to assign
one core per matrix at a time, and is used within an OpenMP parallel loop that
is dynamically unrolled to balance the workload among cores.
Fixed size. Figure 8 shows the performance for the NN shape, with different
problem sizes that are typically used in higher-level factorization and solve al-
gorithms. The tuned MAGMA kernel achieves the best performance when K is
small, regardless of M, and N. In Figures 8(a) through 8(d), it scores speedups
up to 87%, 38%, 86%, and 26% against the best competitor (cuBLAS batched),

12 Ahmad Abdelfattah et al.

����� ������	
����	
������ ������	

������
�������
���
����	������

��

���

���

���

���

���

���

���

���

���

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(a) k=8, n=8

��

���

���

���

���

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(b) k=8, n=16

��

���

���

���

���

����

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(c) k=8, n=24

��

���

����

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(d) k=16, n=16

��

���

����

����

����

����

����

����

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(e) k=32, n = m

��

����

����

����

����

�����

�����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(f) k = n = m

Fig. 8: Fixed size batched DGEMM performance for shape NN.

respectively. Starting K = 32, the MAGMA DGEMM kernel loses its advantage
to the streamed GEMM, except for the small range of M and N, which is of partic-
ular importance for batched computation. In Figures 8(e) and 8(f), MAGMA is
generally faster than the batched cuBLAS kernel, achieving up to 43% and 35%
speedups, respectively. However, the streamed GEMM, apart from some drops in
Figure8(e), becomes the best performing kernel when M and N are around 200.
A similar behavior is observed in Figure 9 for the NT shape. MAGMA scores

speedups up to 48%, 39%, 96%, and 16% against the batched cuBLAS kernel,
for Figures9(a) through 9(d), respectively. When K gets larger as in Figures 9(e)
and 9(f), MAGMA has the advantage for relatively small values of M and N,

Batched Matrix Multiplication on GPUs 13

����� ������	
����	
������ ������	

������
�������
���
����	������

��

���

���

���

���

���

���

���

���

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(a) k=8, n=8

��

���

���

���

���

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(b) k=8, n=16

��

���

���

���

���

����

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(c) k=8, n=24

��

���

����

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(d) k=16, n=16

��

���

����

����

����

����

����

����

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(e) k=32, n = m

��

����

����

����

����

�����

�����

�����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

�

(f) k = n = m

Fig. 9: Fixed size batched DGEMM performance for shape NT.

with a 45% speedup against batched cuBLAS for k = 32, and a slightly better
better performance for the square case. Otherwise, the streamed cuBLAS kernel
mostly achieves the best performance, expect for the midrange in Figure 9(e),
where MAGMA takes over.

Variable size. Now considering the matrix test suites for the vbatched GEMM,
each point M on the x-axis in Figures 11 and 12 represents a distribution of sizes
where M is the maximum size in the batch. We did our tests based on two random
distributions: uniform and Gaussian. Examples of both distributions are shown
in Figure 10. We drop the batched cuBLAS kernel because it does not support
variable size computation.

14 Ahmad Abdelfattah et al.

��

��

��

��

��

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
��
�
�
�
�

�����������

(a) Uniform Distribution

��
��
��
��
��

���
���
���
���
���
���
���
���

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
��
�
�
�
�

�����������

(b) Gaussian Distribution

Fig. 10: Histograms of the size distribution for a batch count equal to 2000 with
maximum matrix size set to 512

Figure 11 shows the performance for the vbatched DGEMM kernel against a
uniform distribution for the NN shape, while Figure 12 considers the NT shape.
In both shapes, the MAGMA DGEMM based on ETMs has a clear advantage in
Figures 11(a) through 11(d), and 12(a) through 12(d). The MAGMA DGEMM
kernel based on dynamic parallelism is either equal to or better than the former
approach for relatively large sizes in the cases of k = 32 and square matrices. The
asymptotic speedups scored by the ETM-based kernel against streamed GEM-
M/MKL are 6.73×/5.47×, 5.45×/2.18×, 3.75×/10.20×, and 4.34×/11.06× in
Figures 11(a) through 11(d), and 8.34×/10.52×, 4.82×/7.86×, 4.20×/9.38×,
and 3.80×/9.86× in Figures 12(a) through 12(d), respectively. In Figures 11(e)
and 12(e), there is no winning kernel for all sizes. The two MAGMA kernels
outperform other competitors for Maximum m up to 300. The streamed GEMM
dominates the midrange, and then gets nearly matched or slightly outperformed
by the MAGMA kernel based on dynamic parallelism. For the case of square
matrices (Figures 11(f) and 12(f)), the streamed GEMM achieves the best per-
formance unless matrices are too small, where the ETM-based MAGMA kernel
is the best choice. We observe a similar behavior when we repeat all the above
test cases based on the Gaussian distribution. For space limitations, we highlight
only two test cases for the NN shape in Figure 13.
Sub-warp sizes. Finally, we want to point out that the framework presented
was also used to find batched GEMM kernels for very small (sub-warp in size)
matrices. Performance there is memory bound and can be modeled. Results show
that we obtain close to peak performance [1] (90+% of the theoretically derived
peak) to significantly outperform cuBLAS on GPUs and MKL on CPUs.

