
1

Roadmap for the Development
of a Linear Algebra Library
for Exascale Computing
SLATE: Software for Linear Algebra Targeting Exascale

Ahmad Abdelfattah
Hartwig Anzt
Aurelien Bouteiller
Anthony Danalis
Jack Dongarra
Mark Gates
Azzam Haidar
Jakub Kurzak
Piotr Luszczek
Stanimire Tomov
Stephen Wood
Panruo Wu
Ichitaro Yamazaki
Asim YarKhan

Innovative Computing Laboratory

April 4, 2018

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two
U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration)
responsible for the planning and preparation of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed platforms, in support of the nation’s exascale
computing imperative.

The authors would like to thank Shane Story, Konstantin Arthurov, Murat Guney, and Sarah Knepper from the
Intel MKL team for sharing their insights about the inner workings of MKL.

The authors would like to thank Clint Whaley, the author of ATLAS, for sharing his insights into the inner
workings of ATLAS.

Revision Notes
06-2017 first publication
01-2018 new cover
04-2018 copy editing

@techreport{abdelfattah2017roadmap,
author={Abdelfattah, Ahmad and Anzt, Hartwig and Bouteiller, Aurelien and

Danalis, Anthony and Dongarra, Jack and Gates, Mark and
Haidar, Azzam and Kurzak, Jakub and Luszczek, Piotr and
Tomov, Stanimire and Wood, Stephen and Wu, Panruo and
Yamazaki, Ichitaro and YarKhan, Asim},

title={{SLATE} Working Note 1: Roadmap for the Development
of a Linear Algebra Library for Exascale Computing:
{SLATE}: Software for Linear Algebra Targeting Exascale},

institution={Innovative Computing Laboratory, University of Tennessee},
year={2017},
month={June},
number={ICL-UT-17-02},
note={revision 04-2018}

}

i

Contents

1 Preface 1

2 ECP Applications Survey 2
2.1 Results . 2
2.2 Consequences for SLATE . 8

3 Hardware Technology Trends 10
3.1 Upcoming Machines . 10
3.2 Processing . 11

3.2.1 GPUs . 11
3.2.2 Xeon Phi . 12
3.2.3 POWER . 13
3.2.4 ARM . 13

3.3 Communication . 14
3.3.1 NVLINK . 14
3.3.2 InfiniBand . 14
3.3.3 OmniPath . 15

3.4 Memory . 15
3.4.1 High Bandwidth Memory . 15
3.4.2 Hybrid Memory Cube . 16

3.5 Consequences for SLATE . 17

4 Software Technology Trends 19
4.1 Standards . 19

4.1.1 C++ . 19
4.1.2 OpenMP . 26
4.1.3 OpenACC . 33
4.1.4 MPI . 47

4.2 Frameworks . 53
4.2.1 PaRSEC . 53
4.2.2 Legion . 57
4.2.3 DARMA . 61
4.2.4 Kokkos . 62
4.2.5 RAJA . 66

ii

4.3 Consequences for SLATE . 72

5 Matrix Layout Considerations 74
5.1 ATLAS Layouts . 74
5.2 MKL Packed GEMM . 76
5.3 GPU Batched GEMM . 77
5.4 Consequences for SLATE . 78

6 Algorithmic Considerations 80
6.1 LU . 80
6.2 LDLT . 82
6.3 QR/LQ . 83
6.4 Mixed Precision . 83

6.4.1 Linear Systems . 84
6.4.2 Other Algorithms . 84

6.5 Matrix Inversion . 86
6.6 Eigenvalues and SVD . 86

6.6.1 Singular Value Decomposition . 87
6.6.2 Symmetric Eigenvalue Problem . 88
6.6.3 Nonsymmetric Eigenvalue Problem . 89

6.7 Consequences for SLATE . 89

7 Conclusions 91

iii

List of Figures

2.1 Do you call linear algebra directly? . 3
2.2 To what extent do you rely on linear algebra? . 3
2.3 What linear algebra routines are you using? . 4
2.4 Which precisions are you using? . 4
2.5 What arithmetic are you using? . 4
2.6 Are you interested in extended precision? . 5
2.7 Are you interested in lower precision? . 5
2.8 What is the structure of your matrices? . 5
2.9 What are the properties of your matrices? . 6
2.10 What is the shape of your matrices? . 6
2.11 Are you solving a large number of small problems? . 6
2.12 What is your hardware target? . 7
2.13 Which API do you need? . 7

3.1 High Bandwidth Memory architecture . 16
3.2 Hybrid Memory Cube architecture . 16

4.1 Basic divide and conquer summation algorithm. 30
4.2 Task-recursive divide and conquer summation algorithm. 30
4.3 Offloading the task-recursive divide and conquer algorithm. 31
4.4 Serial implementation of a Mandelbrot set generation algorithm. 32
4.5 Parallel implementation of a Mandelbrot set generation algorithm 33
4.6 OpenACC abstract accelerator model. 36
4.7 OpenACC levels of parallelism. 37
4.8 A sample Jacobi iteration. 38
4.9 An example for the kernels directive. 39
4.10 An example for the combined parallel loop directive. 39
4.11 Jacobi iteration using the parallel loop directive. 40
4.12 Jacobi iteration using the kernels directive. 41
4.13 An example of a data region enclosing two parallel loops. 42
4.14 An example code that uses data clauses with array information. 43
4.15 Improving data locality for a parallelized Jacobi iteration. 43
4.16 An example of unstructured data scopes. 44
4.17 An example of the update directive. 45

iv

4.18 Asynchronous operations in OpenACC. 46
4.19 OpenACC interoperability using host_data regions. 46
4.20 OpenACC interoperability using device_ptr data clause. 47
4.21 Illustration of GPUDirect . 51
4.22 Inter-node communication with CUDA-aware MPI . 51
4.23 The PaRSEC framework. 53
4.24 Classic Cholesky factorization using loops and basic kernels. 54
4.25 PaRSEC Cholesky factorization based on JDF. 55
4.26 PaRSEC Cholesky factorization using Sequential Task Flow. 56
4.27 A Circuit Simulator in Legion pseudo code. 58
4.28 A Conjugate Gradient linear solver in Legion. 59
4.29 The structure of DARMA. 61
4.30 An example of DARMA code. 62
4.31 Example of the AccessHandleCollection construct. 62
4.32 Declaration of a multidimensional array in Kokkos. 63
4.33 Different mapping of the data layout for a CPU and a GPU in Kokkos. 64
4.34 Atomic exchange for arbitary data types in Kokkos. 65
4.35 Two-level parallel inner product in Kokkos . 66
4.36 A RAJA equivalent to a simple loop in C++. 67
4.37 Different encapsulations in RAJA. 68
4.38 IndexSet segments in RAJA. 71
4.39 Zone-to-node sum with two loop ordering options in RAJA. 72

5.1 Performance of sgemm_compute() on Xeon Phi. 77
5.2 Performance of Schur complement on NVIDIA Pascal. 78

v

List of Tables

3.1 Comparison of Memory Technologies. 17

4.1 Most significant OpenACC features. 34
4.2 Comparison of OpenACC and OpenMP standards. 34
4.3 OpenACC data clauses. 42

vi

CHAPTER 1

Preface

The Scalable Linear Algebra PACKage (ScaLAPACK) was released 22 years ago in 1995. To put that
into perspective, this was one year a�er MPI standard version 1.0 was released, and two years before
the OpenMP Fortran 1.0 speci�cation was released. The fastest machine on the TOP500 list was the
Japanese Numerical Wind Tunnel, with peak performance of 235.8 gigaFLOP/s. This was also the year
Microso� acquired the Mosaic from the National Center for Supercomputing Applications to build
Internet Explorer.

The past two decades witnessed tectonic shi�s in hardware technology followed by paradigm shi�s in
so�ware technology, as well as a plethora of algorithmic innovations in scienti�c computing. However,
no viable replacement for ScaLAPACK that would channel this technological progress into a robust
so�ware package emerged. The So�ware for Linear Algebra Targeting Exascale (SLATE) is meant to
be its replacement, and the objective of this document is to provide an overview of the cutting-edge
solutions required to accomplish that mission.

1

CHAPTER 2

ECP Applications Survey

In February 2017, the SLATE team circulated a survey to the Exascale Computing Project (ECP) applica-
tions teams to asses their needs for dense linear algebra functionality. Forty responses were collected—
twenty-�ve from the project’s PIs and co-PIs and ��een from other team members. Here, the responses
to the most important questions are summarized.

2.1 Results

2

2.1. RESULTS CHAPTER 2. ECP APPLICATIONS SURVEY

LAPACK 25
ScaLAPACK 11

BLAS 26
PBLAS 7

PLASMA 3
MAGMA 8

Figure 2.1: Is your application directly calling any of the following packages? Mark all that apply.

completely 7
heavily 13

somewhat 13
not at all 7

Figure 2.2: To what extent does your application rely on dense or band linear algebra operations?

3

2.1. RESULTS CHAPTER 2. ECP APPLICATIONS SURVEY

BLAS 29
linear systems 21

least squares 12
singular values 12

eigenvalues 19
low rank approximation 12
updating or downdating 5

computing an inverse 13
Other 8

Figure 2.3: What linear algebra routines are you using? Mark all that apply.

single 18
double 32

Figure 2.4: Which precisions are you using? Mark both if applicable.

real 36
complex 16

Figure 2.5: What arithmetic are you using? Mark both if applicable.

4

2.1. RESULTS CHAPTER 2. ECP APPLICATIONS SURVEY

yes 13
no 23

Figure 2.6: Are you interested in extended precision, e.g., double-double or triple-�oat?

yes 15
no 17

Figure 2.7: Are you interested in lower precision, e.g., half precision (16-bit �oating point).

full 25
band 13

Other 14

Figure 2.8: What is the structure of your matrices? Mark all that apply.

5

2.1. RESULTS CHAPTER 2. ECP APPLICATIONS SURVEY

general 26
symmetric / Hermitian 16

positive de�nite 8
Other 3

Figure 2.9: What are the properties of your matrices? Mark all that apply.

square 21
roughly square 10
tall and skinny 16
short and wide 13

Other 4

Figure 2.10: What is the typical shape of your matrices? Mark all that apply.

yes - all of the same size 10
yes - di�erent sizes 7

no 14

Figure 2.11: Are you solving a large number of small independent problems? (matrices smaller than
500x500)?

6

2.1. RESULTS CHAPTER 2. ECP APPLICATIONS SURVEY

single core 19
single node multicore 23

single GPU 15
single node +GPUs 18

dist. mem. [+GPUs] 22
Other 6

Figure 2.12: You need dense linear algebra routines for what target? Mark all that apply.

C 19
C++ 26

FORTRAN 77 11
Fortran 90/95/2003/... 14

Other 4

Figure 2.13: Which API do you need? Mark all that apply.

7

2.2. CONSEQUENCES FOR SLATE CHAPTER 2. ECP APPLICATIONS SURVEY

2.2 Consequences for SLATE

This summary is based on the results of the survey as well as follow-up interaction with the applications
teams. Here we summarize the main observations.

Impact: Dense linear algebra is ubiquitous in Department of Energy (DOE) ECP applications. 80% of
respondents indicated reliance on Linear Algebra PACKage (LAPACK) and basic linear algebra
subprograms (BLAS), 35% reliance on ScaLAPACK, and 20% reliance on parallel basic linear algebra
subprograms (PBLAS). The newer libraries, Parallel Linear Algebra for Scalable Multi-core Archi-
tectures (PLASMA) and Matrix Algebra on GPU and Multicore Architectures (MAGMA), have much
smaller traction. While some have adopted MAGMA, the adoption of PLASMA is minimal. Half
of the respondents indicated that their applications rely completely or heavily on dense or band
linear algebra operations. Only 20% of respondents indicated no need for such operations at all.

While traditional DOE applications—relying heavily on partial di�erential equation (PDE) solvers
(fusion, combustion, wind turbines, stellar explosions)—use little dense linear algebra and mostly
indirectly, there are a number of applications in quantum mechanics, computational chemistry,
particle physics, and material science that rely heavily on dense linear algebra so�ware (QMCPACK,
NWChemEx, General Atomic and Molecular Electronic Structure System [GAMESS], Exascale
Atomistic capability for Accuracy, Length and Time [EXAALT]). Naturally, dense linear algebra
routines are used heavily by sparse direct solvers, e.g., FBSS (STRUMPACK).

Types of Problems: The needs of the ECP applications basically span the coverage of BLAS and LAPACK.
75% of respondents indicated the need for BLAS, 50% indicated the need for linear solvers and
eigenvalue solvers, and 30% indicated the need for least squares solvers, singular value solvers,
low-rank approximations, and constructing an inverse of a matrix. There is also some need for
updating and downdating capabilities.

80% of respondents deal with full matrices and 40% of respondents deal with band matrices. At
the same time, 80% of respondents deal with general (non-symmetric) matrices, 40% deal with
symmetric matrices, and 30% deal with symmetric positive de�nite matrices. Also, while in most
cases the matrices are square (60%), there is also a strong need for operations on matrices that are
tall and skinny, and on matrices that are short and wide (50% and 35% respectively). This, again,
con�rms the need for supporting the fairly wide range of matrix shapes and properties—close to
the coverage of BLAS and LAPACK.

Target Hardware: There seems to be a universal agreement that all types of architectures should be
supported, including homogeneous multi-core systems as well as heterogeneous, accelerated
systems, and support for multiple accelerators per node is desired. There also seems to be a
universal agreement that distributed memory capabilities are a must, although we only heard a
single request for actual exascale capabilities. The NWChemEx team expressed interest in dense
solvers capable of dealing with O(1M) matrices.

Arithmetic and Precision: The majority of applications require double precision, while about half also
use single precision. All need real arithmetic, while about half needs complex arithmetic. About a
third indicated interest in extended precision (double-double or triple-�oat), while almost half
indicated interest in lower precision, e.g., 16-bit half precision. This is a clear indicator that there is a
strong need for providing �exibility going beyond the four basic precisions supported by LAPACK,
ScaLAPACK, PLASMA, and MAGMA.

Desired APIs: Basically, APIs for all common HPC programming languages are needed: C, C++, legacy
Fortran, and modern �avors of Fortran. At the same time, there is signi�cant interest in C++
interfaces. 75% of respondents indicated the need for a C++ API.

Batched Operations: There is a signi�cant demand for batched dense linear algebra operations, i.e.,
operations on large numbers of small matrices. The two cases—one where all the matrices in the

8

2.2. CONSEQUENCES FOR SLATE CHAPTER 2. ECP APPLICATIONS SURVEY

batch are of the same size and the other where the batch contains matrices of di�erent sizes—seem
to be equally important. Obviously, this is a node-level capability.

In summary, the SLATE so�ware needs to:

• serve as a replacement for BLAS/PBLAS and LAPACK/ScaLAPACK,

• support distributed memory systems with accelerators,

• provide a C++ API in addition to traditional APIs,

• facilitate the use of other precisions beyond the traditional set of four.

Further, the results indicate that the project should:

• standardize the C++ APIs of BLAS and LAPACK,

• standardize the API for batched BLAS and LAPACK operations.

9

CHAPTER 3

Hardware Technology Trends

3.1 UpcomingMachines

The Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) is a joint procurement activity
among three of the US Department of Energy’s (DOE) National Laboratories. It was launched in 2014 to
build state-of-the-art high-performance computing technologies that are essential for supporting U.S.
national nuclear security and are key tools used for technological advancement and scienti�c discovery
[61]. The Argonne Leadership Computing Facility (ALCF) will contract with Intel and Cray to build
“pre-exascale” systems, while Lawrence Livermore National Laboratory (LLNL) and the Oak Ridge
Leadership Computing Facility (OLCF) will contract with IBM. This con�guration of systems will enable
explorations of architecture diversity along the path to exascale computing [63, 69].

The ALCF CORAL system, named Aurora, is built on the foundation of Intel’s HPC scalable system
framework. Aurora is designed to provide peak performance of 180 petaFLOP/s from >50,000 nodes
while consuming 13 MW of power [69]. Argonne and Intel have also provided an interim system, called
Theta, which is enabling ALCF users to transition their applications to the new technology [63, 68].

The LLNL CORAL system, named Sierra, aims to provide a 120–150 petaFLOP/s peak. The Sierra system
will include (1) compute nodes: POWER Architecture Processor, NVIDIA Volta, NVMe-compatible PCIe
800 GB SSD, greater than 512 GB DDR4 + HBM (high bandwidth memory), and coherent shared memory,
(2) compute racks: standard 19-inch with warm-water cooling, and (3) the compute system: 2.1–2.7 PB
memory, 120–150 petaFLOP/s, and 10 MW. The Global Parallel File System will have 120 PB usable
storage and 1.0 TB/s bandwidth [73].

The OLCF CORAL system, named Summit, is planned to deliver more than �ve times the computational
performance of OLCF’s Titan’s 18,688 nodes using only approximately 3,400 nodes. Each Summit
node will contain multiple IBM POWER9 CPUs and NVIDIA Volta GPUs all connected via NVIDIA’s
high-speed NVLink and a huge amount of memory. Each node will have over half a terabyte of coherent
memory (HBM + DDR4) addressable by all CPUs and GPUs—plus an additional 800 gigabytes of NVRAM
[39].

10

3.2. PROCESSING CHAPTER 3. HARDWARE TECHNOLOGY TRENDS

3.2 Processing

3.2.1 GPUs

Graphical Processing Units adopt a many-core architecture. GPUs typically pack thousands of very
lightweight processing cores rather than tens of large, powerful cores (as in modern multi-core CPUs
and the Xeon Phi architecture). Generally, a GPU thread executes slower than a CPU thread. However,
their slow single-thread execution is compensated by their ability to execute orders of magnitude more
concurrent threads than modern CPUs. Therefore, GPUs usually outperform CPUs in executing kernels
that include large amounts of parallelism, and where throughput matters more than latency.

Since the Fermi product line, GPU compute cards have always consisted of tens of streaming multi-
processors (SMs). Each SM consists of single-precision CUDA cores, double-precision units, texture
units, warp schedulers, special function units, and fast memory levels (register �le, shared memory,
and sometimes a constant read-only memory). Through the Fermi, Kepler, and Maxwell architectures,
the number of SMs was relatively low (typically 8–15), and the main memory was an o�-chip graphics
double data rate (GDDR) memory. The Pascal architecture [1] brought some drastic changes to these two
aspects. First, a Pascal GPU packs 56–60 SMs, but the number of cores per SM is relatively low (e.g., 192
cores in Kepler vs. 64 cores in Pascal). In addition, the main memory is now a stacked memory architec-
ture (High Bandwidth Memory [HBM2]) that brings substantial improvement in memory bandwidth
(e.g., ∼250 GB/s for Kepler vs. 720 GB/s for Pascal). Over the generations, several other features have
been added, such as atomic operations, dynamic parallelism, Hyper-Q, warp shu�e instructions, and
improved power e�ciency.

The latest commercially available GPU adopts a Pascal architecture [1]. A Pascal GPU (P100) o�ers several
architectural enhancements, summarized below:

1. Improved performance: the P100 GPU is capable of delivering up to 5.3/10.6 teraFLOP/s of
performance. For double precision, this is a more than 4× improvement over the last FP64-capable
GPU (Kepler).

2. Half-precision arithmetic: The Pascal P100 GPU is the �rst NVIDIA GPU to support half-precision
arithmetic, with up to 21.2 teraFLOP/s. This new �oating-point standard is particularly important
for deep learning and AI applications.

3. High Bandwidth Memory (HBM2): the P100 chip incorporates a stacked memory architecture,
with up to 720 GB/s bandwidth. Unlike the previous generations, this is the �rst NVIDIA GPU to
support error-correcting code (ECC) on the hardware level. Previous generations enable a so�ware
ECC, which consumes about 12–15% of the available memory bandwidth on average.

4. NVLink: a new high-speed interconnect that can deliver at least 5× the speed of the PCIe intercon-
nect.

5. The P100 GPU is the �rst to support FP64 atomic operations on the hardware level.

6. Compute preemption at an instruction level granularity, rather than a thread block granularity in
the previous generations.

7. A 2× improvement in the remote direct memory access (RDMA) bandwidth, which is fundamentally
important for multi-GPU con�gurations.

The anticipated Volta GPU brings even more performance and power e�ciency than the P100 GPU.
While a detailed description of the V100 architecture is yet to come, these are the features announced
for the upcoming GPU [2]:

11

3.2. PROCESSING CHAPTER 3. HARDWARE TECHNOLOGY TRENDS

1. Improved performance: the Tesla V100 GPU is at least 1.4× faster than the P100 GPU in many
computational workloads and benchmarks. This includes matrix multiplication (FP32 and FP64),
fast Fourier transform (FFT), and the STREAM benchmark.

2. Faster interconnect: the Volta NVLink delivers up to 300 GB/s, which is almost twice as fast as the
bandwidth of the Pascal NVLink.

3. A new instruction set architecture (ISA) with double the number of warp schedulers as Pascal. The
Volta GPU incorporates a larger and faster uni�ed L1 cache/shared memory. Unlike Pascal, which
has a separate 64KB shared memory and a slower 24KB L1 cache, the V100 GPU has a uni�ed
128KB L1 cache/shared memory. The L1 cache is, therefore, as fast as shared memory. The latter is
also con�gurable up to 96KB. The V100 GPU also has 6MB of L2 cache (against 4MB on the P100
GPU).

4. Independent thread scheduling: All previous GPUs had a single program counter (PC) and stack for
a warp of 32 threads. As per the Volta GPU, each thread has its own PC and stack. It also supports a
new synchronization mechanism among divergent threads in the same warp.

5. As a result of the independent thread scheduling, the volta GPU, along with CUDA 9.0, depre-
cates the previous shu�e and compares intrinsics, and replaces them with other intrinsics that
synchronize across a warp.

6. Tensor acceleration: the V100 GPU brings eight tensor cores per multiprocessor. These cores
perform mixed-precision matrix math (FP16/FP32) with signi�cant speedups compared to the
P100 GPU. With up to 120 teraFLOP/s, the tensor cores are of particular importance for deep
learning applications.

7. The Volta GPU comes with CUDA 9.0, bringing new functionality such as cooperative thread groups,
synchronization across thread blocks, and the elimination of implicit warp synchronization.

3.2.2 Xeon Phi

Knights Landing (KNL) is the codename for the second generation of Intel’s Xeon Phi many integrated
core (MIC) architecture. The Theta system is a pre-exascale machine being installed and put into early
production at Argonne National Lab by the ALCF. Theta utilizes Intel’s Knights Landing along with
the Cray Aries interconnect via the XC40 supercomputer architecture. The ALCF Theta XC40 system
achieves a nearly 10 petaFLOP/s peak with 2,624 nodes. Theta contains the 64-core 7230 KNL variant.
The 7230 KNL chip has 64 cores that are organized into 32 tiles, with 2 cores per tile, connected by a mesh
network and with 16 GB of in-package multichannel DRAM (MCDRAM) memory. The core is based
on the 64-bit “Silvermont” Atom Core (1.40 gigahertz [GHz]) which has 6 independent out-of-order
pipelines, two of which perform �oating-point operations [68].

The 7230 and 7250 KNL variants utilize 14 nanometer (nm) lithography—similar to the “Broadwell”
Xeon E5 and E7 server processors—to achieve 3.05 teraFLOP/s peak double-precision. The 68 cores on
the 7250 KNL chip are also based on the “Silvermont” microarchitecture and support four execution
threads. Both the 7230 and 7250 KNL variants have two AVX-512 vector processing units per core. The
cores are tiled in pairs that share 1MB of Level 2 (L2) memory. The tiles of both variants are linked using
a 2-D mesh interconnect that also connects to the 384 GB DDR4-2400 memory (115.2 GB/s) through two
controllers. The cores are also connected to 16GB of MCDRAM, providing up to 490 GB/s of sustained
bandwidth through the 2-D mesh interconnect. The memory bandwidth per KNL core is approximately
11 GB/s for small thread counts, while its predecessor the Knights Corner only provided 3.6 GB/s [54].

Knights Hill (KNH) is the codename for the third generation of Intel’s Xeon Phi MIC architecture. Little
has been publicly announced about the Knight’s Hill processor beyond the plan to manufacture it with a
10 nm lithography process (SC 14) [69]. ALCF’s Aurora, a supercomputer capable of 180-petaFLOP/s

12

3.2. PROCESSING CHAPTER 3. HARDWARE TECHNOLOGY TRENDS

planned to be built for Argonne National Lab in 2018, was originally announced as utilizing KNH
processors as part of the CORAL joint procurement activity [63]. The US Department of Energy �scal
year 2018 budget request is not speci�c regarding the Aurora supercomputer [62].

3.2.3 POWER

The Summit is OLCF’s next �agship supercomputer. It will consist of 3,400 nodes, each featuring 2 IBM
POWER9 CPUs and 6 NVIDIA Volta GPUs connected by NVLink and 512GB high bandwidth memory
addressable by both CPUs and GPUs and 800GB of NVRAM.

For developers transitioning to Summit, OLCF provides the Summitdev workshop with node architec-
tures one generation earlier than Summit—the 2 IBM POWER8 CPUs with NVLink and 4 NVIDIA Tesla
P100 GPUs. The IBM POWER8 [74] is a reduced instruction set computer (RISC) microprocessor from
IBM built using IBM’s 22-nm technology. Compared to previous generation IBM POWER7 processors,
the POWER8 processor is an improvement both in single-thread performance and in the number of
cores. The IBM POWER8 processor features up to 12 cores per socket, 8 threads per core, as well as
32 KB instruction cache, 64 KB L1 data cache, 512 KB L2 cache, and 8 MB L3 cache per core. Each core
can issue up to ten instructions per cycle, and complete eight instructions per cycle. As for its functional
units, the POWER8 has two independent �xed-point units (FXU), two independent load-store units
(LSU) plus two more load units, and two independent �oating-point vector/scalar units (VSU). The
maximum double-precision �oating-point issue rate is four �oating multiply add instructions (fmadds)
per cycle; the maximum single-precision rate is 8 fmadds per cycle. The single instruction, multiple data
(SIMD) width is two for double precision and four for single precision. Thus, the peak double-precision
performance is Freq× 8× #cores. For a 3.5 GHz frequency, 20-core node, the peak double-precision
performance is 560 gigaFLOP/s.

The upcoming IBM POWER9 CPUs [72] will be built using 14-nm Fin Field-e�ect transistor (FinFET)
technology. It will come in four variants with either (1) two sockets optimized (scale-out [SO]) or multiple
sockets optimized (scale-up, [SU]) con�gurations, (2) 24 simultaneous multi-threading 4 cores (SMT4),
or 12 SMT8 cores. Compared to a POWER8 chip with the same SMT, frequency, and core count
con�guration, the POWER9 socket achieves 1.5× �oating-point performance, 2.25× graph analytics
performance, and something between 1.5× and 2.25× for commercial, integer, scripting, and business
intelligence workloads [79]. For HPC workloads, POWER9 is also a powerful acceleration platform
equipped with NVLink 2.0 and various high-bandwidth low-latency interconnects (PCIe G4, Coherent
Accelerator Processor Interface [CAPI] 2.0, and New CAPI) to connect to accelerators such as application-
speci�c integrated circuits (ASICs) and �eld-programmable gate arrays (FPGAs).

3.2.4 ARM

Recently, many ARM vendors have been trying to introduce server-class ARM chips to challenge Intel’s
Xeon in datacenter servers as Japan, China, and Europe seem to be interested in an ARM-based exascale
supercomputer. Products in the server-class ARM processors include Cavium with its high core count
ThunderX and ThunderX2 lines. The current production chips, ThunderX, features up to 48 cores
per socket in a two-socket con�guration using 28-nm process technology, clocked at up to 2.5 GHz
(though 2.0 GHz is most prevalent). The next generation ThunderX2 promises 2–3× improvement in
performance and will be etched using a 14-nm FinFET process. Architectural changes from ThunderX
to ThunderX2 probably include larger caches, out-of-order pipelines, and more cores (56) per socket,
clocked at 3.0 GHz. ThunderX2 is also purported to be much more power e�cient than ThunderX in
addition to having twice the high bandwidth memory.

To cater to the HPC market, the ARMv8-A architecture was extended with vector instructions. This was
announced by ARM at the HotChips’16 conference [76]. The speci�cs of the Scalable Vector Extension

13

3.3. COMMUNICATION CHAPTER 3. HARDWARE TECHNOLOGY TRENDS

(SVE) were later speci�ed in more detail [77]. The SVE signi�cantly enhances the vector processing
capabilities of AArch64 execution in the ARM architecture in a �exible way—unmodi�ed binary code
can e�ciently run on future CPUs with longer vector lengths (128–2048 bits in 128-bit increments). This
is called the Vector Length Agnostic programming model. Compared to previous media processing-
focused SIMD instructions (e.g., the ARM NEON, or ARMv7 Advanced SIMD), the SVE introduces
scalable vector lengths, gather load and scatter store, per-lane predication, and some other features to
make it a better compiler target and allow increased parallelism extraction for HPC workloads. One
particularly interesting property in SVE is its vector length agnostic, which increases its future proofness.
Traditionally, SIMD is incorporated into an ISA whenever the vector length is increased. We have seen
this in x86 ISA with a handful of extensions: MMX, 3DNow!, SSE, SSE2, SSE3, SSSE3, SSE4, AVX, AVx2,
AVX512). The SVE, conversely, does not have to be revised every time the vector length is increased.
In addition, portability across di�erent microarchitectures is improved with CPUs featuring di�erent
vector lengths with di�erent tradeo�s among cost, power, area, and performance. Moreover, SVE has
many other advanced vector-processing functions that make vectorization more applicable and e�cient.
As a result, SVE can achieve better speedups than NEON, even with the same vector lengths for many
applications and notably dense linear algebra. It also allows CPU designers to �nd their optimum vector
lengths depending on individual objectives and constraints. The SVE will be supported by lead partners
of ARM such as Fujistu for its Post-K supercomputer. It is unclear whether Cavium’s ThunderX2 will
support SVE.

3.3 Communication

3.3.1 NVLINK

NVLink is an HBM technology developed by NVIDIA in response to the slow communication via the PCIe
interconnect. Current PCIe technology (Gen. 3.0, 16 lanes) has a theoretical peak bandwidth of 16 GB/s.
With a signi�cant portion of the computing power being delivered by the coprocessor, communication
via this port quickly becomes the bottleneck when running distributed codes on a GPU-accelerated
cluster. NVIDIA’s NVLink-enabled P100 GPUs feature four NVLink connections, each providing a peak
bandwidth of 20 GB/s per direction. The NVLink technology can be used in di�erent con�gurations
as well. Connecting all NVLink lanes to the CPU augments the host-accelerator bandwidth by another
80 GB/s per direction, which gives the GP100 in total 160 GB/s of bidirectional bandwidth. Alternatively, a
peer-to-peer con�guration uses some of the lanes to improve the GPU-to-GPU communication. NVLink
also boasts up to 94% bandwidth e�ciency.

Aside from the massive bandwidth of NVLink, it is also designed to enable the clustering of GPUs and
CPUs for them to appear as a single computing unit. NVLink enables this abstraction by supporting
load/store semantics [40], which allow programmers to directly read/write peer GPUs’ local memory
and the CPU’s host memory all in a common shared memory address space. Furthermore, remote
atomic memory operations are supported on peer GPUs for fast synchronizations. With the uni�ed
memory space in CUDA 8 and page-faulting hardware in the GP100 GPU, NVLink thus pushes forward
something like a Symmetric Multiprocessing (SMP) capability for CPUs to GPU accelerators (and to
CPUs that support NVLink). In fact, the NVIDIA’s DGX-1 server clusters two CPUs with eight P100 GPUs,
with the GPU↔CPU links being PCIe and the GPU↔GPU link being NVLink.

3.3.2 In�niBand

In�niBand originated in 1999 from the merger of two competing technologies: Future input/output
(I/O) and Next Generation I/O. Companies participating in the initial development included: Compaq,
Dell, HP, IBM, Intel, Microso�, and Sun. The �rst speci�cation of the architecture was released in 2000.

14

3.4. MEMORY CHAPTER 3. HARDWARE TECHNOLOGY TRENDS

The vision was that In�niBand would replace PIC for the I/O and Ethernet for the interconnect. This
plan was disrupted by the burst of the dot-com bubble. Mellanox shipped the �rst 10 Gbit/s devices in
2001.

Currently, In�niBand is the most commonly used interconnect for supercomputers. In�niBand adapters
and switches are made by Mellanox and Intel, and Oracle is also entering the market with its own
hardware. The important feature from an HPC standpoint is that In�niBand provides RDMA capabilities
for low CPU overhead. The current technology, In�niBand EDR, provides around 24 Gbit/s of theoretical
e�ective throughput per link (1×). Links can be aggregated, and most systems use a 4× aggregate for the
total theoretical e�ective throughput of close to 100 Gbit/s.

3.3.3 Omni-Path

Omni-Path is an interconnection technology from Intel developed to address scaling weaknesses cur-
rently impeding HPC. From a commercial standpoint, its main competition is In�niBand. Omni-Path
has its roots in two acquisitions: acquisition of the In�niBand technology from QLogic, and acquisition
of the Aries interconnect technology from Cray. As a result, Omni-Path combines the QLogic True Scale
architecture and its associated so�ware stack with high performance features of Cray’s Aires. Notably, it
is compliant with the Open Fabrics Alliance (OFA) stack for RDMA fabrics.

The current generation of Omni-Path products delivers 100 Gbit/s of bandwidth per port and port-to-
port latencies comparable to In�niBand EDR. Notably, Intel already ships Xeon Phi processors with
integrated Omni-Path fabric. Intel also di�erentiates the technology from other RDMA fabrics by
pointing to a set of unique features, including tra�c management and robust error detection, e.g.:

Adaptive Routing — monitors the network and selects the least congested path to rebalance the load.
While this is not a unique solution, Intel points out advantages of its implementation, which are
based on cooperation between the fabric manager and the switch ASICs.

Dispersive Routing — distributes tra�c across multiple paths instead of sending all packets from source
to destination via a single path. This promotes e�ciency through redundancy, as well as better
load balancing.

Tra�c FlowOptimization — breaks up variable length packets into �xed size-containers for transmit-
ting over the link. At the same time, higher priority containers can be inserted into the stream
of lower priority containers, which allows the reduction of latency variation high-priority tra�c
experiences in the presence of low-priority tra�c.

3.4 Memory

3.4.1 High Bandwidth Memory

During the last few years, memory interfaces have been undergoing major changes, and a number of
new technologies are becoming available in HPC architectures. The basic technologies in previous
generation’s memory interface (DDR4) were de�ned in 2008, and even though there have been power
and performance updates, these changes have been incremental. The maximum bandwidth for 64-bit
DDR4 is approximately 26 GB/s, which is be insu�cient for many applications on highly multi-core
architectures.

HBM is a memory interface promoted by AMD, NVIDIA, and Hynix. HBM is a new type of memory
architecture with low power consumption and ultra-wide communication lanes. It uses vertically-stacked

15

3.4. MEMORY CHAPTER 3. HARDWARE TECHNOLOGY TRENDS

memory chips interconnected by microscopic wires called through-silicon vias (TSVs) (Figure 3.1).

Figure 3.1: High Bandwidth Memory architecture (source: http://www.amd.com/en-us/innovations/
software-technologies/hbm).

HBM’s primary purpose is for use in graphics cards, and it is designed to serve as a replacement for
GDDR5, which is the current graphics memory interface standard. The HBM interface is intended to
decrease power consumption, enable more dense circuitry for the higher bandwidth required today,
and to allow the memory interface to be attached o�-chip rather than requiring on-chip integration.

HBM can achieve a bandwidth of 100+ GB/s per memory stack, whereas GDDR5 only got up to 28 GB/s
per chip. In terms of energy consumption, HBM is a substantial improvement when measured in
bandwidth/watt compared to GDDR5. HBM achieves 35+ GB/s of bandwidth per watt, whereas GDDR5
achieves 10.66 GB/s of bandwidth per watt. The newer HBM-2 standard can achieve even better band-
width and power e�ciency.

3.4.2 Hybrid Memory Cube

The Hybrid Memory Cube (HMC) interface is managed by a consortium, the participants of which
include Altera (Intel), ARM, IBM, Micron Technology, Open-Silicon, Samsung, SK Hynix, and Xilinx,
along with a large number of adopters.

HMC architecture consists of stacked memory chips that are bonded together using TSVs in conjunction
with a high-speed logic layer (Figure 3.2).

Figure 3.2: Hybrid Memory Cube architecture (source: http://wccftech.com/
micron-hybrid-memory-cube-3-0-specification/).

One of the goals of HMC is to remove the duplicated control logic of modern memory systems, simplify
the design, and connect the entire stack in a 3-D con�guration—all using a single control logic layer
to handle the memory management. The logic layer in HMC controls all aspects of the memory, and

16

http://www.amd.com/en-us/innovations/software-technologies/hbm
http://www.amd.com/en-us/innovations/software-technologies/hbm
http://wccftech.com/micron-hybrid-memory-cube-3-0-specification/
http://wccftech.com/micron-hybrid-memory-cube-3-0-specification/

3.5. CONSEQUENCES FOR SLATE CHAPTER 3. HARDWARE TECHNOLOGY TRENDS

the host memory control is simpli�ed to handle requests and responses. The HMC logic layer provides
error detection and management capabilities, atomic operations, reliability and availability features, and
scale-out device-chaining capabilities.

Table 3.1: Comparison of Memory Technologies.

Memory HMC Gen3 HBM-2

Size 8 GB 8 GB
Max Bandwidth 480 GB/s 256 GB/s
Expandable Yes, chain modules No
Power Higher Lower
Target HPC, networking Graphics, networking,

small form-factors
Bene�ts High bandwidth; scala-

bility; power e�ciency
High bandwidth; scala-
bility; power e�ciency

Cost High Medium

A single HMC module can provide more than 15× the performance of a DDR3 module, utilizing 70
percent less energy per bit than DDR3 DRAM technologies, and is contained in 90 percent less space.

The (HMC) design has a higher power consumption than the HBM design, but achieves a higher band-
width. Putting the entire control logic into the HMC allows modules to be chained together to increase
capacity.

3.5 Consequences for SLATE

The hardware technology trends, described in this chapter, have signi�cant consequences for dense
linear algebra in general and the SLATE project in particular. Here we summarize the most impactful
developments:

Large Numbers of Cores: The number of CPU cores per node is going to be large. Presently, a single
Xeon Phi is already at the level of 72 cores; one ThunderX ARMv8 system is at the level of 96
cores. As this trend continues, we will likely have hundreds of cores per node by the time we reach
exascale. However, it is still the rule of thumb that the best performance can be extracted from
ScaLAPACK by running one process per core. It should be clear now that this is a completely
unsustainable direction for any numerical so�ware. While message-passing is the paradigm of
choice for the foreseeable future, node-level parallelism has to be addressed with some form of
multithreading.

Omnipotent GPUs: GPUs are here to stay, and GPU-accelerated machines will have virtually all of
their performance on the GPU side. A single node of the Summit supercomputer is expected to
have 40 teraFLOP/s of GPU performance. Further, it is likely to have about 1 teraFLOP/s of CPU
performance. This means that only 2.5% of raw performance comes from CPUs. A gap of such
magnitude requires a fundamentally di�erent approach to designing numerical so�ware, as the
process can no longer be framed in terms of “o�oading” work to GPUs. Instead, new packages
have to be built from the ground up with a GPU-centric mindset.

Starved Communication: Communication is getting worse. Consider the following: The Titan super-
computer has node bandwidth of 6.4 GB/s and node peak performance of around 1.4 gigaFLOP/s,
while the Summit supercomputer is advertised at 23 GB/s of node bandwidth and 40 teraFLOP/s
of node peak performance [5]. So, while the bandwidth increases about 3.6 times, the node peak

17

3.5. CONSEQUENCES FOR SLATE CHAPTER 3. HARDWARE TECHNOLOGY TRENDS

performance increases more than 28 times, which means that the communication to computation
ratio is about 8 times worse (basically one order of magnitude). This makes bandwidth a very
scarce resource. While various techniques can be used to deal with the latency, little can be done
about the lack of bandwidth. This means that SLATE will have to be very conservative in its use of
bandwidth, stay away from any techniques of dynamically rebalancing work, and rely on statically
partitioning matrices among distributed memory nodes. Dynamic scheduling is only applicable at
the node level.

Complex NodeMemories: SLATE will have to deal with two-fold memory complexity. First, a GPU-
accelerated node is basically a globally-addressable distributed memory system. In terms of
programmability, memory tra�c can be handled by a so�ware coherency protocol. This does not
change the fact that data transfers will have to be carefully orchestrated for good performance.
Second, the introduction of 3-D-stacked memories creates an extra level of memory on the CPU
side, with cache-like appearances, but no hardware cache coherency protocol. While low-level
memory management may not be within the scope of SLATE, SLATE needs to utilize data layout
that does not handicap memory motion to and from GPUs, or between traditional RAM and 3-D
memory. Speci�cally, the ScaLAPACK matrix layout may need to be retired as it is not particularly
friendly to transfers through memory hierarchies.

In summary, the SLATE so�ware needs to:

• expose work in large chunks to be able to saturate large numbers of CPU cores and/or multiple
GPU devices per node,

• be extremely conservative it its use of network bandwidth, refrain from dynamic work migration
between nodes, and

• o�er an alternative to the traditional matrix layout that will streamline memory management and
messaging.

18

CHAPTER 4

Software Technology Trends

The U.S. DOE has identi�ed performance portability as a priority design constraint for pre-exascale as
well as upcoming exascale systems [3, 4]. The development of parallel so�ware that is portable across
architectures can be provided through the use of standard APIs, e.g., OpenMP, OpenACC, and the
Message Passing Interface (MPI); standardized language features like co-arrays and DO CONCURRENT
from the Fortran standard [70]; or new parallelization features [52] proposed for inclusion in the C++17
standard, etc. However, because the standardizations and e�ciently implementing them for high-
performance are very slow processes, many of these features remain inadequate for performance
portability, especially in terms of accelerator programming with heterogeneous compute capabilities
and deep memory hierarchies. To address this, various programming environments and frameworks
have been developed on top of standards as well, e.g., PaRSEC, Legion, Distributed Asynchronous
Resilient Models and Applications (DARMA), Kokkos, and RAJA. Still, performance portability remains a
major challenge. Therefore, it is necessary to understand, explore, and assess the current standards—as
well as environments—in order to select the best programming models and practices to maximize
performance portability, productivity, sustainability, and to balance their trade-o�s for the development
of the SLATE linear algebra library for exascale computing.

4.1 Standards

4.1.1 C++

Historically speaking, ScaLAPACK, PBLAS, and BLACS have been written in a combination of FORTRAN
77 and C (ANSI and K&R versions). The complexities of modern hardware and so�ware systems for
HPC necessitated contemporary programming languages to ease the development process and shi� the
burden of common development tasks onto the so�ware stack and the accompanying tool chain.

A quickly-increasing set of scienti�c applications relies on a mix of programming languages; thus, linking
multiple language runtimes has become a commonplace. C++ has become a prevalent implementation

19

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

language for large scienti�c so�ware collections such as Trilinos, and, as a consequence, is an indispens-
able part of large and scalable applications that are of great importance to the national defense and
energy agendas.

As a somewhat arbitrary boundary, we choose to focus here on the transition from C+03 to C++11. The
former was mostly a bug-�x release of the C++98 standard that addressed a large number of defect
reports. The latter, on the other hand, slipped a largely aspirational deadline in the 2010s and ultimately
landed almost a decade a�er the standard preceding it.

Even today, C++11 is not universally implemented by all compilers. The prominent examples are vendor
compilers that o�en substantially lag behind in features. Namely, IBM’s XLC tool chain is notoriously
conservative, and NVIDIA’s compiler (from CUDA 8 as of this writing) still misses some features to make
it C++11-complete. These are among the targeted compilers—we must therefore to take this situation
into consideration.

A defensive strategy that selects a C++ feature set to be used throughout SLATE should be developed.
To that end, we might consider a two-compiler strategy whereby both performance and programmer
productivity are addressed. Ideally, as the project progresses, support for modern features will grow
such that workarounds can be replaced with more legitimate solutions.

In the following subsections we describe the modern C++ features most relevant to the development of
SLATE.

Overloading

C++ allows multiple functions to have the same name as long as they can be di�erentiated by argument
types. For instance, a single gemm function with versions for �oat, double, complex-�oat, complex-double,
etc., instead of multiple type-speci�c variants, e.g., sgemm, dgemm, cgemm, zgemm, etc. This is crucial for
templating, as all function calls must be generic.

Templates

C++ templates reduce the complexity of programming by implementing a routine once for a generic
type, which can then be automatically instantiated for speci�c types such as single, double, half, or quad
precision. Existing LAPACK, MAGMA, and PLASMA so�ware involves either hand coding four versions
(s, d, c, z) of each routine, or coding the double-complex version and using a search-and-replace script
to crudely automate conversion to other precisions. Templates fully automate this process and ensure
type safety.