5 Conclusion and Future Work

This paper presented a design and autotuning framework for fixed and variable
size batched matrix-matrix multiplication using GPUs. Similarly to the GEMM
routine, batched GEMMs on small matrices are needed in many applications
from big-data analytics to data mining, and more. The work focused on the

Batched Matrix Multiplication on GPUs 15

����� ������	
 ����
����� ������	
 �
������

������ ����	���
��� �����
������

��

���

���

���

���

���

���

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(a) k=8, n=8

��

���

���

���

���

���

���

���

���

���

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(b) k=8, n=16

��

���

���

���

���

���

���

���

���

���

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(c) k=8, n=24

��

���

���

���

���

����

����

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(d) k=16, n=16

��

���

����

����

����

����

����

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(e) k=32, n = m

��

����

����

����

����

�����

�����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(f) k = n = m

Fig. 11: Vbatched DGEMM performance for shape NN with uniform distribution

algorithmic design and performance autotuning for small fixed and variable sizes
on test cases found in batched LAPACK factorization and solve algorithms.
With a comprehensive autotuning process and a flexible software framework,
we are able to find and call the best kernel configuration (within our design
space) according to many deciding factors. The flexible software scheme ensures
minimal coding effort if future changes are required, and can be used efficiently
for other computational kernels that have large number of tuning parameters.

Future directions include adding support for multiplications with different
shapes within the same GPU kernel, thorough testing of the vbatched routine
against different size distributions, and performance analysis and profiling of the

16 Ahmad Abdelfattah et al.

����� ������	
 ����
����� ������	
 �
������

������ ����	���
��� �����
������

��

��

���

���

���

���

���

���

���

���

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(a) k=8, n=8

��

���

���

���

���

���

���

���

���

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(b) k=8, n=16

��

���

���

���

���

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(c) k=8, n=24

��

���

���

���

���

����

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(d) k=16, n=16

��

���

����

����

����

����

����

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(e) k=32, n = m

��

����

����

����

����

�����

�����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(f) k = n = m

Fig. 12: Vbatched DGEMM performance for shape NT with uniform distribution

dynamic-parallelism based kernels in order to analyze and understand its behav-
ior and overhead. Work on applying and tuning the batched GEMMs in specific
applications, e.g., using application-specific knowledge, especially in computing
applications requiring variable sizes like direct multifrontal solvers for sparse
matrices, are of high interest and subject to future work.

Acknowledgment

This work is based upon work supported by the National Science Foundation
under Grants No. ACI-1339822 and CSR 1514286, NVIDIA, the Department of

Batched Matrix Multiplication on GPUs 17

����� ������	
 ����
����� ������	
 �
������

������ ����	���
��� �����
������

��

���

���

���

���

���

���

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(a) k=8, n=8

��

���

����

����

����

����

����

����

����

�

�
�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
��

�
�
�
�
��

���������

(b) k=32, n = m

Fig. 13: Vbatched DGEMM performance for shape NN with Gaussian distribution

Energy (LLNL subcontract under DOE contract DE-AC52-07NA27344), and in
part by the Russian Scientific Foundation, Agreement N14-11-00190.

References

1. Abdelfattah, A., Baboulin, M., Dobrev, V., Dongarra, J., Earl, C., Falcou, J.,
Haidar, A., Karlin, I., Kolev, T., Masliah, I., Tomov, S.: High-Performance Ten-
sor Contractions for GPUs. University of Tennessee Computer Science Technical
Report (UT-EECS-16-738) (01-2016 2016)

2. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: The
PLASMA and MAGMA projects. J. Phys.: Conf. Ser. 180(1) (2009)

3. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: The
PLASMA and MAGMA projects. J. Phys.: Conf. Ser. 180(1) (2009)

4. Anderson, M., Sheffield, D., Keutzer, K.: A predictive model for solving small linear
algebra problems in gpu registers. In: IEEE 26th International Parallel Distributed
Processing Symposium (IPDPS) (2012)

5. Dong, T., Haidar, A., Luszczek, P., Harris, A., Tomov, S., Dongarra, J.: LU Factor-
ization of Small Matrices: Accelerating Batched DGETRF on the GPU. In: Pro-
ceedings of 16th IEEE International Conference on High Performance and Com-
munications (HPCC 2014) (August 2014)