When a template is instantiated for a speci�c type, all the operations and functions must apply to that
type. In numerical so�ware, this o�en involves adding no-op versions of functions. For instance, conj(x)
when x is double simply returns x.

Traits

Traits is a technique of de�ning types and parameters based on the type in templated code. For instance,
the result of norm should be �oat for both float and complex<float>, as demonstrated in this example:

1 template < typename T >
2 class Traits
3 {
4 public:
5 // by default , norm is same type: float => float , ...
6 typedef T norm_type;
7 };

20

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

8
9 template < typename baseT >

10 class Traits < std::complex <baseT > >
11 {
12 public:
13 // for complex , norm is base type: complex <float > => float , ...
14 typedef baseT norm_type;
15 };
16
17 template < typename T >
18 typename Traits <T>:: norm_type max_norm(int n, T* x)
19 {
20 typename Traits <T>:: norm_type norm = 0;
21 for (int i = 0; i < n; ++i) {
22 norm = std::max(norm , std::abs(x[i]));
23 }
24 return norm;
25 }

Expression Templates

A simple C++ Vector class implementation would require intermediate temporary arrays to evaluate an
expression such as:

1 Vector x(n), y(n);
2 x = 1.2*x + 2.0*y;

It would e�ectively become
1 tmp1 = 1.2*x;
2 tmp2 = 2.0*y;
3 tmp3 = tmp1 + tmp2;
4 x = tmp3;

Expression templates were developed as a technique to evaluate these kinds of expressions e�ciently,
without any intermediate temporaries. It relies on lazy evaluation and that intermediate results are
represented by meta-objects. The actual operation is not performed until the assignment (=) operator.
At the assignment, the compiler evaluates the meta-objects, usually inlining their code to e�ectively
generate the “ideal” loop with no intermediate temporary arrays:

1 for (size_t i = 0; i < x.size (); ++i) {
2 x[i] = 1.2*x[i] + 2.0*y[i];
3 }

Expression templates work well for Level 1 (vector) and Level 2 (matrix-vector) BLAS operations. Level
3 (matrix-matrix multiply) BLAS operations introduce more challenges. Aliasing becomes a major
problem, for instance, in the expression:

1 C = A*C;

updating C will produce erroneous results; a temporary is needed. It is di�cult for the compiler to
determine if aliasing will occur, and therefore whether a temporary is needed. It is also challenging
to reach peak performance for Level 3 BLAS with generic code. Hand-optimized code, possible in
assembly or using hardware-speci�c intrinsics, generally has a large performance advantage over generic
code. Multi-threaded expression templates are also challenging. Several BLAS libraries (uBLAS, Matrix
Template Library 4 [MTL4], Eigen, etc.) have been developed around the idea of expression templates; a
further evaluation of these is available in the accompanying C++ Binding for BLAS and LAPACK document.

Exceptions

Traditional linear algebra so�ware such as LAPACK relies on returning an info parameter with an error
code. C++ allows throwing exceptions, which a parent context can catch. This can simplify error checking

21

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

by grouping all the error checks together. Exceptions also prevent ignored errors, as o�en happens with
returned error codes—the exception must be caught somewhere, or it will propagate all the way up to
main.

Existing C code o�en misses error handling a�er every function call. Especially when mixed with
allocation, this is error-prone, as all previous allocations must be freed:

1 double *A = NULL , *B = NULL;
2 A = malloc(lda*n*sizeof(double));
3 if (A == NULL) {
4 // handle error
5 }
6
7 B = malloc(ldb*n*sizeof(double));
8 if (B == NULL) {
9 free(A); A = NULL; // forgetting this causes a memory leak!

10 // handle error
11 }
12
13 // computing using A and B
14
15 free(A); A = NULL;
16 free(B); B = NULL;

Using exceptions moves this error checking code to the end:

1 double *A = nullptr , *B = nullptr;
2 try {
3 A = new double[lda*n];
4 B = new double[ldb*n];
5 // ... computing using A and B ...
6 }
7 catch(const std:: bad_alloc& exception) {
8 // ... handle error
9 }

10 delete [] A; A = nullptr;
11 delete [] B; B = nullptr;

Even better in this example is to have a Matrix class that encapsulates the new/delete, using the common
Resource Acquisition Is Initialization (RAII) paradigm, so that matrices are automatically deleted when
exiting their context:

1 try {
2 Matrix A(lda , n);
3 Matrix B(ldb , n);
4 // ... computing using A and B ...
5 }
6 catch(const std:: bad_alloc& exception) {
7 // ... handle error
8 }

C++ exceptions can be implemented as “zero-cost exception,” meaning there is no extra time cost when
exceptions are not thrown, compared to when code simply aborts on error. There is added cost to the
size of object code—which must encode how to unwind the stack when an exception occurs—and added
time to actually unwind the stack when an exception does occur. Hence, exceptions should be invoked
rarely. For further details, see https://mortoray.com/2013/09/12/the-true-cost-of-zero-cost-exceptions/

Care must be taken with exceptions in multithreaded code and when interoperating between multiple
languages. C++11 introduced std::exception_ptr to facilitate such uses.

Value Initialization

One of very few features added in C++03, value initialization is a very commonly used feature that allows,
among other things, providing a default constructor for user-de�ned objects. Trilinos packages Epetra
and Teuchos use it for their BLAS and LAPACK wrappers.

22

https://mortoray.com/2013/09/12/the-true-cost-of-zero-cost-exceptions/

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Type Inference (C++11)

A signi�cant contribution of C++11 is the decrease in verbosity by adding type inference functionality to the
compiler by changing the semantics of the auto keyword and adding a new keyword: decltype. However,
these are of limited use for functions that work with primitive data types and without templates. Another
drawback is inconsistent compiler compliance, CUDA 8 with its nvcc compiler being a notable example.

1 std::vector < doube > x(10);
2
3 // verbose syntax
4 for (std::vector < double >:: const_iterator iter = x.begin (); iter != x.end(); ++iter)
5 { ... }
6
7 // simplified with auto
8 for (auto iter = x.begin (); iter != x.end(); ++iter)
9 { ... }

Lambda Functions and Expressions (C++11)

Functional capabilities with generalized notions of a function and support for closures were major
additions to the C++11 standard. These facilities may be very useful for asynchronous operation and
event-based processing that tend to �t well on many-way parallel heterogeneous systems in a distributed
processing context when network latency creates opportunities for out-of-order computing. This may
be e�ectively combined with the parallel facilities of the C++ standard and allow for seamless passing of
execution contexts.

NULL Pointer Constant (C++11)

Addition of an explicit and type-safe constant nullptr to use for pointers that are known to be uninitial-
ized adds possibilities in the area of stricter typing of, and less error-prone, code that relies on type-less
values that can easily be confused with unsigned integer values. This resolves certain ambiguities with
overloading, for instance:

1 void foo(int x) {}
2 void foo(void* x) {}
3
4 foo(0); // calls foo(int)
5 foo(NULL); // error: ambiguous
6 foo(nullptr); // calls foo(void*)

Strongly Typed Enumerations (C++11)

Enumeration types are a useful feature that C++ inherited from its C pedigree. In C, enums are basically
integers and can be exchanged freely with other integral types. C++98 added some type safety: you
cannot implicitly convert from an int to an enum, or between di�erent enums:

1 typedef enum { red , green } color_t;
2 typedef enum { left , right } side_t;
3 color_t a = red; // ok
4 color_t b = 101; // ok in C, error in C++
5 color_t c = left; // ok in C, error in C++

However, you can implicitly convert from an enum to an int:

1 int d = red; // ok in C and C++

Strongly typed enumerations in C++11 prevent this implicit conversion to int:

23

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 enum class Color { red , green };
2 Color e = Color::red; // ok
3 int f = Color::red; // error
4 int g = int(Color::red); // explicit conversion ok

In both C and C++, an old-style enumeration may occupy an unknown size because the compiler is free to
pick the implementation type based on the number of enumerated items. Strongly typed enumerations
�x this problem by allowing the size to be speci�ed; the default size is int:

1 enum class Color { red , green }; // sizeof(Color) == sizeof(int)
2 enum class ColorSmall : char { red , green }; // sizeof(ColorSmall) == sizeof(char)

Strongly typed enumerations also reduce name con�icts by scoping names. Here red in color_t,
Color::red, and ColorSmall::red are all di�erent enum values.

Memory Alignment Control

While it was possible to force alignment on pointers through non-portable means, the inclusion of
alignment syntax is a welcome addition to the standard. As a result, it will now be possible to portably
manipulate aligned memory and to trigger optimization levels that make it possible to use low-level
features, such as streaming loads and other vector instructions, that only work with aligned addresses
and are o�en not generated because the pointers are not guaranteed to be conforming and runtime
checks are prohibitively expensive.

Implementation Speci�c Attributes

C++11’s ability to add attributes to various syntactic constructs represents a long-needed recognition of
specifying features beyond the purview of the compiler, and may reach the linking stages. This feature
is o�en used in HPC codes, for example, in the form of weak symbols that allow the user to supply a
zero-cost tracing layer that is deactivated in production runs. It is to be determined if weak linking will
be added to the standard.

Move Semantics (C++11)

The addition of rvalue references allows optimizing away a copy of temporary data into a simple move
by swapping pointers. This greatly improves speed when, for instance, returning a large object from a
function. However, traditionally, BLAS and ScaLAPACK routines have taken all arrays as arguments,
rather than returning arrays—it is not clear that a bene�t exists. The rvalue references can easily be
conditionally compiled for older compilers, in which case code reverts to the old, slower behavior.
In the example below, class Foo has a move semantics constructor, Foo(Foo&& tmp), and the copy-
and-swap assignment operator inherits the move semantics from that constructor. For more details,
see http://stackoverflow.com/questions/3106110/what-are-move-semantics and http://stackoverflow.com/
questions/3279543/what-is-the-copy-and-swap-idiom.

1 class Foo {
2 public:
3 Foo(size_t size=0):
4 m_size(size),
5 m_data(new double[size])
6 {}
7
8 // expensive copy constructor: allocate and copy data from orig
9 Foo(const Foo& orig) {

10 m_size = orig.m_size;
11 m_data = new double[m_size];
12 std::copy(orig.m_data , orig.m_data + m_size , m_data);

24

http://stackoverflow.com/questions/3106110/what-are-move-semantics
http://stackoverflow.com/questions/3279543/what-is-the-copy-and-swap-idiom
http://stackoverflow.com/questions/3279543/what-is-the-copy-and-swap-idiom

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

13 }
14
15 #if (__cplusplus >= 201103) // requires C++11
16 // cheap "move semantics" constructor: move data from tmp
17 Foo(Foo&& tmp) {
18 m_size = tmp.m_size;
19 m_data = tmp.m_data;
20 tmp.m_size = 0;
21 tmp.m_data = nullptr;
22 }
23 #endif
24
25 // "copy and swap" idiom assignment operator
26 Foo& operator = (Foo copy) {
27 std::swap(a.m_size , b.m_size);
28 std::swap(a.m_data , b.m_data);
29 return *this;
30 }
31
32 ˜Foo() {
33 delete [] m_data;
34 }
35
36 size_t m_size;
37 double* m_data;
38 };
39
40 Foo factory (); // factory function defined elsewhere
41
42 void test() {
43 // Without move semantics (C++98), this does expensive copy Foo(Foo&);
44 // with move semantics (C++11), this does cheap move Foo(Foo&&)
45 // (assuming Return Value Optimization (RVO) doesn't kick in).
46 Foo C = factory ();
47 }

Static Assertions (C++11)

static_assert enforces its condition at compile time, in contrast to assert, which enforces its condition
at runtime. This helps to make more robust code while not adding any overhead to the runtime cost.
For instance:

1 static_assert(sizeof(int) == 4, "Requires 4-byte int");

In versions prior to C++11, static assertions can be hacked in various ways; Eigen has an example of this.

Smart Pointers (C++11)

In C++, smart pointers are abstract data types that simulate pointers while providing automatic memory
management. They are intended to reduce bugs caused by the misuse of pointers while retaining
e�ciency. Speci�cally, smart pointers prevent most memory leaks by making the deallocation automatic,
i.e., an object controlled by a smart pointer is automatically destroyed when the last owner of an object
is destroyed. Smart pointers also eliminate dangling pointers by postponing destruction until an object
is no longer in use. In C++, a smart pointer is implemented as a template class that mimics, by means of
operator overloading, the behaviors of a traditional (raw) pointer (e.g., dereferencing, assignment).

Consider the traditional declaration:

1 some_type* ambiguous_function ();

There is no way to know whether the caller should delete the memory of the referent when the caller is
�nished with the information.

Alternatively, the following declaration:

25

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 unique_ptr <some_type > obvious_function1 ();

makes it clear that the caller takes ownership of the result, and the C++ runtime ensures that the memory
for *some_type is reclaimed automatically.

The following types of smart pointers are available:

unique ptr explicitly prevents copying of its contained pointer, and provides the std::move function to
transfer ownership to another unique_ptr

shared ptr maintains reference counting ownership of its contained pointer. An object referenced by
the contained raw pointer will be destroyed when and only when all copies of the pointer have
been destroyed.

weak ptr is a container for a raw pointer. It is created as a copy of a shared_ptr. The existence or
destruction of weak_ptr copies of a shared_ptr have no e�ect on the shared_ptr or its other copies.
A�er all copies of a shared_ptr have been destroyed, all weak_ptr copies become empty.

All smart pointers are de�ned in the <memory> header.

4.1.2 OpenMP

OpenMP—an abbreviation for Open Multi-Processing—is an application programming interface (API)
based on compiler directives, some library routines, and environment variables for multiprocessor
programming in C, C++, and Fortran. OpenMP is the de-facto standard API for shared memory parallel
programming, boasting widespread vendor support and a large user base. It implements multithreading,
or the so-called “fork-join” parallel model of parallel execution. When any thread encounters a parallel
construct, the thread creates a team comprised of itself and zero or more additional threads and becomes
the master of the new team. A set of implicit tasks, one per thread, is generated; the code for each
task is de�ned by the code inside the parallel construct. A set of directives is then provided to manage,
synchronize, and assign work to threads that share data. Recently, with the adoption of OpenMP 4.0
and 4.5 (see below), the OpenMP shared memory programming model was extended to support task
dependencies and accelerators, substantially changing the programming model from previous versions
of the API.

Tasking Extensions

OpenMP 3.0 [11] introduced simple tasking that followed the Cilk model. OpenMP 4.0 [66] introduced
data dependencies, allowing for proper data�ow expression. OpenMP 4.5 further extended tasking
capabilities; speci�cally, it added task priorities, which are critical from a performance standpoint. The
basic concepts of OpenMP tasking include:

task A speci�c instance of executable code and its data environment, generated when a thread encounters
a task, taskloop, parallel, target, or teams construct.

task region A region consisting of all code encountered when a task executes.

child task A task is a child task of its generating task region.

sibling task Tasks that are child tasks of the same task region.

task completion Occurs when the end of the structured block associated with the construct that gener-
ated the task is reached.

26

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

task dependence An ordering relation between two sibling tasks: the dependent task and a previously
generated predecessor task. The task dependence is resolved when the predecessor task has
completed.

dependent task A task that, because of a task dependence, cannot be executed until its predecessor tasks
have completed.

Tasks are generated when a thread comes across a task-generating construct. Explicitly generated tasks
are assigned to one of the available threads in the current team. Execution of a new task can be immediate
or deferred until later when threads are available and scheduling constraints are met. Threads are allowed
to switch from one task to another at prede�ned task scheduling points. Tasks can be tied tasks or untied tasks.
Suspended tied tasks must be resumed by the same thread. Suspended untied tasks can be resumed by a
di�erent thread. Task completion is guaranteed by the implicit barrier at the end of a parallel region,
and can be enforced in the middle of a parallel region by one of the task synchronization constructs:
taskwait, taskgroup, or barrier.

The depend clause allows for expression of data�ow dependencies—i.e., scheduling constraints—between
sibling tasks. Storage locations may be marked as in, out, or inout. If a storage location is marked as out
or inout in one task and marked as in in a subsequent task, then the latter task depends on the former
task (meaning it cannot start execution before the former task completes). Also, if a storage location is
marked as in or out in one task and marked as out or inout in a subsequent task, then the latter task
depends on the former task. These cases basically boil down to the three basic data hazards: Read A�er
Write (RAW), Write A�er Read (WAR), and Write A�er Write (WAW).

Cancellation is a critical feature for handling exceptions. The cancel construct is a stand-alone directive
that activates cancellation of the innermost enclosing region: parallel, sections, for or taskgroup.
When a task encounters the cancel construct with the taskgroup clause, it cancels execution and skips
over to the end of its task region, which implies completion of that task. Any other task in the same
group that began execution completes execution unless it encounters the cancellation point construct.
If it does, it also skips over to the end of the task region, which also implies completion. Any task that
has not begun execution is aborted, again implying completion. The other cancellation clauses apply
cancellation to the innermost enclosing region of the type speci�ed. Execution continues at the end of
the region. Threads check for cancellation at cancellation points. One important aspect of the cancel
construct is that it cancels barriers; threads waiting in a barrier are released and skip over to the end of
the canceled region. This can occur before all the expected threads reach the barrier.

Device Extensions

OpenMP 4.0 introduced new features that make it possible to run codes on both general-purpose
multi-core CPUs and accelerators in a work-sharing fashion under a single programming paradigm.
The current standard, OpenMP 4.5, further improved acceleration features, and the proposed standard,
OpenMP 5.0, extends them further yet. The basic concepts of the OpenMP acceleration model include:

host device The device on which the OpenMP program begins execution—basically, the CPU.

target device A device onto which code and data may be o�oaded from the host device. Basically, a
GPU or a leverage boot Xeon Phi. Generally referred to as an accelerator/coprocessor.

team A set of one or more threads participating in the execution of a parallel region. In the context of
GPU execution, it is basically a thread block. It is not possible to synchronize across di�erent teams
over their lifetimes.

league The set of thread teams created by a teams construct. In the context of GPU execution, it is
basically a block grid.

27

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

The o�oad execution model of OpenMP is host-centric, meaning that the host device o�oads target
regions to target devices. The whole program is surrounded by an implicit parallel region executed on
the host device. One or more devices may be available to the host device for o�oading of code and data.
Each device has its own distinct set of threads, which cannot migrate from one device to another.

The target construct is used to create a device data environment and to execute a code region on the
device. If multiple devices are available, a device id can be speci�ed to select which one to execute.
The runtime routine omp_get_num_devices can be used to determine the number of accelerators in the
system. To handle the situation when there are no accelerators, the target construct can have an if
clause. When an if clause is present and the expression evaluates to false, the device is the host. The
nowait clause can be added to the target construct to allow for asynchronous execution. Also, a target
region is implicitly enclosed in a target task region, and the depend clause can be added to specify the
data �ow dependencies of the implicit task generated for the target. The declare target construct can
be used to declare a function as device function, basically �agging it as an accelerator/coprocessor kernel.

The map clause associates the current data environment on the host with the device data environment.
Data creation and movement is controlled by the to, from, tofrom, and alloc, release, and delete
attributes. The target data construct can be used to create a device data environment that is consistent
across multiple target execution regions. The is_device_ptr clause is used to indicate that an item is
a device pointer already and that it should be used directly. The target update clause can be used to
update the host data with the corresponding device data, or vice versa, within one data region. The
clause refreshes host data with the device data for the from clause, and device data with host data for the
to clause. Two stand-alone directives, target enter data and target exit data, allow mapping and
unmapping data items to the device data environment.

Several runtime routines are also available to manage memory on target devices. These include routines
to allocate, free, and copy device memory, as well as routines to control mapping of device pointers to
host pointers:

omp target alloc Allocates memory in a device data environment.

omp target free Frees the device memory allocated with omp_target_alloc.

omp target is present Tests whether a host pointer has corresponding storage on a given device.

omp target memcpy Copies memory between any combination of host and device pointers.

omp target memcpy rect Copies a rectangular subvolume from a multi-dimensional array to another
multi-dimensional array.

omp target associate ptr Maps a device pointer that can be returned from omp_target_alloc or
implementation-de�ned runtime routines to a host pointer.

omp target disassociate ptr Removes a given device’s associated pointer from a host pointer.

SIMD Extensions

The simd\lstinline construct can be applied to a loop to indicate that the loop can be transformed
into an SIMD loop (that is, multiple iterations of the loop can be executed concurrently using SIMD
instructions). The simd directive places restrictions on the structure of the associated for-loops. Speci�cally,
all associated for-loops must have canonical loop form. The canonical form allows the iteration count of all
associated loops to be computed before executing the outermost loop. The computation is performed
for each loop in an integer type [66, 67]. The basic terminology of the OpenMP simd concept includes:

SIMD instruction A single-machine instruction that can operate on multiple data elements.

28

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

SIMD lane A so�ware or hardware mechanism capable of processing one data element from an SIMD
instruction.

SIMD chunk A set of iterations executed concurrently, each by an SIMD lane, by a single thread with
SIMD instructions.

All loops associated with the construct must be perfectly nested; that is, there must be no intervening
code nor any OpenMP directive between any two loops. The associated loops must be structured blocks.

An SIMD loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop iterations, and
the logical numbering denotes the sequence in which the iterations would be executed if the associated
loop(s) were executed with no SIMD instructions. If the safelen clause is used, then no two iterations
executed concurrently with SIMD instructions can have a greater distance in the logical iteration space
than its value. The parameter of the safelen clause must be a constant positive integer expression. If
used, the simdlen clause speci�es the preferred number of iterations to be executed concurrently. The
parameter of the simdlen clause must be a constant positive integer. The number of iterations that are
executed concurrently at any given time is implementation de�ned. Each concurrent iteration will be
executed by a di�erent SIMD lane. Each set of concurrent iterations is an SIMD chunk. Lexical forward
dependencies in the iterations of the original loop must be preserved within each SIMD chunk [66, 67].

The declare simd construct can be applied to a function (C, C++ and Fortran) or a subroutine (Fortran) to
enable the creation of one or more versions that can process multiple arguments using SIMD instructions
from a single invocation in an SIMD loop. The declare simd directive is a declarative directive. There
may be multiple declare simd directives for a function (C, C++, Fortran) or subroutine (Fortran) [66, 67].

Example Codes

This section presents example codes in C and C++ to highlight the use of OpenMP features discussed in
the preceding sections.

To motivate an example of task-parallelism, Figure 4.1 shows a serial form of the divide and conquer
algorithmic technique for summation. The code snippet in Figure 4.1 is based on the Wikibooks example
[82].

1 float sum(const float *a, size_t n)
2 {
3 // base cases
4 if (n == 0) {
5 return 0;
6 }
7 else if (n == 1) {
8 return *a;
9 }

10
11 // recursive case
12 size_t half = n / 2;
13 return sum(a, half) + sum(a + half , n - half);
14 }

Figure 4.1: Basic divide and conquer summation algorithm.

Recognizing that the recursion in the divide and conquer (D&C) summation consists of parallel tasks,
rather than data parallelism, prompts the implementation of a task-recursive version, such as what is
shown in Figure 4.2. The �rst pragma, #pragma omp parallel, prepares all the threads in the pool to exe-
cute the next code block and de�nes a parallel region. The second pragma, #pragma omp single nowait,
utilizes the single directive to cause all threads but one to skip the next code block. The nowait clause

29

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

disables the implicit barrier associated with the single directive and allows the threads that skip the next
code block to move ahead to the barrier that concludes the parallel region.

Two tasks are used to acomplish the recursion, #pragma omp task shared(x) for the �rst half of the �oat
array, and #pragma omp task shared(y) for the second half. The task construct de�nes an explicit task,
which may be executed by the encountering thread, or deferred for execution by any other thread in
the pool. Each task uses a shared clause to declare a variable shared with another task. Declaring these
variables as shared ensures that values stored therein will persist a�er tasks complete. The last pragma,
#pragma omp taskwait, causes execution to wait until all tasks have completed before combining the
recursive results.

1 float sum(const float *a, size_t n)
2 {
3 // base cases
4 if (n == 0) {
5 return 0;
6 }
7 else if (n == 1) {
8 return 1;
9 }

10
11 // recursive case
12 size_t half = n / 2;
13 float x, y;
14
15 #pragma omp parallel
16 #pragma omp single nowait
17 {
18 #pragma omp task shared(x)
19 x = sum(a, half);
20 #pragma omp task shared(y)
21 y = sum(a + half , n - half);
22 #pragma omp taskwait
23 x += y;
24 }
25 return x;
26 }

Figure 4.2: Task-recursive divide and conquer summation algorithm.

Next, the common example of adding two arrays, a and b, then storing the result in a third, c, is utilized
to examine how code can be o�oaded to a device. The target construct is used to specify the region
of code that should be o�oaded for execution onto the target device as shown in Figure 4.3 [53]. The
construct also creates a device data environment by mapping host bu�ers to the target for the extent of
the associated region. The map clauses of the target construct specify data movement from host to device
before execution of the o�oaded region, and device to host a�er execution of the o�oaded region.

1 float a[1024];
2 float b[1024];
3 float c[1024];
4 int size;
5
6 void vadd_openmp(float *a, float *b, float *c, int size)
7 {
8 #pragma omp target map(to:a[0: size],b[0: size],size) map(from: c[0: size])
9 {

10 int i;
11 #pragma omp parallel for
12 for (i = 0; i < size; i++)
13 c[i] = a[i] + b[i];
14 }
15 }

Figure 4.3: O�oading the task-recursive divide and conquer algorithm.

30

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

In Figure 4.3, the #pragma omp target construct initializes the the target region. A target region begins
as a single thread of execution. When a target construct is encountered, the target region is executed
by the implicit device thread and the encountering thread on the host waits at the construct until the
execution of the region completes. If a target device is not present, not supported, or not available, the
target region is executed by the host device. The variables a, b, c, and size initially reside in host memory.
Upon encountering a target construct:

• Space is allocated in device memory for variables a[0:size], b[0:size], c[0:size], and size.

• Any variables annotated to within a map clause are copied from host memory to device memory.

• The target region is executed on the device. The #pragma omp parallel for is used to distribute
iterations of the for loop across the device’s thread pool.

When exiting a target construct, any variables annotated from within a map clause are copied from device
memory to host memory.

To further motivate an example use of device targets in the context of an application, a basic ”escape
time” algorithm for generating a Mandelbrot set is shown in Figure 4.4. The code snippet in Figure 4.4
is based on the Wikipedia example [83]. For each x, y point in a rectangular plot area (ImageWidth×
ImageHeight), an iterative calculation is performed. The x and y locations of each point are used as
starting values of the iterating calculation. The real and imaginary values are checked during each
iteration to see whether either has reached a critical ”escape” condition. Because no complex number
with a real or imaginary value greater than 2 can be part of the set, a simple escape condition stops
iterations when either coe�cient exceeds 2. Visual representations of the Mandelbrot set can be produced
by translating the number of iterations required to escape from each pixel’s x, y location to a color
palette.

1 int32_t ImageWidth = 1024;
2 int32_t ImageHeight = 1024;
3 uint32_t max_iter = 1000;
4 uint32_t in_vals[ImageHeight][ImageWidth];
5 uint32_t count[ImageHeight][ImageWidth];
6
7 for (int32_t y = 0; y < ImageHeight; ++y) {
8 for(int32_t x = 0; x < ImageWidth; ++x) {
9 uint32_t iteration = 1;

10 fcomplex z = in_vals[y][x];
11 for (int32_t i = 0; i < max_iter; i += 1) {
12 z = z * z + c;
13 int t = cabsf(z) < 2.0f;
14 iteration += t;
15 if (!t) { break ;}
16 }
17 count[y][x] = iteration;
18 }
19 }

Figure 4.4: Serial implementation of a Mandelbrot set generation algorithm.

One way of exploiting the data and task parallelism in the simple Mandelbrot set generation algorithm
shown in Figure 4.4 is to o�oad the iterative calculation workload for each x, y point to a target device,
as shown in Figure 4.5. Several directives and clauses are utilized to accomplish the o�oad to a single
target device enumerated as device 0.

Similarly, the #pragma omp target device(0) initializes the target region—in this code snippet it is
speci�cally for device 0. A target region also begins as a single thread of execution. When a target
construct is encountered, the target region is executed by the implicit device thread, and the encountering
thread on the host waits at the construct until the execution of the region completes. If a target device

31

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

is not present, not supported, or not available, the target region is executed by the host device. The
mapto:in_vals) clause designates that on entry to the target region, in_vals will be copied from the
host to device(0). The map(from:count) clause designates that on exit from the target region, count will
be copied from device(0) to the host.

#pragma omp parallel prepares all the threads in device(0)’s pool to execute the next code block and
de�nes a parallel region. #pragma omp for schedule(guided) distributes iterations of the for loop
across the the thread pool according to the schedule(guided) clause. Guided scheduling uses OpenMP’s
internal work queue �rst to assign large chunks of loop iterations to threads and then to decrease the chunk
size to better handle load imbalances between iterations. The optional chunk parameter speci�es the
minimum chunk size to use. By default, the chunk size is approximately loop count/number of threads.

The declare target construct speci�es that variables and functions are mapped to a device. Each function
speci�ed in a declare target region must have de�nitions for both the host and target device. In the code
snippet shown in Figure 4.5 the function mandel is called from within a target region. Its prototype must
be placed in a declare target region.

The #pragma omp simd construct enables the execution of multiple iterations of the associated loops
concurrently by means of SIMD instructions. The safelen(16) clause is used to specify that two iter-
ations, executed concurrently with SIMD instructions, will not have a greater distance in the logical
iteration space than the value (16). The parameter of the safelen clause must be a constant positive
integer expression. The simdlen(16) clause speci�es the preferred number of iterations to be executed
concurrently. The parameter of the simdlen clause must be a constant positive integer. The number of
iterations that are executed concurrently at any given time is implementation-de�ned. Each concurrent
iteration will be executed by a di�erent SIMD lane. Each set of concurrent iterations is an SIMD chunk.
Lexical forward dependencies in the iterations of the original loop must be preserved within each SIMD
chunk.

1 int32_t ImageWidth = 1024;
2 int32_t ImageHeight = 1024;
3 uint32_t max_iter = 1000;
4 uint32_t in_vals[ImageHeight][ImageWidth];
5 uint32_t count[ImageHeight][ImageWidth];
6
7 #pragma omp declare target
8 #pragma omp declare simd simdlen (16)
9 uint32_t mandel(fcomplex c)

10 { // Computes number of iterations that it takes
11 // for parameter c to escape the mandelbrot set
12 uint32_t iteration = 1; fcomplex z = c;
13 for (int32_t i = 0; i < max_iter; i += 1) {
14 z = z * z + c;
15 int t = cabsf(z) < 2.0f;
16 iteration += t;
17 if (!t) { break ;}
18 }
19 return iteration;
20 }
21 #pragma omp end declare target
22
23 #pragma omp target device (0) map(to:in_vals) map(from:count)
24 #pragma omp parallel
25 {
26 #pragma omp for schedule(guided)
27 for (int32_t y = 0; y < ImageHeight; ++y) {
28 #pragma omp simd safelen (16)
29 for(int32_t x = 0; x < ImageWidth; ++x) {
30 count[y][x] = mandel(in_vals[y][x]);
31 }
32 }
33 }

Figure 4.5: Parallel implementation of a Mandelbrot set generation algorithm highlighting exemplary
use of the target construct with the map clause and the simd construct with the safelen clause.

32

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Table 4.1: The most signi�cant features introduced in the OpenACC standard since the standard’s
introduction.

OpenACC 1.0 (2011) OpenACC 2.0 (2013) OpenACC 2.5 (2015)

Wait directive Routine directive Asynchronous data transfer
Cache directive Complex data lifetimes Queue management routines
Host data construct Nested parallelism Kernel construct sizes clauses
Loop construct Multiple device targets Interface for pro�ling and tracing
Data construct Atomic directive
Parallel construct
Kernels construct

4.1.3 OpenACC

Open Accelerators (OpenACC) is a standard of compiler directives for parallel programming on hetero-
geneous CPU/GPU systems. Announced in 2011 with its �rst OpenACC 1.0 release [64], OpenACC has
continued growing in functionality as evinced through its OpenACC 2.0 (June 2013) and OpenACC 2.5
(October 2015) releases [65]. The goal of these developments has been to provide the mechanisms for
mapping parallelism—simply annotated by directives in a single source—to di�erent hardware. Thus,
to enable e�cient mapping, powerful new features have been added to OpenACC, including nested
parallelism, atomics, ways to target multiple devices, unstructured data regions (to retain data on acceler-
ators between multiple OpenACC compute regions), asynchronous data moves, queue management,
as well as pro�ling and tracing interfaces. Most of the communities working on these extensions also
share ideas and collaborate with OpenMP, which has also been growing, currently supporting o�oad
accelerators, as detailed in Section 4.1.2. This inevitably raises the question of which standard to use, if
not both, or whether OpenACC and OpenMP should just merge, which is discussed below in the context
of developing linear algebra libraries.

Compiler Support

The most mature OpenACC compilers are available as commercial so�ware. PGI, Cray, and the Compiler
and Architecture for Superscalar and embedded Processors (CAPS) are leading the path for proprietary
OpenACC compilers. The PGI Accelerator compiler version 2017 targets NVIDIA GPUs, with support for
the OpenACC 2.5 standard. The collection includes C, C++, and Fortran compilers. The Cray Compilation
Environment (CCE) also supports OpenACC on Cray systems. CCE 8.2 supports OpenACC 2.0.

Development of open-source OpenACC compilers is underway. The GNU Compiler Collection (GCC) 6
release series provides a partial implementation of the OpenACC 2.0a speci�cation. It works only for
NVIDIA parallel thread execution (PTX) targets. The Open Accelerator Research Compiler (OpenARC)
is an open-source compiler developed at ORNL. It provides full support for the v1.0 speci�cations and a
subset of the 2.0 speci�cations. Other open-source projects include RoseACC (University of Delaware
and LLNL), OpenUH (University of Houston), and the Omni compiler (RIKEN Advanced Institute for
Computational Science [AICS]/University of Tsukuba).

OpenACC vs. OpenMP

OpenMP has been around for longer, has many more features, and in terms of accelerators, is catching
up by taking advantage of the innovations driven by OpenACC and the developers/community that
they share. Still, there are some signi�cant di�erences between them. In particular, whereas OpenACC
continues to be more mature for scalable computing with accelerators, OpenMP is more mature for

33

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Table 4.2: High level comparison of the latest released standards of OpenACC and OpenMP.

OpenACC 2.5 OpenMP 4.0

No goal of general purpose Focused on general purpose parallelism
Focused on accelerator hardware Focused on multi core, acceleration optional
Performance portability possible Performance portability requires e�ort
Descriptive (functional) Prescriptive (procedural)
Interoperability available Interoperability still evolving

general purpose parallelism for multi core. Another notable di�erence that is o�en highlighted is that
OpenACC is more descriptive, while OpenMP is more prescriptive. In other words, OpenACC gives more
freedom to annotate just where parallelism is, thus leaving the rest to the compiler; OpenMP provides
more features to be directed by the programmer to specify detail on the implementation. This has been
noted to leave OpenMP less performance portable across di�erent architectures, as tuning parallelism
for one architecture does not guarantee e�ciency for another.

However, this di�erence is not that critical to the development of high-performance linear algebra
libraries, where developers can a�ord to concentrate on individual routines for particular architectures.
Typically, the goal is to still have a single source, but that source is highly-parameterized so that the
best-performing version can be automatically discovered through empirically-based auto tuning (vs.
reliance on a compiler). Furthermore, high-level libraries, like LAPACK, rely on a number of highly-
tuned kernels, e.g., BLAS, that are also not derived as a single source, rather, as assembly implementations
of algorithms that are themselves speci�cally designed and tuned for target architectures.

Advantages and Disadvantages

OpenACC’s main advantages can be summarized as follows:

• Scientists and application programmers can quickly determine if their codes will bene�t from
acceleration. There is no need to develop low-level kernels to reach such a decision.

• Since it is a directive-based approach, it requires minimal structural code changes compared to
lower-level languages such as CUDA and OpenCL.

• So�ware portability: the same code base can run on many platforms, with and without accelerators.
It can even be compiled using compilers with no OpenACC support, since the directives will be
ignored.

• Performance portability: the task of discovering parallelism and mapping it to the hardware is le�
to the compiler. The programmer just “hints” to the compiler about potential parallel regions. In
general, the more hints, the more performance is obtained.

• Cross platform capabilities: for example, the same code base runs on NVIDIA and AMD GPUs.
CAPS even provides support for OpenACC on the Intel Xeon Phi coprocessor.

• Interoperability: the programmer can choose to accelerate parts of the code using directives, and
other parts using calls to accelerated libraries (e.g., cuBLAS).

On the other hand, here are some downsides to development using OpenACC:

• Explicit management of data movement: In the case of separate memory spaces for the host
and the accelerator, the default assumption in OpenACC is that the data is in the host memory

34

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

space (both inputs and outputs). Without explicit user control, the compiler will create memory
allocations and data copies as needed at every parallel region. The resulting code, therefore, might
be slower than the non-accelerated code.

• OpenACC is not yet fully adopted by major vendors like Intel and AMD.

• Compilers that fully support OpenACC are proprietary. No mature open-source alternatives are
available yet.

• OpenACC-accelerated codes are usually outperformed by those written in the lower-level language
(e.g., CUDA). The portability of OpenACC comes at the cost of its inability to take advantage of
some architecture-speci�c features. However, OpenACC provides some advanced optional controls
through which programmers can improve the performance of their codes.

The OpenACC AcceleratorModel

In order to ensure portability to multiple computing architectures, OpenACC de�nes an abstract model
for accelerated computing. This model exposes multiple levels of parallelism that may appear in a
processor, as well as a hierarchy of memories with varying degrees of speed and addressability. The
model ensures that OpenACC is applicable to di�erent architectures, current and future. At its core,
OpenACC supports o�oading of both computation and data from a host device to an accelerator device.
These devices can be the same or completely di�erent architectures. Such is the case in a CPU+GPU
con�guration. The two devices can also have separate memory spaces or a single memory space. If
the two devices have di�erent memories, the OpenACC compiler and runtime will analyze the code
and handle any accelerator memory management as well as the transfer of data between the host and
the accelerator memories. Figure 4.6 shows a high-level diagram of the OpenACC abstract accelerator
model.

host	
device

accelerator	
device

host	
memory

accelerator	
memory

Figure 4.6: OpenACC abstract accelerator model.

35

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

OpenACC programmers should think of variables as objects, regardless of their locations. This is di�erent
from the common way of thinking—associating the variable name with the memory space where it
resides. For example, in CPU+GPU con�gurations that are programmed using CUDA or OpenCL, a
single variable A is expanded to variables that are actually copies (e.g., h_A in the host memory and d_A
in the accelerator memory). In the OpenACC model, it is preferable to decouple a variable from its
location in order to avoid portability issues on systems with a shared memory space between the host
and the accelerator.

There are three levels of parallelism in OpenACC: gang, worker, and vector. There is also a fourth level (seq)
that indicates that a code segment should not be parallelized. The vector level has the �nest granularity,
while the gang level has the coarsest one. The worker level is a medium level between the former two.
A gang consists of one or more workers. A worker operates on a vector of a certain length. Gangs are
totally independent from each other, and cannot synchronize. On the other hand, workers and vectors
inside the same gang can synchronize and share data through a fast memory level (e.g., a cache or shared
memory). Vector execution is similar to SIMD parallelism, with a single instruction being executed on
multiple pieces of data (vector length). The OpenACC model exposes a cache memory within each gang,
which is shared by all workers and vectors of that gang. Figure 4.7 visualizes the OpenACC levels of
parallelism.

CACHE

vector

w
or
ke
rs

CACHE

vector

w
or
ke
rs

CACHE

vector

w
or
ke
rs

ga
ng
s

Figure 4.7: OpenACC levels of parallelism.

It should be noted that OpenACC programmers do not need to control these levels explicitly. The
default mode of operation is that the compiler maps parallel regions of the code automatically into these
levels according to its knowledge of the target device. However, a programmer can control these levels
of parallelism for the sake of having more control, or further tuning for a speci�c hardware. The explicit
programmer control comes, however, at the cost of less portability to other devices.

Recommended Porting Procedure to OpenACC

For best practice, here are four main steps to accelerate an application using OpenACC:

1. Identify the most time-consuming loops and blocks of the code. This can be done using
performance-pro�ling tools.

36

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

2. Decorate parallel loops within the code with OpenACC directives that provide the information
necessary to parallelize the code for the target architecture.

3. Use OpenACC directives to optimize data locality and eliminate unnecessary copies between the
host and the accelerator. Since OpenACC targets systems with both the same memory and separate
memories, its compilers are conservative with respect to data locality. Unless otherwise speci�ed
by the user, the compiler will handle accelerated regions as stand-alone transactions with the
accelerator. Each transaction consists of the copy-in, compute, and copy-out stages. Obviously,
this model is far from optimized, due to the redundancy in data movement. The programmer can
provide information to the compiler to keep the data as long as possible in the accelerator memory
before it is copied back to the host, thus maximizing data locality.

4. Further loop-level optimization: compilers discover and map the parallelism of a loop to the target
hardware based on internal heuristics and conservative rules. Additional performance gains can
be obtained by providing more information to the compiler about the loop structure, and also
tuning the o�oaded code to the accelerator.

Example Code: Jacobi Iteration

This section introduces an example code in C/C++ that will be considered for acceleration using OpenACC.
The code solves the 2D-Laplace equation with the iterative Jacobi solver. Iterative methods are a common
technique of approximating the solution of elliptic PDEs, like the 2D-Laplace equation, within some
acceptable tolerance. The code performs a simple stencil calculation, where the value for each point
is calculated as the mean of its neighbors’ values. The algorithm continues to iterate until either the
maximum change in value between two iterations drops below some tolerance level or a maximum
number of iterations is reached. The main iteration loop, written in C/C++, is shown in Figure 4.8.

1 while (error > tol && iter < iter_max) {
2 error = 0.0;
3 for(int j = 1; j < n-1; j++) {
4 for(int i = 1; i < m-1; i++) {
5 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
6 A[j-1][i] + A[j+1][i]);
7 error = fmax(error , fabs(Anew[j][i] - A[j][i]));
8 }
9 }

10
11 for(int j = 1; j < n-1; j++) {
12 for(int i = 1; i < m-1; i++) {
13 A[j][i] = Anew[j][i];
14 }
15 }
16
17 if(iter % 100 == 0) printf("%5d, %0.6f\n", iter , error);
18 iter ++;
19 }

Figure 4.8: A sample Jacobi iteration. Error is printed every 100 iterations.

The while loop is the convergence loop, since it contains a check for the stopping criteria (acceptable
tolerance or maximum iterations). There are two properties of the convergence loop that are not
parallel-friendly across iterations. The �rst is that the execution of an iteration is conditional based
on the evaluation of the stopping criteria. The second is that computing the values of A depends on
the values computed in the previous iteration, which imposes data dependencies among consecutive
iterations.

However, the �rst loop nest has parallelization opportunities. This segment of the code loops over the
2-D domain to compute the new values of A. By using an additional workspace Anew, all the computations

37

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

of the new elements of A are independent, and can occur in parallel. The same loop nest has a reduction
operation to �nd the maximum absolute error across the domain of A. Similarly, the second loop nest
copies Anew back to A, which can also occur in parallel. A basic pro�ling experiment shows that, obviously,
the two loop nests are the most time-consuming parts of the whole solver. The next sections discuss the
various OpenACC directives and how they can be applied to the Jacobi solver.

The kernels, parallel, and loop directives

These are the most common OpenACC directives for informing the compiler about code paralleliza-
tion. The kernels directive identi�es a region of code that may contain parallelism, but relies on the
automatic parallelization capabilities of the compiler to analyze the region, identify which loops are
safe to parallelize, and then accelerate these loops. Developers with little or no parallel programming
experience, or those working on functions containing many loop nests that might be parallelized, will
�nd the kernels directive a good starting place for OpenACC acceleration. Figure 4.9 demonstrates the
use of kernels in C/C++.

1 #pragma acc kernels
2 {
3 for (i=0; i<N; i++) {
4 y[i] = 0.0f;
5 x[i] = (float)(i+1);
6 }
7
8 for (i=0; i<N; i++) {
9 y[i] = 2.0f * x[i] + y[i];

10 }
11 }

Figure 4.9: An example of the kernels directive.

The kernels directive does not assert parallelization. In fact, the kernels directive gives the compiler
complete freedom to discover parallelism, analyze loops, and resolve data dependencies. The program-
mer simply “tells” the compiler to search for parallelism opportunities in code enclosed between braces.
The compiler will not parallelize loops or code segments unless it is certain about the safety to do so. In
other words, a loop that is legitimately parallel can be ignored by the compiler because the loop does
not pass its conservative criteria for parallelization.