6. Dong, T., Dobrev, V., Kolev, T., Rieben, R., Tomov, S., Dongarra, J.: A step
towards energy efficient computing: Redesigning a hydrodynamic application on
CPU-GPU. In: IEEE 28th International Parallel Distributed Processing Sympo-
sium (IPDPS) (2014)

7. Gray, S.: A full walk through of the SGEMM implementation.
https://github.com/NervanaSystems/maxas/wiki/SGEMM (2015)

8. Haidar, A., Dong, T., Luszczek, P., Tomov, S., Dongarra, J.: Batched matrix com-
putations on hardware accelerators based on GPUs. International Journal of High
Performance Computing Applications doi:10.1177/1094342014567546 (02/2015)

9. Haidar, A., Dong, T., Luszczek, P., Tomov, S., Dongarra, J.: Batched matrix
computations on hardware accelerators based on gpus. International Journal of

18 Ahmad Abdelfattah et al.

High Performance Computing Applications (2015), http://hpc.sagepub.com/
content/early/2015/02/06/1094342014567546.abstract

10. Haidar, A., Dong, T., Tomov, S., Luszczek, P., Dongarra, J.: A framework for
batched and gpu-resident factorization algorithms applied to block householder
transformations. In: Kunkel, J.M., Ludwig, T. (eds.) High Performance Computing,
Lecture Notes in Computer Science, vol. 9137, pp. 31–47. Springer International
Publishing (2015), http://dx.doi.org/10.1007/978-3-319-20119-1_3

11. Im, E.J., Yelick, K., Vuduc, R.: Sparsity: Optimization framework for sparse matrix
kernels. Int. J. High Perform. Comput. Appl. 18(1), 135–158 (Feb 2004), http:
//dx.doi.org/10.1177/1094342004041296

12. Jhurani, C., Mullowney, P.: A GEMM interface and implementation on NVIDIA
gpus for multiple small matrices. CoRR abs/1304.7053 (2013), http://arxiv.
org/abs/1304.7053

13. Khodayari A., A.R. Zomorrodi, J.L., Maranas, C.: A kinetic model of escherichia
coli core metabolism satisfying multiple sets of mutant flux data. Metabolic engi-
neering 25C, 50–62 (2014)

14. Kurzak, J., Tomov, S., Dongarra, J.: Autotuning GEMM kernels for the Fermi
GPU. IEEE Transactions on Parallel and Distributed Systems 23(11), 2045–2057
(November 2012)

15. Lai, J., Seznec, A.: Performance upper bound analysis and optimization of sgemm
on fermi and kepler gpus. In: Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). pp. 1–10. CGO ’13,
IEEE Computer Society, Washington, DC, USA (2013), http://dx.doi.org/
10.1109/CGO.2013.6494986

16. Li, Y., Dongarra, J., Tomov, S.: A note on auto-tuning GEMM for GPUs. In: Pro-
ceedings of the 2009 International Conference on Computational Science, ICCS’09.
Springer, Baton Roube, LA (May 25-27 2009)

17. Lopez, M., Horton, M.: Batch matrix exponentiation. In: Kindratenko, V. (ed.)
Numerical Computations with GPUs, pp. 45–67. Springer International Publishing
(2014), http://dx.doi.org/10.1007/978-3-319-06548-9_3

18. Messer, O., Harris, J., Parete-Koon, S., Chertkow, M.: Multicore and accelerator
development for a leadership-class stellar astrophysics code. In: Proceedings of
”PARA 2012: State-of-the-Art in Scientific and Parallel Computing.” (2012)

19. Molero, J., Garzón, E., Garćıa, I., Quintana-Ort́ı, E., Plaza, A.: Poster: A batched
Cholesky solver for local RX anomaly detection on GPUs (2013), PUMPS

20. Nath, R., Tomov, S., Dongarra, J.: An Improved Magma Gemm For Fermi Graphics
Processing Units. Int. J. High Perform. Comput. Appl. 24(4), 511–515 (Nov 2010),
http://dx.doi.org/10.1177/1094342010385729

21. Tan, G., Li, L., Triechle, S., Phillips, E., Bao, Y., Sun, N.: Fast implementa-
tion of dgemm on fermi gpu. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis. pp. 35:1–
35:11. SC ’11, ACM, New York, NY, USA (2011), http://doi.acm.org/10.
1145/2063384.2063431

22. Volkov, V., Demmel, J.: Benchmarking GPUs to tune dense linear algebra. In: SC
’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing. pp. 1–11.
IEEE Press, Piscataway, NJ, USA (2008)

23. Yeralan, S.N., Davis, T.A., Ranka, S.: Sparse mulitfrontal QR on the GPU. Tech.
rep., University of Florida Technical Report (2013), http://faculty.cse.
tamu.edu/davis/publications_files/qrgpu_paper.pdf