The parallel directive is more explicit, and is o�en associated with the loop directive. It hints to the
compiler that a given loop or code block is safe to parallelize. The same example in Figure 4.9 can be
parallelized using the combined parallel loop directive, as shown in Figure 4.10. Unlike the kernels
directive, each loop needs to be explicitly decorated with the parallel loop directive. This is because
the parallel directive relies on the programmer to identify the parallelism in the code rather than
performing its own compiler analysis of the loops. In other words, the kernels directive may be thought
of as a hint to the compiler as to where it should look for parallelism, while the parallel directive is an
indication to the compiler where there is parallelism. It is important to point out that only the availability
of parallelism is de�ned, but the compiler still has the sole responsibility of mapping the parallelism to
the target hardware, which is the ultimate requirement for portability.

Another notable di�erence between the kernels and parallel loop directives is data movement. When
using the kernels directive, any data copies occur at the beginning and the end of the decorated block
of code, meaning that the data will remain on the device for the full extent of the region—or until it is
needed again on the host within that region. This means that if multiple loops access the same data, it
will be copied to the accelerator once. When parallel loop is used for two subsequent loops that access
the same data, the compiler may or may not copy the data back and forth between the host and the
device between the two loops. For example, the compiler will generate an implicit data movement for

38

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 #pragma acc parallel loop
2 for (i=0; i<N; i++) {
3 y[i] = 0.0f;
4 x[i] = (float)(i+1);
5 }
6
7 #pragma acc parallel loop
8 for (i=0; i<N; i++) {
9 y[i] = 2.0f * x[i] + y[i];

10 }

Figure 4.10: An example of the combined parallel loop directive.

each parallel loop in Figure 4.10, but it will generate data movement once for the kernels approach in
Figure 4.9, which results in less communication by default.

The loop construct gives the compiler additional information about the very next loop in the source
code. The loop directive was shown above in connection with the parallel directive, although it is also
valid for the kernels directive. Loop clauses come in two forms: clauses for correctness and clauses for
optimization. Optimization clauses are discussed later on. In order to maintain the correctness of the
loop a�er parallelization, some clauses can be appended to the loop directive:

1. The private clause, which is used as private(variable), speci�es that each loop iteration requires
its own copy of the listed variable(s). For example, if each loop contains a temporary array named
tmp that it uses during its calculation, then this variable is made private to each loop iteration in
order to ensure correct results. If tmp is not declared private, then threads executing di�erent
iterations may access this shared variable in unpredictable ways, resulting in race conditions and
potentially incorrect results. Loop iterators are private by default. In addition, and unless otherwise
speci�ed, any scalar variable accessed within a parallel loop is made �rst private by default, meaning
that a private copy is made of the variable for each loop iteration and it is initialized with the value
of that scalar upon entering the region. Finally, any variables that are declared within a loop in C
or C++ are made private to the iterations of that loop by default.

2. The reduction clause, which is written as reduction(operator:variable), works similarly to the
private clause in that a private copy of the a�ected variable is generated for each loop iteration;
but reduction goes a step further, reducing all of those private copies into one �nal result, which is
returned from the region. For example, the maximum of all private copies of the variable may
be required—or perhaps the sum. A reduction may only be speci�ed on a scalar variable and
only common speci�ed operations can be performed, such as +, ∗, min, max, and many bitwise
operations.

Parallelizing Jacobi Iteration using OpenACC

The example code shown in Figure 4.8 is dominated by the two loop nests, which can be parallelized in
OpenACC using either the parallel loop or the kernels directives. This section shows both approaches.

Figure 4.11 shows the parallelization using the parallel loop directive, where each loop nest is annotated
with the directive. Some compilers will also analyze the innermost loops and determine that it is also
safely parallel. However, it is better practice for portability to explicitly inform the compiler about safely
parallelizable loops. The directive on top of the �rst loop nest also informs the compiler about the max
reduction operation required on the variable error. The innermost loops can also be annotated with
parallel loop, although most compilers will parallelize them using the parallel directive only.

Figure 4.12 shows the parallelization using the kernels directive. Note that the two loop nests are
combined into one parallel region that is annotated using the kernels directive. This means that the

39

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 while (error > tol && iter < iter_max) {
2 error = 0.0;
3
4 #pragma acc parallel loop reduction(max:error)
5 for(int j = 1; j < n-1; j++) {
6 #pragma acc loop reduction(max:error)
7 for(int i = 1; i < m-1; i++) {
8 A[j][i] = 0.25 * (Anew[j][i+1] + Anew[j][i-1] +
9 Anew[j-1][i] + Anew[j+1][i]);

10 error = fmax(error , fabs(A[j][i] - Anew[j][i]));
11 }
12 }
13
14 #pragma acc parallel loop
15 for(int j = 1; j < n-1; j++) {
16 #pragma acc loop
17 for(int i = 1; i < m-1; i++) {
18 A[j][i] = Anew[j][i];
19 }
20 }
21
22 if(iter % 100 == 0) printf("%5d, %0.6f\n", iter , error);
23 iter ++;
24 }

Figure 4.11: Jacobi iteration using the parallel loop directive.

programmer grants the compiler the freedom to analyze and discover parallelism. For this relatively
simple example, most compilers will be able to discover that all loops are safely parallel.

1 while (error > tol && iter < iter_max) {
2 error = 0.0;
3
4 #pragma acc kernels
5 {
6 for(int j = 1; j < n-1; j++) {
7 for(int i = 1; i < m-1; i++) {
8 A[j][i] = 0.25 * (Anew[j][i+1] + Anew[j][i-1] +
9 Anew[j-1][i] + Anew[j+1][i]);

10 error = fmax(error , fabs(A[j][i] - Anew[j][i]));
11 }
12 }
13
14 for(int j = 1; j < n-1; j++) {
15 for(int i = 1; i < m-1; i++) {
16 A[j][i] = Anew[j][i];
17 }
18 }
19 }
20
21 if(iter % 100 == 0) printf("%5d, %0.6f\n", iter , error);
22 iter ++;
23 }

Figure 4.12: Jacobi iteration using the kernels directive.

The previous code examples discussed how to map parallelism to the accelerator, but eschewed discussion
of data movements between the host and the accelerator. This is why the code examples of Figures 4.11
and 4.12 are unlikely to produce performance gains against non-accelerated codes. In the absence of
user-de�ned controls for communication, the OpenACC compilers adopt a conservative strategy with
respect to data movements by copying the data back and forth between the host and the accelerator
at the beginning and end of every parallel region. In this regard, the accelerated codes of Figures 4.11
and 4.12 will be dominated by data copies and the runtime overhead to setting up such copies; the code
shown in Figure 4.12 is faster because it has just one parallel region instead of two. This is why the user
has to provide more information to the compiler regarding data locality on the accelerator side.

40

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Improving Data Locality

This section discusses the main user-de�ned controls for improving data locality on the accelerator. This
is a must-do optimization when the host and the accelerator have two separate memories.

A data region, which is de�ned using the data directive, is used to share data across multiple parallel
regions that are de�ned in the same scope. It can also be placed at a higher level in the program call
tree to enable data sharing among parallel regions in multiple functions. The data directive can be used
in the code example shown in Figure 4.11 to eliminate unnecessary data copies between the two loop
nests. Figure 4.13 shows another example, where the data region enables the x and y arrays to be reused
between the two parallel regions. This removes any data copies that happen between the two regions,
but it still does not guarantee optimal data movement. In order to provide the information necessary to
perform optimal data movement, the programmer can add data clauses to the data region. Note that an
implicit data region is created by each parallel and kernels region.

1 #pragma acc data
2 {
3 #pragma acc parallel loop
4 for (i=0; i<N; i++) {
5 y[i] = 0.0f;
6 x[i] = (float)(i+1);
7 }
8
9 #pragma acc parallel loop

10 for (i=0; i<N; i++) {
11 y[i] = 2.0f * x[i] + y[i];
12 }
13 }

Figure 4.13: An example of a data region enclosing two parallel loops.

OpenACC supports a number of data clauses that give the programmer more control over data copies,
allocations, and deallocations. Table 4.3 summarizes such clauses.

The OpenACC 1.0 and 2.0 standards also have present_or_* clauses (e.g., present_or_copy). Such clauses
instruct the compiler to use the present copy of the listed variable if it exists. If it does not, then the
compiler performs the normal action of the clause, as described in Table 4.3. These clauses are frequently
abbreviated, like pcopyin instead of present_or_copyin. OpenACC 2.5 modi�es the behavior of these
clauses so that they all test the presence by default (e.g., copy becomes equivalent to present_or_copy).

Information about array sizes can be also passed to OpenACC compilers. This is particularly important
for C/C++ compilers, which cannot implicitly deduce the size of the array to be allocated or copied.
The syntax of specifying array information takes the form x[start:count], where start is the �rst
element and count is the number of elements. The same syntax works for allocations and copies of
arrays. Figure 4.14 shows an example code that uses data clauses and passes array information through
OpenACC directives. The example code has two safely parallel for loops. The input array x has N
elements, and is input only. Using the pcreat clause, the compiler allocates x only if it is not present on
the accelerator memory. A similar behavior occurs with y, except that the array is output only. Without
the use of data clauses, the compiler will perform unnecessary data copies, like copying x and y at the
beginning of the parallel region, which is not needed since the �rst loop already sets them. Another
unnecessary copy that is avoided is copying back x to the host, since it is an input only array.

Having discussed the di�erent data clauses in OpenACC, it is time to show a more optimized version of
the Jacobi iteration case study—one that uses data clauses to improve locality on the accelerator side.
Figure 4.15 shows an example that uses parallel loop for parallelization, and the data clauses copy and
create for data movement. Note that the A array is copied to the accelerator at the beginning of the
parallel region, and then back to the host at the end of the region. The array Anew is used internally

41

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Data clause Description
copy Create space for the listed variables on the device, initialize the variable

by copying data to the device at the beginning of the region, copy the
results back to the host at the end of the region, and, �nally, release the
space on the device when done.

copyin Create space for the listed variables on the device, initialize the variable
by copying data to the device at the beginning of the region, and release
the space on the device when done without copying the data back to the
host.

copyout Create space for the listed variables on the device but do not initialize
them. At the end of the region, copy the results back to the host and
release the space on the device.

create Create space for the listed variables and release it at the end of the region,
but do not copy to or from the device.

present The listed variables are already present on the device, so no further action
needs to be taken. This is most frequently used when a data region exists
in a higher-level routine.

deviceptr The listed variables use device memory that has been managed outside of
OpenACC; therefore, the variables should be used on the device without
any address translation. This clause is generally used when OpenACC is
mixed with another programming model.

Table 4.3: OpenACC data clauses.

1 #pragma acc data pcreate(x[0:N]) pcopyout(y[0:N])
2 {
3 #pragma acc parallel loop
4 for (i=0; i<N; i++) {
5 y[i] = 0.0f;
6 x[i] = (float)(i+1);
7 }
8
9 #pragma acc parallel loop

10 for (i=0; i<N; i++) {
11 y[i] = 2.0f * x[i] + y[i];
12 }
13 }

Figure 4.14: An example code that uses data clauses with array information.

only, more like a workspace. Therefore, it is created on the accelerator upon entry to the parallel region,
with no copies required between the host and the device. The data clauses for A/Anew use the array
information to specify the copy/allocation size, respectively.

Advanced Programming using OpenACC

This section discusses some advanced features of OpenACC. These features give the programmer
controls that are not available through the basic directives for parallelization and data movements.

Unstructured Data Scopes: The data directive discussed above assumes that the data are allocated and
deallocated in the same scope. In many cases, structured data lifetime is not applicable. For
example, assume a C++ class where the data are created using a constructor and then freed in
a destructor. This is clearly a situation that cannot be resolved using the data directive. Since
OpenACC 2.0, unstructured data scopes using the enter data and exit data directives have been

42

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 #pragma acc data copy(A[1:n][1:m]) create(Anew[n][m])
2 while (error > tol && iter < iter_max) {
3 error = 0.0;
4
5 #pragma acc parallel loop reduction(max:error)
6 for(int j = 1; j < n-1; j++) {
7 #pragma acc loop reduction(max:error)
8 for(int i = 1; i < m-1; i++) {
9 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

10 A[j-1][i] + A[j+1][i]);
11
12 error = fmax(error , fabs(Anew[j][i] - A[j][i]));
13 }
14 }
15
16 #pragma acc parallel loop
17 for(int j = 1; j < n-1; j++) {
18 #pragma acc loop
19 for(int i = 1; i < m-1; i++) {
20 A[j][i] = Anew[j][i];
21 }
22 }
23
24 if(iter % 100 == 0) printf("%5d, %0.6f\n", iter , error);
25 iter ++;
26 }

Figure 4.15: Improving data locality for a parallelized Jacobi iteration.

possible. The enter data directive accepts the create and copyin data clauses and may be used to
specify when data should be created on the device.

The exit data directive accepts the copyout and a special delete data clause to specify when data
should be removed from the device. Please note that multiple enter data directives can place
an array on the device, but when any exit data directive removes it from the device, it will be
immediately removed regardless of how many enter data regions reference it. Figure 4.16 shows
a simple C++ class example that has a constructor, a destructor, and a copy constructor. Note that
the constructor copies the this pointer to the accelerator as well in order to ensure that the scalar
member len and the pointer arr are available on the accelerator and the host. The copy constructor
uses a parallel loop to perform the copy from an object that is resident in the accelerator memory,
hence the use of the present clause.

The update Directive: The update directive provides a way to explicitly update the values of host or
device memory with the values of the other. This can be thought of as synchronizing the contents
of the two memories. As of OpenACC 2.0, the update directive accepts a device clause for copying
data from the host to the device, as well as a self clause for updating from the device to local
memory (which is the host memory) except in the case of nested OpenACC regions. Figure 4.17
shows an example of the update directive that can be added to the C++ class in Figure 4.16.

Loop Optimization: A programmer may choose to further optimize a loop by explicitly mapping the
parallelism to gangs, workers, and vectors. In fact, the loop directive can be combined with the
following clauses:

(1) A gang clause, which partitions the loop across gangs.

(2) A worker clause, which partitions the loop across workers.

(3) A vector clause, which vectorizes the loop.

(4) A seq clause, which runs the loop sequentially.

These directives can also be combined for a particular loop. For example, a gang vector loop
would be partitioned across gangs, each of which with one worker implicitly, and then vectorized.
The OpenACC speci�cation governs that the outermost loop must be a gang loop, the innermost

43

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 template <class ctype > class Data
2 {
3 private:
4 int len; // length of the data array
5 ctype *arr; // data array
6
7 public:
8 // class constructor
9 Data(int length) {

10 len = length;
11 arr = new ctype[len];
12 #pragma acc enter data copyin(this)
13 #pragma acc enter data create(arr[0:len])
14 }
15
16 // copy constructor
17 Data(const Data <ctype > &d)
18 {
19 len = d.len;
20 arr = new ctype[len];
21 #pragma acc enter data copyin(this)
22 #pragma acc enter data create(arr[0:len])
23 #pragma acc parallel loop present(arr[0:len],d)
24 for(int i = 0; i < len; i++){
25 arr[i] = d.arr[i];
26 }
27 }
28
29 // class destructor
30 ˜Data() {
31 #pragma acc exit data delete(arr)
32 #pragma acc exit data delete(this)
33 delete arr;
34 len = 0;
35 }
36 };

Figure 4.16: An example of unstructured data scopes.

1 void update_host () {
2 #pragma acc update self(arr[0:len])
3 ;
4 }
5
6 void update_device () {
7 #pragma acc update device(arr[0:len])
8 ;
9 }

Figure 4.17: An example of the update directive.

parallel loop must be a vector loop, and that a worker loop can appear in between. A sequential
loop can appear at any level. The programmer can also control the number of gangs, workers, and
vectors used in partitioning the loop.

Routine Parallelism: If a function is called within a parallel loop, the compiler might not be able
to parallelize it correctly since it has no information about the loop structure of that function.
OpenACC 1.0 either inlines all function calls in the parallel region, or decides not to parallelize
the region at all. OpenACC 2.0 introduced a new directive routine that is used to inform the
compiler about potential parallelism in a certain routine. The routine must be added to the
function de�nition.

Asynchronous operations: It is possible to perform operations asynchronously using OpenACC. The
async clause allows a parallel region to be executed on the accelerator without the host waiting for
it to �nish. The async clause can be used with the kernels, parallel loop, and update directives.
In order to synchronize the host and the accelerator again, a wait directive can be used. Both async

44

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

and wait accept a non-negative integer value which indicates to the queue ID to execute in or to
synchronize against. If no queue is passed, the execution/synchronization occurs with respect to
the default queue.

Figure 4.18 shows an example that uses asynchronous operations. The code initializes the arrays
a and b using di�erent queues, so that they can be done concurrently. The wait(1) async(2)
statement makes all future launches in queue 2 dependent on the completion of all tasks submitted
to queue 1. The vector addition can then be safely submitted to queue 2. The code then updates
the copy of c on the host in queue 2. Finally, the wait statement ensures that the host waits for all
previous operations to complete.

1 #pragma acc parallel loop async (1)
2 for (int i=0; i<N; i++){
3 a[i] = i;
4 }
5
6 #pragma acc parallel loop async (2)
7 for (int i=0; i<N; i++) {
8 b[i] = 2*i;
9 }

10
11 #pragma acc wait (1) async (2)
12 #pragma acc parallel loop async (2)
13 for (int i=0; i<N; i++) {
14 c[i] = a[i] + b[i]
15 }
16
17 #pragma acc update self(c[0:N]) async (2)
18 #pragma acc wait

Figure 4.18: Asynchronous operations in OpenACC.

Multi-Device Acceleration: OpenACC supports multi-accelerator programming using a set of APIs
that can read the number of devices in a system, select a particular accelerator, and get the ID of
the currently selected accelerator. In there are di�erent accelerator types, there are APIs that can
query or set the type of a particular accelerator in the system.

OpenACC Interoperability

OpenACC codes can be mixed with codes that use other programming models, such as CUDA and
OpenCL. In such a case, the programmer should decide between either managing the device memory
inside the context of OpenACC or in the context of other programming models. For example, there
should be a way to pass device arrays created inside OpenACC to other CUDA libraries (e.g., cuBLAS),
and vice versa. In general, there are two ways to accomplish interoperability.

(1) The �rst is host data region, which is used when the device variables are created and managed inside
OpenACC. In such a case, the host can call other accelerated libraries by extracting the device
pointers from OpenACC using the host_data region. The host_data region gives the programmer
a way to expose the device address of a given array to the host for passing into a function. This
data must have already been moved to the device. The region accepts only the use_device clause,
which speci�es which device variables should be exposed to the host. Figure 4.19 shows an example
of two arrays, x and y, which are placed on the device using a data region and then initialized in an
OpenACC loop. These arrays are then passed to the cublasSaxpy function as device pointers using
the host_data region.

(2) The second way is using device pointers. In this case, the device variables are created and managed
outside the OpenACC context. In order to pass such variables to OpenACC regions, the device_ptr

45

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

data clause must be used. Figure 4.20 shows an example of coding an OpenACC equivalent to
cublasSaxpy.

1 #pragma acc data create(x[0:n]) copyout(y[0:n])
2 {
3 #pragma acc kernels
4 {
5 for(i = 0; i < n; i++) {
6 x[i] = 1.0f;
7 y[i] = 0.0f;
8 }
9 }

10
11 #pragma acc host_data use_device(x,y)
12 {
13 cublasSaxpy(n, 2.0, x, 1, y, 1);
14 }
15 }

Figure 4.19: OpenACC interoperability using host_data regions.

1 void saxpy(int n, float a, float * restrict x, float * restrict y) {
2 #pragma acc kernels deviceptr(x,y)
3 {
4 for(int i=0; i<n; i++) {
5 y[i] += a*x[i];
6 }
7 }
8 }

Figure 4.20: OpenACC interoperability using device_ptr data clause.

4.1.4 MPI

Message Passing Interface (MPI) de�nes a standard of interfaces for cross-platform programming on
distributed-memory computers. It includes a wide range of functions that allow the processes to pass
messages in a portable fashion. It is designed by a group of experts from both academia and industry,
and is de�ned for both C and Fortran. The �rst release of MPI, MPI-1.0, was in February 1993.

MPI-3

The most recent release of MPI is MPI-3.0, approved by the MPI Forum in September 2012, followed by
MPI-3.1 in June 2015. MPI-3.1 mostly consists of corrections and clari�cations (e.g., for Fortran bindings),
but also includes a few enhancements and new features (e.g., for portability and nonblocking I/O).
There are several implementations of MPI-3, including three open-source implementations—MPICH,
OpenMPI, and MVAPICH, which is based on MPICH but adds a few features such as In�niBand support.
Here we describe the principal new features of MPI-3.

Non-blocking Collectives: A set of non-blocking, or “immediate,” collectives are de�ned (e.g.,
MPI_Ibcast, MPI_Ireduce, MPI_Iallreduce, and MPI_Ibarrier, and MPI_Test or MPI_Wait) to test
or wait for the completion of the non-blocking collectives. Multiple non-blocking collectives can
be pipelined by calling multiple non-blocking collective functions before calling the corresponding
waits, though they must be called in the same order by all the processes. These allow the commu-
nication to overlap with computation or with other communications. They can also be used to
mitigate load imbalance or system noise by avoiding immediate global synchronizations.

46

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 MPI_Ibcast(buf , count , type , root , comm , &request);
2 // do computation or communication
3 ...
4 MPI_Wait (&request , &status);

In practice, the extent to which it is e�ective in overlapping the communication with the com-
putation depends on many factors, such as their implementations, the target hardware, and the
nature of communications and computations. The current releases of both MPICH and OpenMPI
implement non-blocking collectives using TCP and IP-over-In�niBand; in OpenMPI, the blocking
collectives may directly take advantage of Ini�niBand. Thus, though the non-blocking collectives
may allow the communication to overlap, the actual communication could be slower than the
corresponding blocking communication. To ensure the progress of the communication, both
MPICH and OpenMPI provide an option to enable a progress thread. If the progress thread and
application threads use the same resource, these threads may compete for the resource and slow
down the execution of the application or the communication. In order to reduce the interference of
the MPI’s progress thread with application threads, each process may require a separate spare core,
or a hyper thread. Both MPICH and OpenMPI are actively working to improve the performance
of non-blocking collectives (e.g., under the ECP OMPI-X project).

Neighborhood collectives: The collective communications among a subset of processes, named “neigh-
bors,” are de�ned, e.g.:

• MPI_Neighbor_allgather,

• MPI_Neighbor_alltoall,

• MPI_Ineighbor_allgather,

• MPI_Ineighbor_alltoall.

Such neighbors can be de�ned based on an MPI Cartesian or virtual process topology (MPI-2
introduced the creation of graph topology where each process speci�es its neighbors).

1 // create a 2x2x2 3D periodic process grid
2 MPI_Cart_create(comm , 3, {2, 2, 2}, {1, 1, 1}, 1, &newcomm);
3 // start communication with neighbors
4 MPI_Ineighbor_alltoall (..., &newcomm , &req);
5 // do local computation
6 ...
7 MPI_Wait (&req , MPI_STATUS_IGNORE);
8 // do boundary computation
9 ...

Improved One-Sided Communication Interface: MPI-2 introduced one-sided communication be-
tween “origin” and “target” processes (e.g., MPI_Put and MPI_Get). This allows an origin process
to access remote memory without synchronizing with the target process. Each process can as-
sign its local memory as remotely-accessible memory, which is called “window object” (using
MPI_Win_create). There are three data access models, referred to as “active,” “generalized active,”
and “passive” targets. For instance, for the active data access control, the process can create a “fence”
and de�ne an “epoch,” within which the window object becomes available for all the processes.
For the generalized active control, the process can specify which process it communicates with
(e.g., using MPI_Win_post and MPI_Win_start with MPI_Group), while the passive control initiates the
access to a speci�c rank.

1 // create window
2 MPI_Win window;
3 MPI_Win_create(local_memory , size , disp_unit , info , comm , &window);
4 // start of fence
5 MPI_Win_fence ((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), window);
6 // one -sided communication
7 MPI_Get(origin_addr , origin_count , origin_type ,
8 target_rank , target_distp , target_count , target_type , window);
9 MPI_Win_fence(MPI_MODE_NOSUCCEED , window);

10 // end of fence
11 MPI_Win_free (& window);

47

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

MPI-3 introduced new window creation routines (i.e., MPI_Win_allocate, MPI_Win_create_dynamic,
or MPI_Win_allocate_shared) and atomic operations (i.e., MPI_Get_accumulation,
MPI_Fetch_and_op, and MPI_Compare_and_swap). MPI-3 also allows the “uni�ed memory
model” if available.

Fortran 2008 Bindings: MPI-3 now complies with the Fortran standard (with the mpi_f08 module).

1 use mpi_f08
2 double precision , asynchronous :: buf (1000)
3 type(MPI_STATUS) :: status
4 type(MPI_Request) :: req
5 type(MPI_Comm) :: comm
6
7 call MPI_IRECV(buf , 1000, MPI_DOUBLE_PRECISION , 0, 0, comm , req)
8 ... // computation or communication
9 call MPI_WAIT(req , status)

10
11 if (status%MPI_ERROR .eq. MPI_SUCCESS) then
12 if (.not. MPI_ASYNC_PROTECTS_NONBLOCKING) then
13 call MPI_F_SYNC_REF(buf);
14 end if
15 end if

Tools Interface: MPI-3 introduced an interface for tools, called MPI_T. This interface provides mecha-
nisms to access the control and performance variables exposed by MPI. It is complementary to the
Programmer’s Message-Passing Interface (PMPI), and allows the performance pro�ler to extract
information about the MPI processes (e.g., number of packets sent, time spent blocking, bu�er
memory, etc.). Several control variables are available, including:

• ALLTOALL_SHORT_MSG_SIZE,

• ALLTOALL_THROTTLE,

• BCAST_MIN_PROCS, etc.

The code below shows an example of changing a control variable (i.e., doubling the short message
size for alltoall):

1 MPI_T_init_thread(MPI_THREAD_SINGLE , &provided);
2 MPI_Init (&argc , &argv);
3 MPI_T_cvar_get_num (& cvar_num);
4 for (cvar_id = 0; cvar_id < cvar_num; cvar_id ++) {
5 MPI_T_cvar_get_info(cvar_id , name , &name_len , &verbosity , &dtype , &enumtype ,
6 desc , &desc_len , &bind , &scope);
7 if (strncmp(name , "ALLTOALL_SHORT_MSG_SIZE", STR_SZ) == 0) {
8 // double the message size
9 MPI_T_cvar_handle_alloc(cvar_id , NULL , &handle , &count);

10 MPI_T_cvar_read(handle , &msg_size);
11 msg_size *= 2;
12 MPI_T_cvar_write(handle , &msg_size);
13 MPI_T_cvar_handle_free (& handle);
14 break;
15 }
16 }
17 if (cvar_id == cvar_num) {
18 printf("Error: ALLTOALL_SHORT_MSG_SIZE not available\n");
19 }
20 // do computation and communication including alltoall
21 ...
22 MPI_Finalize ();
23 MPI_T_finalize ();

Available performance variables include:

• unexpected_recvq_length,

• unexpected_recvq_match_attempts,

• unexpected_recvq_buffer_size,

• mem_allocated,

48

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

• mv2_progress_poll_count, etc.

The code below shows an example of reading a performance variable:

1 MPI_T_pvar_get_num (& pvar_num);
2 for (pvar_id = 0; pvar_id < pvar_num; par_id ++) {
3 MPI_T_pvar_get_info(pvar_id , pvar_name , &name_len , &verbosity ,
4 &variable_class , &data_type , &enum_type ,
5 description , &description_len , &binding ,
6 &readonly , &continuous , &atomic);
7 if (strcmp(pvar_name , "mv2_progress_poll_count") == 0) {
8 MPI_T_pvar_session_create (& pvar_session);
9 MPI_T_pvar_handle_alloc(pvar_session , pvar_id , NULL ,

10 &progress_poll_count_handle , &count);
11 }
12 }
13
14 MPI_Isend(buf , buf_size , MPI_DOUBLE , 0, 0, MPI_COMM_WORLD , &req);
15 MPI_T_pvar_read(pvar_session , progress_poll_count_handle , &poll_count);
16 printf("progress poll count = %d\n", poll_count);
17
18 MPI_T_pvar_handle_free(pvar_session , &progress_poll_count_handle);
19 MPI_T_pvar_session_free (& pvar_session);

Besides these variables, MPI-3 includes thread-safe probe and receive, noncollective communicator
creation, and nonblocking communicator duplication.

MPI Features of Interest to SLATE

Thread Support: There are four levels of thread support that an MPI implementation can provide:

• MPI_THREAD_SINGLE: Application is single-threaded.

• MPI_THREAD_FUNNELED: Application may be multi-threaded, but only the main thread makes
the MPI calls.

• MPI_THREAD_SERIALIZED: Application is multi-threaded and any thread may make MPI calls.
However, only one thread will call the MPI function at a time.

• MPI_THREAD_MULTIPLE: Application is multi-threaded, and any thread can make an MPI call at
any time.

An application may request a certain level of thread support using MPI_Init_thread. Then, the
MPI implementation informs the application of the highest level of thread support that it can
provide.

One use of MPI’s multi-thread support could be to overlap the communication with the computa-
tion, or to pipeline di�erent communications. Although non-blocking communication provides
the potential to overlap or pipeline communication without a progress thread, the non-blocking
communication may progress only when the application thread is blocked in an MPI call (i.e.,
MPI_Wait). This could prevent the application from overlapping or pipelining the communication.
Although MPI’s progress thread (with a spare core or hyper thread) may ensure that the collec-
tive progresses in the background, the current implementation of the non-blocking collective
may be based on TCP/IP while the corresponding blocking collective may be able to directly
support In�niBand. Therefore, the non-blocking communication may be slower than the blocking
communication.

Alternatively, using MPI’s thread support, if one of the application threads blocks on the communi-
cation, while the other threads perform the computation or other communication, the application
may achieve better overlap (depending on the nature of the communication). However, even
when MPI supports multiple threads, its use from di�erent threads must be carefully designed.
For instance, if there are multiple outstanding all-reduce requests from di�erent threads, the

49

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

application must ensure that the requests are matched correctly (e.g., using di�erent communica-
tors). In addition, some blocking communications (e.g., all-reduce) may not pipeline even when
they are called from di�erent threads at the same time. On the other hand, the non-blocking
communications are under active developments, and the aforementioned shortcomings of the
non-blocking communication may be addressed in near-future releases.

GPU Support: CUDA-aware MPI detects if the message is in the host or device memory, and enables
the data transfer between the GPUs through the same interfaces. For example, a simple code below
transfers data in the device memory, but using CUDA-aware MPI, the explicit transfer of the data
from the device to the host memories are not needed:

1 // copy message from device to host (not needed with CUDA -aware MPI)
2 cudaMemocpy(h_buffer , d_buffer , size*sizeof(double), cudaMemcpyDeviceToHost);
3
4 // start sending message through MPI
5 MPI_Isend(h_buffer , size , MPI_DOUBLE , 1, 100, MPI_COMM_WORLD , request);

The main advantage of the CUDA-aware MPI are:

• GPUDirect is utilized to avoid some memory copies between communication bu�ers (e.g.,
host bu�er). CUDA 5.0 introduced the GPUDirect RDMA. With this feature, the data can
be directly moved from the local device memory to the remote device memory as RDMA
network messages. Figure 4.21 compares the inter-GPU communication with and without
CUDA-aware MPI.

• The steps of the message transfer are automatically pipelined (see Figure 4.22d). It also eases
the use of non-blocking communication between the GPUs.

Figure 4.21: Illustration of GPUDirect (source: https://devblogs.nvidia.com/parallelforall/
introduction-cuda-aware-mpi/).

OpenMPI-1.7 introduced CUDA-aware message-passing for all the send and receive APIs, and
blocking collectives. CUDA-aware non-blocking collectives and one-sided communication are not
supported. As of release 1.8, MVAPICH2 also supports CUDA-aware communication. CUDA 4.0 is
required while CUDA 4.1 adds inter-process communication (IPC) support for fast data transfer
between GPUs on the same node. CUDA 5.0 introduced GPUDirect RDMA.

MPI-4: Future Developments and Trends

MPI is a widely used library and, since its inception, has become ubiquitous in computational science
and engineering. Future developments will address a broad spectrum of issues including:

• runtime interoperability for the MPI+X programming model,

50

https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/
https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/

4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

(a) Standard MPI. (b) CUDA-aware MPI.

(c) CUDA-aware MPI with CUDADirect. (d) Pipelining inter-GPU messaging.

Figure 4.22: Inter-node communication with CUDA-aware MPI with or without GPUDirect (source:
https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/).

• extension of the MPI standard to better support the upcoming exascale architectures,

• improvements to scalability and performance,

• support for more dynamic execution environments,

• resilience,

• MPI tools interface.

The MPI standard, �rst published in 1994, was originally designed for architectures that were dramatically
simpler than today’s, let alone exascale. It has evolved through the years to provide support for recent
systems; however, changes in both the hardware and the so�ware environments need to be studied in
order to accommodate exascale computing. These key areas of concern have been identi�ed by the
Department of Energy, for the Exascale Computing Project.

MPI-4: Exascale So�ware Development Needs

Although current MPI implementations are well established, they do not provide everything needed to
support exascale systems. Future developments will require a broad spectrum of activities intended to
address key concerns for exascale application.

• Because MPI now typically lives in a much more complex runtime environment than in the past,
current research focuses on addressing the issues related to runtime interoperability for the MPI+X
programming model. This includes issues like interactions with di�erent models of multi threading
and accelerator o�oad.

• In order to better support exascale machines with massively threaded nodes and networks capable
of very high bandwidths and message injection rates, recent e�orts focus on issues such as: bet-
ter scalability, resource management and isolation, better performance of collective operations,

51

https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

optimization or MPI-3 remote memory access (RMA) operations, etc. MPI developers will work
closely with application teams and library writers to prototype, evaluate, and re�ne the standard
and its implementations.

• As system environments grow more complex, there is a growing need to improve MPI support
for more dynamic execution environments. This includes enhancing MPI implementations to
facilitate intelligent decisions about process placement, as well as opening up new capabilities
to respond to, and even coordinate with, other network users to manage contention. Memory
hierarchies are also becoming deeper and more complex; thus, MPI developers must address data
placement and movement in concert with other system components.

• Current work on MPI’s error resilience is focused on interoperability among the applications,
the libraries, and the system so�ware. Interfaces are needed for MPI to work e�ectively with
sophisticated checkpoint/restart systems, which will be developed by the ECP. There is a need to
develop the interfaces necessary to connect MPI to the supercomputer’s RAS subsystem, to allow
more direct and more �exible error detection, in support of better fault-handling capabilities.

• The availability of appropriate tools is critical to the ability of users to assess how well MPI is
working for them. Future work on MPI tools interfaces will address some of the key emerging areas,
including memory tracking, RMA performance data, access to network performance counters, etc.

• Finally, in order to deliver production-quality implementations, MPI developers will need to
improve the testing infrastructure, and deploy extensive test suites.

4.2 Frameworks

4.2.1 PaRSEC

PaRSEC, short for Parallel Runtime Scheduling and Execution Controller, is a framework for managing
the scheduling and execution of tasks on distributed many-core heterogeneous architectures [20, 21].
PaRSEC executes a workload de�ned as a directed acyclic graph (DAG) consisting of the tasks (nodes) and
their data-dependencies (edges). Figure 4.23 illustrates the PaRSEC framework. Internally, the PaRSEC
framework uses a parameterized task graph (PTG) representation [26].

Figure 4.23: The PaRSEC framework.

52

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

It was �rst released in January 2012, followed by a couple of subreleases in 2014 (version 1.1 in January
and 1.2 in April). It is now being prepared for the 2.0 release. It has been used for solving dense linear
algebra problems, and its releases are coupled with the releases of DPLASMA, the distributed memory
counterpart of the PLASMA so�ware. However, PaRSEC can be separately compiled on its own, and
has been used for other purposes (e.g., the sparse direct solver Parallel Sparse matriX package [PaStiX]
and applications such as NWChem or TOTAL). Ongoing work includes supports for fault tolerance,
performance pro�ling, tracing and visualization.

Parameterized Task Graph

In the PTG, an algorithm is viewed as a DAG of tasks and the associated data�ow between the tasks. The
computational work consists of task classes parameterized by their position in the �ow of computation;
the predecessor-successor relation between instances of the task classes is explicit in the task description,
linking task instances via algebraic expressions of the task parameters. Figures 4.24 and 4.25 show the
serial implementation of the QR factorization, and the PTG representation of the algorithm in the Job
Description Format (JDF), respectively. In addition to the task-dependencies, the user must specify the
initial data distribution, and the task is assigned to the process based on the data distribution. For instance,
in Figure 4.25a, the POTRF(k) task is assigned to the process that owns the diagonal block dataA(k, k) as
speci�ed in Line 5.

1 for(int k = 0; k < n; k++) {
2 potrf("Upper", A(k, k));
3
4 for (int j = k+1; j < n; j++)
5 trsm("Left", "Upper", "NoTrans", "NoTrans", A(k, k), A(k, j));
6
7 for(int i = 0; i < n; i++) {
8 syrk("Upper", "Trans", A(k, i), A(i, i));
9 for (int j = i+1; j < n; j++) {

10 gemm("Trans", "NoTrans", A(k, i), A(k, j), A(i, j))
11 }
12 }
13 }

Figure 4.24: Classic Cholesky factorization using loops and basic kernels.

All the relationships between tasks are described with these algebraic expressions, which also connect
input-output data dependencies between tasks. A task can independently query the parameter-range
expressions for complete information about its data communication and its relationships to other tasks.
The size of the PTG is related to the number of task classes—not to the size of the problem being
solved—so this compact representation can easily be evaluated at each computing node to provide
details of both local and remote operations.

From the programmer’s perspective, once a PTG has been de�ned, PaRSEC schedules the tasks onto
the hardware and handles the data communication transparently. The binding of tasks to distributed
memory nodes is determined at the task insertion time. By default, this binding is determined by the data
layout, but the programmer can create other task bindings at will. Within each node, the scheduling and
execution of the tasks can be dynamically managed at execution time, allowing PaRSEC to do node-level
load balancing. The communication is managed by PaRSEC, and can be overlapped with computation.
In its current state, job stealing to reduce load imbalance among nodes has not been implemented.

Sequential Task Flow

The PaRSEC team is working on adding the Sequential Task Flow (STF) interface to provide a simpler
alternative to writing applications using the PTG. Tasks are added to the DAG sequentially, with the

53

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 POTRF(k) [high_priority = on]
2 // Execution space
3 k = 0 .. descA.mt -1
4 // Parallel partitioning
5 :dataA(k, k)
6 // Parameters
7 RW T <- (k == 0) ?
8 dataA(k, k) : T SYRK(k-1, k)
9 -> T TRSM(k+1.. descA.mt -1, k)

10 -> dataA(k, k)
11 BODY
12 {
13 int tempkm = k == descA.mt -1 ?
14 descA.m - k*descA.mb : descA.mb;
15 int iinfo = 0;
16 int ldak = BLKLDD(descA , k);
17
18 CORE_dpotrf(
19 uplo , tempkm , T, ldak ,
20 &iinfo);
21 if (iinfo != 0 && *INFO == 0)
22 *INFO = k*descA.mb+iinfo;
23 }

(a) Factor a diagonal block.

1 SYRK(k, m) [high_priority = on]
2 // Execution space
3 k = 0 .. descA.mt -2
4 m = k+1 .. descA.mt -1
5 // Parallel partitioning
6 : dataA(m, m)
7 // Parameters
8 READ A <- C TRSM(m, k)
9 RW T <- (k == 0) ?

10 dataA(m, m) : T SYRK(k-1, m)
11 -> (m == k+1) ?
12 T POTRF(m) : T SYRK(k+1, m)
13 BODY
14 {
15 int tempmm = m == descA.mt -1 ?
16 descA.m - m*descA.mb : descA.mb;
17 int ldam = BLKLDD(descA , m);
18
19 CORE_dsyrk(
20 PlasmaLower , PlasmaNoTrans ,
21 tempmm , descA.mb,
22 (double)-1.0, A /*A(m, k)*/, ldam ,
23 (double) 1.0, T /*A(m, m)*/, ldam);
24 }
25 END

(b) Update a diagonal block.

1 TRSM(m, k) [high_priority = on]
2 // Execution space
3 m = 1 .. descA.mt -1
4 k = 0 .. m-1
5 // Parallel partitioning
6 : dataA(m, k)
7 // Parameters
8 READ T <- T POTRF(k)
9 RW C <- (k == 0) ?

10 dataA(m, k) : C GEMM(m, k, k-1)
11 -> A SYRK(k, m)
12 -> A GEMM(m, k+1..m-1, k)
13 -> B GEMM(m+1.. descA.mt -1, m, k)
14 -> dataA(m, k)
15 BODY
16 {
17 int tempmm = m == descA.mt -1 ?
18 descA.m - m * descA.mb : descA.mb;
19 int ldak = BLKLDD(descA , k);
20 int ldam = BLKLDD(descA , m);
21
22 CORE_dtrsm(
23 PlasmaRight , PlasmaLower ,
24 PlasmaTrans , PlasmaNonUnit ,
25 tempmm , descA.nb,
26 (double)1.0, T /*A(k, k)*/, ldak ,
27 C /*A(m, k)*/, ldam);
28 }
29 END

(c) Factor an o�-diagonal block.

1 GEMM(m, n, k)
2 // Execution space
3 k = 0 .. descA.mt -3
4 m = k+2 .. descA.mt -1
5 n = k+1 .. m-1
6 // Parallel partitioning
7 : dataA(m, n)
8 // Parameters
9 READ A <- C TRSM(m, k)

10 READ B <- C TRSM(n, k)
11 RW C <- (k == 0) ?
12 dataA(m, n) : C GEMM(m, n, k-1)
13 -> (n == k+1) ?
14 C TRSM(m, n) : C GEMM(m, n, k+1)
15 BODY
16 {
17 int tempmm = m == descA.mt -1 ?
18 descA.m - m * descA.mb : descA.mb;
19 int ldam = BLKLDD(descA , m);
20 int ldan = BLKLDD(descA , n);
21
22 CORE_dgemm(
23 PlasmaNoTrans , PlasmaTrans ,
24 tempmm , descA.mb, descA.mb,
25 (double)-1.0, A /*A(m, k)*/, ldam ,
26 B /*A(n, k)*/, ldan ,
27 (double) 1.0, C /*A(m, n)*/, ldam);
28 }
29 END

(d) Update an o�-diagonal block.

Figure 4.25: PaRSEC Cholesky factorization subroutine based on JDF. The relationships between the
four kernel routines and the data�ow between them is expressed in the “Parameters” clause.

54

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

parameters tagged as read and/or write. The runtime can then use the sequential task insertion order,
and the data tags, to determine all the dependencies and execute the workload correctly. This technique
is o�en referred to as task-superscalar. Figure 4.26 shows the PaRSEC implementation of the Cholesky
factorization using the insert-task interface.

In distributed systems, there are limitations to the scalability of the STF approach. The entire DAG
must be discovered sequentially by each node, i.e., each node must track all the dependencies—even the
remote ones.

1 for(int k = 0; k < n; k++) {
2 insert_task(handle , &kernel_potrf , priority , "POTRF",
3 PASSED_BY_REF , TILE_OF(A, k, k, 0), INOUT | REGION_FULL | AFFINITY ,
4 sizeof(int), &ldak , VALUE ,
5 0);
6 for (int j = k+1; j < n; j++)
7 insert_task(handle , &kernel_trsm , priority , "TRSM",
8 PASSED_BY_REF , TILE_OF(A, k, k, 0), INPUT | REGION_FULL ,
9 PASSED_BY_REF , TILE_OF(A, k, j, 0), INOUT | REGION_FULL | AFFINITY ,

10 0);
11
12 for(int i = 1; i <= n; i++) {
13 insert_task(handle , &kernel_syrk , priority , "SYRK",
14 PASSED_BY_REF , TILE_OF(A, k, i, 0), INPUT | REGION_FULL ,
15 PASSED_BY_REF , TILE_OF(A, i, i, 0), INOUT | REGION_FULL | AFFINITY ,
16 0);
17 for (int j = i+1; j <= n; j++) {
18 insert_task(handle , &kernel_gemm , priority , "GEMM",
19 PASSED_BY_REF , TILE_OF(A, k, i, 0), INPUT | REGION_FULL ,
20 PASSED_BY_REF , TILE_OF(A, k, j, 0), INPUT | REGION_FULL ,
21 PASSED_BY_REF , TILE_OF(A, i, j, 0), INOUT | REGION_FULL | AFFINITY ,
22 0);
23 }
24 dtd_data_flush(handle , TILE_OF(A, k, i, 0));
25 }
26 }

Figure 4.26: PaRSEC Cholesky factorization using the Sequential Task Flow (insert-task) interface.

Accelerator Support

PaRSEC supports the use of accelerators, such as GPUs, and handles the communication to these devices
transparently. Presently, the use of these devices is speci�ed in the PTG at compile time, rather than
being handled automatically at runtime. In order to utilize the computing power of GPUs e�ciently,
current e�orts target support for “hierarchical DAGs,” where smaller DAGs can be nested within larger
ones.

What does PaRSEC do best?

• The compact DAG representation in PaRSEC (PTG) avoids many bottlenecks in the generation
and tracking of task dependencies. At the same time, the task-superscalar scheduling, while much
more convenient to use, is limited in scalability by the process of sequential DAG unrolling.

• PaRSEC minimizes the serial overheads and has good scalability to large numbers of distributed
memory nodes [10].

• PaRSEC is able to use accelerators semi-transparently using kernels built for the accelerator.
However, the current scheduling mechanism does not abstract execution to allow PaRSEC to
dynamically choose accelerators versus CPUs, depending on the executing workload. This decision
is statically made by the programmer.

55

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Where does PaRSEC not do well?

• Developing a compact DAG representation for an application is a challenging task, which quickly
gets more di�cult with the complexity of the dependencies in the algorithm.

• PaRSEC does not easily support data-dependent DAGs. For example, computations with “if”
conditions that depend on the data are not be supported. Workarounds are usually possible.

• PaRSEC does not mix with synchronization techniques outside of its paradigm. For instance, the LU
factorization with partial pivoting requires an implementation of the panel factorization operation
using a “gang” of tasks, synchronized using barriers. Currently, PaRSEC does not facilitate such
implementations, which has been a major roadblock for building an e�cient implementation of
the LU factorization.

• The tasks are not dynamically scheduled over all the distributed memory nodes at execution time.
There are some positive aspects to this, since the long-term load balancing may be better with the
static binding, and data movement can be initiated early.

PaRSEC Performance on a Large Scale

PaRSEC has shown excellent performance and scalability. PaRSEC implementation of the QR factoriza-
tion of a M = N = 41, 472 matrix achieved performance many times higher then that of the Cray LibSci
library, when run using 23, 868 cores of the Kraken supercomputer at ORNL (Cray XT5) [10]. PaRSEC
has also been shown to perform well on distributed-memory hybrid, accelerator-based machines [85].

Pros of using PaRSEC for SLATE:

• O�ers good scaling properties with PTGs.

• Takes care of scheduling work to accelerators.

• Handles asynchronous task scheduling and management.

• Enables deep lookaheads because it “sees” the entire DAG at once.

Cons of using PaRSEC for SLATE:

• Complex algorithms are not easily expressed in the PTG notation.

• Does not mix well with other scheduling paradigms.

• Does not facilitate data-dependent scheduling.

4.2.2 Legion

Legion is a data-centric parallel programming system that deals primarily with inter-node parallelism.
Legion is a C++ framework (template, runtime, library) that provides annotations and scheduling of
data dependencies, and allows customized mapping from tasks/data to hardware execution units and
memory. “Logical Region” is the core abstraction in Legion used to describe the structure of program
data; “Mapping Interface” is the core mechanism used to map program data to physical memory and
tasks to execution units.

56

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 struct Node {...};
2 struct Wire {...};
3 struct Circuit { region r_all_nodes; region r_all_wires; };
4
5 void simulate_circuit(Cicuit c, float dt) : RWE(c.r_all_nodes , c.r_all_wires)
6 {
7 partition <disjoint > p_wires = c.r_all_wires.partition(wire_map);
8 ...
9 partition <aliased > p_ghost_nodes = p_nodes_pvs [1]. partition(node_neighbor_map);

10
11
12 ...
13 for (t=0; t<TIME_STEPS; t++) {
14 spawn(i=0; i<MAX_PIECES; i++) distribute_charge(pieces[i],dt);
15 ...
16 }
17
18 }
19
20 void distribute_charge(CircuitPiece piece , float dt):
21 ROE(piece.rw_pvt), RdA(piece.rn_pvt , piece.rn_shr , piece.rn_ghost) {
22 foreach (w: piece.rw_pvt)
23 w->in_node ->new_charge += -dt * w->current;
24 w->out_node ->new_charge += dt * w->current;
25 }
26 }

Figure 4.27: A Circuit Simulator in Legion pseudocode (excerpt adapted from the article by Bauer et
al. [13]).

Logical Region

A Legion program �rst decomposes the computation objects into logical regions. Regions can be further
partitioned into sub-regions. Regions can even overlap with each other. Functions that specify which
regions to touch, and the privileges/coherence associated with those regions, are called tasks. The Legion
runtime features a so�ware out-of-order scheduler that performs parallel execution of tasks which honor
data dependencies. Figure 4.27 shows an example of a circuit simulation reported by Bauer et al. [13].
There are four points of interests in this example:

1. (line 5) In the task speci�cation, the regions (data) that the task is going to touch are marked with
privilege and coherence. RWE means read-write-exclusive, i.e., the task is going to read and write
the regions; the coherence is exclusive, meaning the execution order is to be maintained.

2. (line 7 to 9) This is where data are partitioned into logical regions. The partition can be marked
as disjoint or aliased, depending on whether the partitions can overlap. Tasks working on
disjoint data can be run in parallel, while tasks working on shared (aliased) data might require
communication and synchronization.

3. (line 14) This is how the tasks are issued—in this case following three phases in each time step.
Note that the tasks are not necessarily run according to the issuing order; the Legion scheduler will
schedule the tasks concurrently and out of order, so long as the data dependency allows. Also, note
that there is no explicit synchronization or communication involved.

4. (line 21 to 24) This is a task working on a region that consists of a private region, a shared region,
and an aliased ghost region. This task will update the shared and the aliased regions, which poses a
potential con�ict for other tasks. Thus, the task is marked as Reduction-Atomic (RdA) to enable
concurrent updates to the aliased regions.

The mapping interface gives the program control over where tasks run and where region instances are
placed (but when to run the tasks is determined by the so�ware out-of-order processor [SOOP] scheduler).

57

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 struct SparseMatrix {
2 region lr;
3 partition <disjoint > part;
4 int n_rows , elmts_per_row;
5 }
6 struct Vector {
7 region lr;
8 partition <disjoint > part;
9 int n_elmts;

10 }
11
12 void CG(SparseMatrix a, Vector x): RWE(a.lr, x.lr) {
13 tunable int num_pieces;
14 a.part = a.lr.partition(num_pieces);
15 x.part = x.lr.partition(num_pieces);
16 Vector r_old(x.n elmts), p(x.n elmts), A_p(x.n elmts);
17
18 spawn <num pieces > spmv(a.part , x.part , A_p.part);
19 spawn <num pieces > subtract(b.part , A_p.part , r_old.part);
20 double L2Norm0 = spawn <num_pieces > L2norm(r_old.part);
21 copy(r_old , p);
22
23 predicate loop_pred = true;
24 future r2_old , pAp , alpha , r2_new , beta;
25 for (...) {
26 spawn <num pieces > @loop_pred spmv(A.part , p.part , A_p.part);
27 r2_old = spawn <num_pieces ><+> @loop_pred dot(r_old.part , r_old.part , r2_old);
28 pAp = spawn <num_pieces ><+> @loop_pred dot(p.part , A_p.part , alpha);
29 alpha = spawn @loop_pred divide <r2_old ,pAp);
30 spawn <num_pieces > @loop_pred daxpy(x.part , p.part , alpha);
31 spawn <num_pieces > @loop_pred daxpy(r_old.part , A_p.part , -alpha);
32 r2_new = spawn <num_pieces ><+> @loop_pred dot(r_old.part , r_old.part ,r2_new);
33 beta = spawn @loop_pred daxpy(r_old.part , p.part , beta);
34 future norm = spawn <num_pieces ><+> @loop_pred dot(r_old.part ,r_old.part ,L2norm);
35 loop_pred = spawn @loop_pred test_convergence(norm , L2norm) : false;
36 }
37 }

Figure 4.28: A Conjugate Gradient linear solver implementation in Legion. Pseudocode adapted from [14].

The interface is invoked at runtime, which enables adaptive mapping based on input data. There are
three primary mapping interfaces: select_initial_processor, permit_task_steal, map_task_region.
There is a default mapper that has default policies for these interfaces. However, the essential �exibility
comes from the ability to customize the mapper, i.e., overriding certain aspects of the default mapper.
The mapping can be customized to be completely static, fully dynamic, or something in between.

Tasks

In Legion, the task is the construct that describes computation. Tasks are asynchronous and annotated
with the regions that they access. The Legion runtime is responsible for scheduling the execution of
tasks, and for maintaining the sequential semantics of the Legion program, under the constraints of
data dependencies and other synchronization directives. In addition to the task speci�cation and launch
examples shown in Figure 4.27, tasks have more features and nuances, as shown by the example in
Figure 4.28 (adapted from Section 2.4 in the article by Bauer et al. [14]).

The following new concepts emerge from the Conjugate Gradient example in Figure 4.28:

Sub-tasks: A Legion program execution is carried out by a tree of tasks. During execution, tasks can
launch sub-tasks with the containment property, which dictates that sub-tasks can only access a subset
of the regions accessible from the parent task with the privileges equal or inferior to the privileges
of the parent task. This requirement eases the scheduling of the task trees.

Index Space Tasks: Legion provides the mechanism to launch many sub-tasks simultaneously through

58

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Index Space Tasks Launch. This can reduce the runtime overhead of launching many tasks; it can also
provide the opportunity to express properties of group tasks, such as the ability to synchronize
within a group.

Futures: As seen in the CG example in Figure 4.28, Legion supports a construct called a future. This is
a similar construct to futures in many other languages, such as C++11, and indicates a value that
promises to be available sometime in the future. A task can wait on the availability of a future
value, i.e., using it will block the task. Better yet, it can pass the future along into sub-tasks to avoid
blocking (line 34, 35).

Predicated Execution: Legion allows sub-task launches to be predicated on a boolean value that is not
resolved. In the CG example in Figure 4.28, the main iteration (lines 25-36) will stop based on
the result of test_convergence(). However, the next iteration will not wait until the result of the
test_convergence() is available. The new tasks will be spawned and allow the analysis of the task
dependencies to not block on the availability of the test result. Whether the execution of the tasks
can be predicated is a separate issue.

Task Variants and Quali�ers: Legion allows multiple variants of the same task in order to support
optimization in di�ering execution environments. Tasks can also be tagged with the quali�ers leaf,
inner, and idempotent. Leaf tasks do not generate sub-tasks. Inner tasks, on the contrary, do nothing
but generate sub-tasks. These two quali�ers aid in the analysis of the dependencies and scheduling.
An idempotent task has no side e�ects, except for the declared regions. This quali�er helps with
resilience.

What does Legion do and not do?

The central role of Legion is to schedule tasks in a way that preserves “locality” and “independence.”
Legion deals with when to run the tasks, while leaving the question of where to run the tasks, and where to
place the data, to the user.

Legion does not automatically generate tasks. Legion does not automatically map tasks/data to hardware.
Legion does not automatically decompose the program. Legion does not put the �rst priority on
productivity.

Performance of Legion for Large Scale

In the article by Bauer et al. [14], a production-quality combustion simulation S3D was ported to Legion
and demonstrated to be 3× faster than state-of-the-art S3D written in MPI/OpenACC when run using
8,192 nodes.

Implications of using Legion for SLATE:

• Legion depends on Global-Address Space Networking (GASNet) for inter-node communication.
There is no explicit communication involved; thus, the user has no direct control over communi-
cation.

• If SLATE uses Legion, will applications have to use Legion as well for parallelizing their other
components?

• One of the desirable features of Legion is the ability to control where to run tasks and where to
place data, which are essential in obtaining high performance.

59

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

• The dynamic out-of-order task scheduler seems appealing for numerical linear algebra at large
scale on heterogeneous nodes.

• Legion seems to struggle with performance when running load-balanced applications on homoge-
neous machines (see page 95 in the Sandia report by Bennett et al. [15]).

4.2.3 DARMA

DARMA was a response to the 2015 study by Bennett et al. [15] in assessing the leading Asynchronous
Many-Task (AMT) runtimes. The report studies extensively the three major AMT systems, Charm++,
Legion, and Uintah, in the context of Advanced Simulation and Computing (ASC) applications. Charm++
implements a low-level actor model and replaces MPI messages with remote procedure calls. Legion
is a data-centric model with declarative program expression (see Section 4.2.2). Uintah is a scienti�c
domain-speci�c system for PDEs on structured grids. Uintah is too domain-speci�c, and will not be
discussed further. It is instructive to read the comparative study on the performance, expressive style,
programmability, and scalability of the three AMT runtime systems in the context of the MiniAero
application. The report provides three primary conclusions:

• AMT systems are promising for large-scale heterogeneous computing.

• APIs of the AMT systems vary.

• There is a need for identifying best practices and standards.

Thus, DARMA was created to provide a uni�ed AMT API that (potentially) maps to multiple backends
(Legion, Charm++, etc.) for providing a single uni�ed API, and for studying AMT best practices—
speci�cally for Sandia’s requirements. As of the writing of this document it maps to Charm++.

Figure 4.29: The structure of DARMA (source: 2017 Sandia slides by Markosyan et al.).

DARMA can be considered as a two layer system, as shown in Figure 4.29: the front end and back end.
The front end interfaces with the application by providing abstractions to express data-task dependencies.
The backend consists of glue code and the runtime system to smoothly map to existing AMT systems
(Charm++, Legion) for scheduling and executing the tasks.

60

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

The core abstractions of the front end are the data abstraction and the task abstraction. Data are wrapped
with the darma::AccessHandle<T> or darma::AccessHandleCollection<T> constructs. Tasks are created
using darma::create_work or darma::create_concurrent_work, with the code for the task encoded in a
C++ lambda function or a functor. These constructs enforce sequential semantics, which are commonly
assumed by the programmer if no parallel processing occurs. The system extracts concurrency by
constructing a data-task dependency DAG and scheduling the execution of tasks in parallel, much like
an out-of-order processor does for instructions. An example illustrating the use of these constructs and
the execution order is shown in Figure 4.30. Note that the second and third tasks have the annotation
that they only read my_data; the other two tasks default to updating my_data. It turns out that task two
and three can execute in parallel a�er the execution of task one and before the execution of task four.

1 AccessHandle <int > my_data;
2 darma:: create_work ([=]{
3 my_data.set_value (29);
4 });
5 darma:: create_work(
6 reads(my_data), [=]{
7 cout << my_data.get_value ();
8 }
9);

10 darma:: create_work(
11 reads(my_data), [=]{
12 cout << my_data.get_value ();
13 }
14);
15 darma:: create_work ([=]{
16 my_data.set_value (31);
17 });

Figure 4.30: An example of DARMA code (source: 2017 Sandia slides by Bennett et al.).

An important extension to the scalar data abstraction AccessHandle is the collection of data abstractions
AccessHandleCollection. An example of this collection object is shown in Figure 4.31. In this case, the
mycol variable will be a collection of vector<double> with an index range Range1D(10), meaning the
elements in the collection can be accessed via indices 0–9. An associated extension deals with creating a
collection of tasks with access to a collection of data. Each task is similarly created with an index range,
and the programmer decides the elements in the data collection to use in the task based on its task index.

1 AccessHandleCollection <vector <double >, Range1D > mycol =
2 darma:: initial_access_collection(index_range=Range1D (10));

Figure 4.31: Example of the AccessHandleCollection construct.

DARMA supports another interesting communication pattern other than passing data access handles to
tasks: a pub/sub semantic called publish/fetch (in DARMA terminology). When creating access handles
for the data, a string “key” can be attached. The access handle can be “published” using its publish()
method with a version string. Other tasks can create an access handle to the same piece of data using
its “key” name and version, via the read_access() method. Thus, the publish/fetch semantics seem to
create a distributed key-value space.

4.2.4 Kokkos

Kokkos [38] is a performance portability layer for intra-node parallel programming. In this regard,
it competes with OpenMP and OpenACC. However, Kokkos is not a language extension; it is a C++
templated library and a runtime. The unique characteristic of Kokkos is the combination of both
parallel execution abstraction and architecture-optimized memory layout of multi-dimensional array
abstraction. Although both Kokkos and OpenMP/OpenACC allow for parallelizing (serial) loops, Kokkos

61

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

relies on parallel patterns instead of loops. Kokkos maps the parallel patterns into a serial loop for single
thread, multi-threaded loops for multiple threads, or GPU threads for GPUs. Here is an example of the
parallel for pattern:

1 // Serial
2 for (int i=0;i<n;i++) {
3 // loop body
4 }
5
6 // OpenMP
7 #pragma omp parallel for
8 for (int i=0;i<n;i++) {
9 // loop body

10 }
11
12 // Kokkos
13 parallel_for(n, [=] (const int i) {
14 // loop body
15 });

Besides the parallel for pattern, Kokkos also has the reduction pattern parallel reduce, as well as paral-
lel scan. It also seems to include a DAG task pattern, but we have not seen it discussed anywhere other
than Kokkos SC’16 tutorial slides.

Kokkos’ central claim is that it can achieve portable performance over multi-core, many-core, and GPU
systems through a multi-dimensional array abstraction called a View. Figure 4.32 shows a declaration of
a 4-dimensional view. Depending on the execution target, the array abstraction will have di�erent data
layout in memory. The layout is determined at compile time. Like in RAJA, a serial loop in a program
needs to be expressed using one of the patterns (for, reduce, task-graph), and the loop body needs to
be expressed using lambdas or functors in C++. The work is then mapped to threads according to the
execution target (mapping indices in contiguous chunks on CPUs, and strided on GPUs).

1 // The following declares a N*M*8*3 array with both
2 // runtime and compile time determined dimensions.
3 View <double **[8][3] , Device > a("A",N,M);
4
5 // 8x8 tiled layout used in PLASMA
6 View <double**, LayoutTileLeft <8,8>, Device > b("B",N, M);
7
8 a(i,j,k,l) = value;

Figure 4.32: Declaration of a multi-dimensional array (View) in Kokkos.

Kokkos introduces the concepts of execution spaces and a memory spaces. The execution space indicates
where the code is executed (CPU or GPU), while the memory space indicates where the array (View) is
stored (host memory or device memory).

Execution Space: Heterogeneous nodes have one or more execution spaces (host, device). The pro-
grammer controls where the code is run via a template parameter for the execution policy. The
execution place of a certain piece of code is thus determined at compile time.

Memory Space: Heterogeneous nodes have one or more memory spaces (HostSpace, CudaSpace, Cud-
aUVMSpace). The code that runs in the HostSpace cannot directly access views from CudaSpace,
for example. There are two solutions: (1) declare the views in CudaUVMSpace instead of CudaSpace;
and (2) create a “mirror” of the desired view in a di�erent memory space. The former will likely
su�er from bad performance, as the runtime may have to handle sub-optimal data movement; the
latter takes more space and requires manual data copies.

Kokkos achieves e�cient memory access by mapping parallel work and multi-dimensional array layout
optimally to the architecture (see Figure 4.33). Every View has a Layout speci�ed at compile time through

62

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

a template parameter. LayoutRight (C array style) and LayoutLe� (Fortran array style) are the most com-
mon, although the layout can be arbitrarily customized (tile layout for example, as used in PLASMA [24]).
For performance, the memory access pattern on CPUs should allow for good caching, while on GPUs
it should allow for good coalescing. Kokkos allows for mapping multi-dimensional arrays to ensure
e�cient memory access for each type of target hardware. In contrast, OpenMP/OpenACC/OpenCL has
no notion of data layout customization; multiple versions of the code must be maintained for execution
on CPUs and GPUs.

Figure 4.33: Di�erent mapping of the data layout for a CPU and a GPU in Kokkos. (source: https:
//github.com/kokkos/kokkos-tutorials/blob/master/SC2016/KokkosTutorial SC2016.pdf)

Memory Traits

Beyond Layout and Space, Views can have memory traits, such as Atomic, Read-only, and Random. These
traits indicate the access pattern to the view, thus allowing for hardware-speci�c optimizations to be
performed. For example, views with the Atomic trait can be instantiated using atomic instructions on a
supported architecture. Views with the read-only trait can be put into texture memory on GPUs.

Scalable Thread Safety with Atomics

Perhaps the most popular synchronization primitives used in low-count CPU threading is locking. The
performance, however, is not satisfactory for scaling to many-core systems. Kokkos provides atomic
operations (Kokkos::atomic_add()) as a scalable thread safety solution. The canonical example where
such synchronization is needed is a multi-threaded histogram update. A typical scenario is one where
each thread iterates through a portion of the data and updates the corresponding bins. Multiple threads
might try to update the same bin, thus creating a race condition. The Kokkos atomic operation provides
thread safety with very low overhead, at low contention, by using backend atomics (OpenMP, CUDA,

63

https://github.com/kokkos/kokkos-tutorials/blob/master/SC2016/KokkosTutorial_SC2016.pdf
https://github.com/kokkos/kokkos-tutorials/blob/master/SC2016/KokkosTutorial_SC2016.pdf

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 template <typename T> T atomic_exchange(T *dest , T val);
2 template <typename T> bool atomic_compare_exchange_strong(T *dest , T comp , Tval);

Figure 4.34: Atomic exchange for arbitrary data types in Kokkos.

Phi) whenever possible. The atomics only exist for certain data types, though. Another synchronization
primitive atomic exchange exists for any data type (�gure 4.34).

Hierarchical Parallelism

Node architectures of modern HPC systems are characterized by hierarchical parallelism. For example,
in multi-socket CPU systems, there are four levels of parallelism:

(1) multiple CPU sockets in each node, sharing the same memory;

(2) multiple cores in each socket, typically sharing the last level cache (LLC);

(3) multiple hyper threads in a core sharing the L1/L2 caches and some functional units;

(4) multiple SIMD lanes sharing instructions.

The situation is similar for NVIDIA GPUs, where multiple levels of parallelism exist:

(1) multiple GPUs in a node, sharing the uni�ed address space;

(2) multiple SMs in a GPU, sharing the same device memory;

(3) multiple warps in each SM, sharing registers and caches;

(4) multiple threads in each warp, sharing the same instruction stream.

As the architecture features hierarchical parallelism, the parallel programming system should also
provide hierarchical abstractions to e�ciently exploit the hardware. The core concept in Kokkos is
called thread teams. A thread team is a collection of threads that can synchronize and share a scratchpad
memory, e.g., shared memory in CUDA. In Kokkos, there are three levels of parallelism: team level,
thread level, and vector level.

Kokkos’ thread is thus identi�ed by two indices: the league index, which identi�es the team, and the
thread index, which identi�es the thread within the team. This arrangement is analogous to the 1-D
grid of 1-D blocks in the CUDA nomenclature. Similarly to CUDA, threads from di�erent teams do not
synchronize or share scratchpad memory.

Consider the following example. Suppose that we want to calculate the inner product yTAx. We could
employ two-level nested parallelism here: each team is assigned a row of A, and each thread is assigned
a column in that row (Figure 4.35). We can see that there is a nested parallel_reduce() inside the main
parallel_reduce(), one using team_policy and the other using TeamThreadRange. Again, within a team,
the mapping between indices and threads should be abstracted, which allows architecture-dependent
policies—contiguous mapping on CPUs and strided mapping on GPUs. Note that the inner parallel
policy is always TeamThreadRange and cannot be further nested.

Another aspect of hierarchical parallelism is the scratchpad memory that is private to a team of threads.

64

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 parallel_reduce(
2 team_policy(N, Kokkos ::AUTO),
3 KOKKOS_LAMBDA(member_type & teamMember ,double &update) {
4 int row = teamMember.league_rank ();
5 double thisRowsSum = 0;
6 parallel_reduce(TeamThreadRange(teamMember , M),
7 [=] (int col , double &innerUpdate) {
8 innerUpdate += A(row , col) * x(col);
9 }, thisRowsSum);

10 if (teamMember.team_rank () == 0) {
11 update += y(row) * thisRowsSum;
12 }
13 }, result);

Figure 4.35: Two-level parallel inner product in Kokkos

DAGTasking

It seems that the DAG tasking is a 2017 June milestone for the Kokkos project. At the time of writing this
document, support for DAG tasking is unclear.

Implications of Using Kokkos for SLATE

Kokkos provides polymorphic data layout in multi-dimensional array to support portable performance
across CPUs and GPUs. However, optimal performance may not only depend on data layout but also on
algorithms. The simple execution pattern abstractions in Kokkos (parallel for/reduce/scan) might only
go so far in expressing more involved algorithms. As such, multiple versions of code or code paths are
still needed to achieve portable performance.

4.2.5 RAJA

RAJA is a portability layer that leverages the �ne-grained parallelism at the node level (similar to OpenMP,
OpenACC, CUDA, etc.) with cross-platform support. RAJA was initially developed for the large ASC
hydrodynamics codes at LLNL (Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics
[LULESH], Ares, Kull, and ALE3D), and is, therefore, primarily tailored to the problem structures and
parallelization challenges in these codes. The fundamental conceptual abstraction in RAJA is an inner
loop, where the overwhelming majority of computational work in most physics codes occurs. These
loops can then be executed in a parallel fashion using the available resources. The main features of RAJA,
which are discussed in detail later, are as follows:

(1) RAJA uses an abstract execution policy for loop execution. An execution policy is a template parameter
that encapsulates the details of the loop execution, e.g., sequential execution, parallel execution,
enable SIMD, etc. Since the description of di�erent execution policies exists in the headers, RAJA
codes can easily switch between execution policies without retouching the loop body.

(2) RAJA uses IndexSets to partition the iteration space and handle data placement. An IndexSet is
an object that encapsulates a complete iteration space, which is partitioned into a collection of
segments of the same or di�erent types. RAJA IndexSets are similar to the iterators available in the
Lua language.

(3) RAJA uses C++ lambda functions, which enable capturing the loop body without modi�cation.

(4) To hide non-portable compiler directives and data attributes, RAJA uses data type encapsulation, e.g.,
“Real type” and “Real ptr” instead of “double” and “double*.”

65

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

(5) RAJA requires the C++11 standard.

Porting Existing So�ware to RAJA

A typical RAJA integration approach involves the following steps:

(1) Transform the loops to be RAJA-enabled. This is a straightforward process in most cases. Such
initial transformation makes the code portable by enabling it to execute on both the CPU and the
GPU by choosing various parallel programming model back ends at compile time.

(2) Choose the execution policy. The choice(s) can be re�ned based on an analysis of loops. Careful
categorization of loop patterns and workloads is key to selecting the best choices for mapping
loop execution to available hardware resources for high performance. Important considerations
include:

(a) The arithmetic intensity of the operation executed by the loop.

(b) The existence of control �ow and branching operations.

(c) The available parallelism across di�erent iterations.

(3) If required, a deeper analysis of the algorithm can lead to utilizing more advanced features of RAJA
that are platform-speci�c. Such advanced mechanisms can be implemented in RAJA transparently,
and then propagated to all codes that have a similar pattern and target the same platform.

Decoupling Loop Body from Loop Traversal

RAJA relies on separating the body of a loop from the mechanism that executes it (its traversal). This
allows the same traversal method to be an abstraction that is applicable to many di�erent loop bodies. It
also allows di�erent traversals to be applied to the same loop body for di�erent execution scenarios. In
RAJA, decoupling is achieved by recasting a loop into the generally-accepted ”parallel for“ idiom. As an
example, Figure 4.36 shows an example of a simple C++ loop and its RAJA equivalent.

1 double* x ; double* y ;
2 double a , tsum = 0 . 0 , tmin = MYMAX;
3 /* some code */
4 for (int i = begin ; i < end ; ++i) {
5 y[i] += a * x [i] ;
6 tsum += y [i] ;
7 if(y[i] < tmin) tmin = y[i];
8 }

1 double* x; double* y;
2 RAJA:: SumReduction <reduce_policy , double > tsum (0.0);
3 RAJA:: MinReduction <reduce_policy , double > tmin(MYMAX);
4 /* some code */
5 RAJA::forall <execpolicy >(begin , end , [=](int i){
6 y[i] += a * x[i];
7 tsum += y[i];
8 tmin.min(y[i]);
9 }

Figure 4.36: A RAJA equivalent to a simple loop in C++.

There are several key di�erences to note in the RAJA loop shown in Figure 4.36:

66

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

(1) The for loop construct is replaced by a call to a traversal template method (RAJA::forall), where
the template parameter is the loop execution policy.

(2) The loop body is passed to the traversal template as a C++ lambda function.

(3) The reduction variables are converted to RAJA objects with templated reduction policy and reduc-
tion data type.

It is important to note that the original for loop explicitly expresses all the execution details, such as
iteration order and data accesses, in the source code. Changing any aspect of execution requires changes
to this source code. Decoupling the loop body from traversal as in the RAJA version, iteration orders,
data layout and access patterns, parallel execution strategies, etc. can be altered without changing the
way the loop is written. Apart from the slight di�erence in syntax for the min reduction, the loop body is
the same as the C-style version. The C++11 lambda function capability enables the key RAJA design goal,
which is to achieve portability with minimal disruption to the application source code.

RAJA EncapsulationModel

Figure 4.37 describes four main encapsulation features in RAJA, each with a di�erent color, that can be
used to manage architecture-speci�c concerns.

1 RAJA::Real ptr x, RAJA::Real ptr y;
2 RAJA::Real type a;
3 RAJA::SumReduction<..., Real type> tsum (0);
4 RAJA::MinReduction<..., Real type> tmin(MYMAX);
5
6 RAJA::forall<exec policy>(IndexSet, [=](Index type i) {
7 y[i] += a * x[i];
8 tsum += y[i];
9 tmin.min(y[i]);

10 });

Figure 4.37: Di�erent encapsulations in RAJA.

Traversals and execution policies [blue]: A traversal method, specialized with an execution policy tem-
plate parameter, de�nes how the loop will be executed. For example, a traversal may run the loop
sequentially, as a multi-threaded parallel loop using OpenMP, or may launch the loop iterations as
a CUDA kernel to run on a GPU.

IndexSets [purple]: Figure 4.36 shows that the begin and the end loop bounds are passed as arguments
to the traversal method. While RAJA can process explicitly bounded loop iterations in various
execution schemes that are transparent to the source code, the RAJA IndexSet abstraction in Fig-
ure 4.37 enables much more �exible and powerful ways to control loop iterations. IndexSets allow
loop iteration order to be changed in ways that can, for example, enable parallel execution of a
non-data-parallel loop without rewriting it. Typically, an IndexSet is used to partition an iteration
space into segments; i.e., ”chunks“ of iterations. Then, di�erent subsets of iterations may be launched
in parallel or run on di�erent hardware resources. IndexSets also provide the ability to manage
dependencies among segments to resolve thread safety issues, such as data races. In addition,
IndexSet segments enable coordination of iteration and data placement; speci�cally, chunks of data
and iterations can be mapped to individual cores on a multi-core architecture. While IndexSets
provide the �exibility to be de�ned at runtime, compilers can optimize execution of kernels for
di�erent segment type implementations at compile time.

67

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Data type encapsulation [red]: RAJA provides data and pointer types, which can be used to hide non-
portable compiler directives and data attributes such as alignment, restrict, etc. These compiler-
speci�c data decorations o�en enhance the compiler’s ability to optimize the code. For any parallel
reduction operation, RAJA requires a reduction class template to be used. Template specialization
of a reduction enables a portable reduction operation while hiding the programming of model-
speci�c reduction constructs from application code.

C++ lambda functions [brown]: The standard C++11 lambda feature captures all variables used in the
loop body, which allows the loop construct to be transformed with minimal modi�cation to the
original code.

The RAJA encapsulation features described here can be used individually or combined, depending on
the portability and performance needs of the application. They can also be combined with application-
speci�c implementations. This allows a multi-tiered approach to performance tuning for a particular
architecture. Most loops in a typical HPC application can be parameterized using basic RAJA encapsula-
tion features. Other kernels may require a combination of RAJA entities and customized implementations
suited to a particular algorithm.

Basic Traversal Methods and Execution Policies

Consider the code example of Figure 4.36. Since the execution policy is passed as a template parameter,
the same loop can be executed in di�erent ways. We assume that the policy template parameters are
de�ned as typedefs in a header �le.

A CPU serial execution can be realized using one of RAJA’s built-in execution policies. This requires the
following de�nition:

1 typedef RAJA:: sequential exec_policy;
2 typedef RAJA:: seq_reduce reduce_policy;

Such a de�nition leads to a traversal template that looks like:

1 template <typename LB>
2 void forall(sequential , Index_type begin , Index_type end , LB body){
3 #pragma novector
4 for (int i = begin; i < end; ++i) body(i);
5 }

Note that the novector pragma option prevents the compiler from generating SIMD vectorization
optimizations for this case. Changing exec_policy to RAJA::simd allows the compiler to generate SIMD
optimizations if it decides to do so.

The following de�nition leads to a parallel CPU execution using OpenMP:

1 typedef RAJA:: omp_parallel_for exec_policy;
2 typedef RAJA:: omp_reduce reduce_policy;

It tells RAJA to use a traversal template of the form:

1 template <typename LB>
2 void forall(omp_parallel_for , Index_type begin , Index_type end , LB body){
3 #pragma omp parallel for
4 for (int i = begin; i < end; ++i) body(i);
5 }

RAJA supports multiple ways of o�oading the execution on an accelerator. Considering GPU execution,
for example, a possible method is to use the OpenMP 4 accelerator model, which requires a de�nition of
the form:

1 typedef RAJA:: omp_parallel_for_acc exec_policy;
2 typedef RAJA:: omp_acc_reduce reduce_policy;

68

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Such a de�nition leads to a traversal template of the form:

1 template < typename LB >
2 void forall(omp_parallel_for_acc , Index_type begin , Index_type end , LB body){
3 #pragma omp target
4 #pragma omp parallel for
5 for(int i = begin; i < end; ++i) body(i);
6 }

Note that the RAJA template cannot explicitly set up the GPU device data environment with an OpenMP
map clause. The map clauses are used to specify how storage associated with speci�cally named variables
is moved between host and device memories. Since a RAJA traversal is generic with respect to the loop
body, it knows nothing about the data used in the loop. The OpenMP 4 standard �lls the gaps to support
”unstructured data mapping,“ which allows one to set up the proper device data environment before
o�oading via a RAJA traversal. We expect to manage such host-device data transfers in real application
codes using a similar encapsulation approach to the way MPI communication is typically hidden.

For a CUDA-based execution, the notion of loops is absent, and execution should be mapped to a CUDA
kernel, which is launched over a group of thread blocks on a CUDA-enabled GPU device. Each iteration
executes on a di�erent CUDA thread. To launch the loop as a CUDA kernel, the template parameters are:

1 typedef RAJA:: cuda_acc exec_policy;
2 typedef RAJA:: cuda_reduce reduce_policy;

The following code snippets illustrate RAJA back end code for CUDA. So that the loop code continues to
look like a loop, the loop body is passed to the traversal template (B), which has the same arguments as
other traversals. This template launches a GPU kernel template (A) that executes each loop iteration on a
separate GPU thread:

1 // (A) kernel template
2 template <typename LB>
3 __global__ void forall_cuda_kernel(Index_type begin , Index_type len , LB body){
4 Index_type i = blockIdx.x * blockDim.x + threadIdx.x;
5 if(i < len){
6 body(begin+i) ;
7 }
8 }
9

10 // (B) traversal template that launches CUDA GPU kernel
11 template <typename LB>
12 void forall(cuda_acc , int begin , int end , LB body){
13 size_t blockSize = THREADS_PER_BLOCK;
14 size_t gridSize = (end - begin + blockSize - 1) / blockSize ;
15 Index_type len = end - begin ;
16 forall_cuda_kernel <<<gridSize , blockSize >>>(body , begin , len) ;
17 }

To manage data transfers between host and device when using CUDA we have multiple options. Using
CUDA Uni�ed Memory is the simplest and least intrusive method. Memory allocations are replaced
with calls to cudaMallocManaged(), which allows data to be accessed in the same way on either the host
or device with no explicit transfer operations. However, this may not yield desired performance in many
situations. When this is the case, we can encapsulate CUDA memory copy routines in a manner similar
to how we would use OpenMP unstructured data mapping.

IndexSets and Additional Traversal Features

Mesh-based multi-physics applications contain loops that iterate over mesh elements, and thus data
arrays representing �elds on a mesh, in a variety of ways. Some operations involve stride-1 array data
access while others involve unstructured accesses using indirection arrays. O�en, these di�erent access
patterns occur in the same physics operation. For code maintenance, such loop iterations are usually
coded using indirection arrays since this makes the code �exible and relatively simple. In this section,
some key features of RAJA IndexSets are described, along with their use in managing complex loop

69

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

iteration patterns and addressing a variety of performance concerns. In particular, IndexSets provide a
powerful mechanism to balance runtime iteration space de�nition with compile-time optimizations.

A RAJA IndexSet is an object that encapsulates a complete loop iteration space that is partitioned into a
collection of segments, of the same or di�erent segment types. Figure 4.38 shows two di�erent types of
simple Segments, a range and a list that can be used to iterate over di�erent portions of an array. A RAJA
RangeSegment object de�nes a contiguous set of iteration indices with constraints applied to the iteration
bounds and to the alignment of data arrays with memory constructs. For example, range Segments can
be aligned with multiples of the SIMD width or the single instruction, multiple thread (SIMT) width
to help compilers generate more e�cient code. A RAJA ListSegment is a chunk of iterations that does
not meet the range Segment criteria. It is important to note that, with RAJA, we emphasize the tight
association between a loop iteration and a footprint of data array elements in memory.

Array

Rang Segment List Segment

Figure 4.38: IndexSet segments in RAJA.

To illustrate some simple IndexSet mechanics, consider the following set of array indices to process:

1 int num_elements = 21;
2 int elemenst [] = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 14 , 27 , 36 ,
3 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 87 , 117 };

Such a set of indices may enumerate elements on a mesh containing a particular material in a multi-
material simulation, for example. The indices can be assembled at runtime into an IndexSet object by
manually creating and adding Segments to the IndexSet object. A more powerful alternative is to use one
of several parameterized RAJA IndexSet builder methods to partition an iteration space into a collection
of ”work Segments“ according to some architecture-speci�c constraints. For example,

1 RAJA:: Indexset segments = RAJA:: createIndexset(elems , num elems);

might generate an IndexSet object containing two range Segments ({0, · · · , 7}, {40, · · · , 47}) and two list
segments ({14, 27, 36}, {87, 117}).

When the IndexSet object is passed along with a loop body (lambda function) to a RAJA iteration template,
the operation will be dispatched automatically to execute each of the Segments:

1 RAJA::forall <exec_policy >(Segments , [=] (...) {
2 /* loop body */
3 });

That is, a specialized iteration template will be generated at compile time for each Segment type. Iteration
over the range Segments may involve a simple for-loop such as:

1 for(int i = begin; i < end; ++i) loop_body(i);

or iteration over the list Segments in a for-loop, with indirection applied:

1 for(int i = 0; i < seglen ; ++i) loop_body(Segment[i]);

IndexSet builder methods can be customized to tailor segments to hardware features and execution
patterns to balance compile time and runtime considerations. Presently, IndexSets enable a two-level
hierarchy of scheduling and execution. A dispatch policy is applied to the collection of Segments. An
execution policy is applied to the iterations within each segment. Examples include:

• Dispatch each segment to a CPU thread so segments run in parallel and execute range segments
using SIMD vectorization.

70

4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 1 1 1 1

2 2 2 2 2

1 1 1 1 1

2 2 2 2 2

1 1 1 1 1

1 2 1 2 1

3 4 3 4 3

1 2 1 2 1

3 4 3 4 3

1 2 1 2 1

zone-to-node sum option A option B

Figure 4.39: Zone-to-node sum with two-loop ordering options in RAJA.

• Dispatch segments sequentially and use OpenMP within each segment to execute iterations in
parallel.

• Dispatch segments in parallel and launch each segment on either a CPU or a GPU as appropriate.

Loop Reordering and Tiling

RAJA IndexSets can expose available parallelism in loops that are not written using a parallel pattern.
For example, a common operation in a staggered-mesh code sums zonal values to surrounding nodes as
is illustrated in the le� image in Figure 4.39. IndexSets can be used to reorder loop iterations to achieve
”data parallel“ execution without modifying the loop body code. Figure 4.39 shows two di�erent ordering
possibilities, (A) and (B). Di�erent colors indicate independent groups of computation, which can be
represented as segments in indexSets. For option A, we iterate over groups (Segments) sequentially
(group one completes, then group two, etc.) and operations within a group (Segment) can be run in
parallel. For option B, we process zones in each group (row) sequentially and dispatch rows of each color
in parallel. It is worth emphasizing that no source code modi�cations are required to switch between
these parallel iteration patterns. RAJA Segments can also represent arbitrary tilings of loop iterations
that can be tuned and sized for speci�c architecture and memory con�gurations. When loop iterations
are encapsulated in IndexSet Segments, data arrays can be permuted for better locality and cache reuse.

Kokkos vs. RAJA

Kokkos and RAJA are very similar in their objectives (both aim at providing a performance portability
layer for node-level parallelism) and approaches (both focus on abstracting away from serial loops;
both are C++ templates/libraries/runtimes instead of language extensions, etc.). However, there is one
di�erence that is most relevant to the purpose of the SLATE project. Kokkos supports multi-dimensional
arrays (Views) and allows customized data layout for the array, while RAJA only supports one-dimensional
arrays with more support of random access. As multi-dimensional arrays are central to dense linear
algebra, and the data layout of the array has a signi�cant impact on performance, the �exibility of Kokkos
arrays make it better suited for SLATE purposes.

71

4.3. CONSEQUENCES FOR SLATE CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

4.3 Consequences for SLATE

The ongoing evolution of so�ware technology described in this chapter creates unique opportunities for
the development of the SLATE project. Here we summarize the most impactful aspects:

So�ware Engineering: While there is no question of the robustness of procedural languages such as
modern C and Fortran, for scienti�c computing, modern so�ware engineering demands encapsu-
lation, polymorphism, generic programming, etc. which are simply much easier to express in C++.
It is only natural for SLATE to adopt C++ as its implementation language to leverage its support for
object-oriented programming, as well as a plethora of other great features (exception handling,
smart pointers, etc.).

Portability: As the OpenACC and OpenMP standards mature and are adopted by the major compilers,
there are fewer and fewer reasons to rely on proprietary solutions for programming accelerators.
While the actual implementations of the accelerator programming extensions may have some
de�ciencies for some time, solid foundations are already in place. There are no reasons to believe
that OpenACC and/or OpenMP will not be able to ful�ll SLATE’s requirements for handling node-
level memory consistency. On the other hand, portable frameworks, such as Kokkos and RAJA,
should ful�ll the need for custom kernel development on rare occasions of gaps in the coverage
of vendor libraries. Finally, MPI is the interface of choice for communication, and will be for the
foreseeable future. At the same time, emerging programming frameworks such as PaRSEC and
Legion are not to be dismissed as a viable option for targeting exascale.

Platform Scalability: As SLATE will combine distributed-memory programming with node-level pro-
gramming and accelerator o�oad, it has the potential to become the solution of choice for all
levels of the platform ladder: single node, multi node, no GPU, single GPU, multi GPU, Cloud
instance, embedded system, mobile device.

72

CHAPTER 5

Matrix Layout Considerations

The BLAS standard de�ned the memory layout for matrices. In the original standard, a matrix is
synonymous with a 2-D Fortran array, meaning column-major storage. The CBLAS interface also
supports 2-D arrays stored in row-major, synonymous with the C language. Notably, the support for
row-major does not require a separate implementation, but can be accomplished by switching the values
of transposition and upper/lower parameters. In any case, the 2-D array abstraction is a higher-level
language construct, which provides programming convenience, but causes highly suboptimal data access
patterns when computing matrix multiplication. Historically, the signi�cance of this fact used to be
smaller, but is becoming more prominent as �oating-point capabilities of modern chips keep outpacing
the memory systems. As a result, virtually all high-performance BLAS implementations copy the input
arrays to internal formats in order to achieve maximum e�ciency. This pays o� in the case of large
matrices, when the O(N2) cost of the copy is negligible compared to the O(N3) cost of the matrix
multiplication. Traditionally, large matrices are the target of BLAS optimizations, since LAPACK and
ScaLAPACK are structured to call large GEneral Matrix to Matrix Multiplciation (GEMM) operations.

5.1 ATLAS Layouts

All the information about the innerworkings of the Automatically TunedLinear Algebra So�ware (ATLAS) described
in this section was provided by the author of ATLAS, Clint Whaley.

From the standpoint of a BLAS implementation, it is ideal if memory is accessed completely sequentially
(consecutive memory locations). This results in the lowest possible bandwidth demand—best utilization
of caches, highest bene�t from prefetch operations, etc. The standard column-major or row-major
format by no means allows for such access. The optimal access pattern for the GEMM kernel is a function
of loop optimizations and SIMD’zation. The main loop optimization technique used in ATLAS is unroll
and jamwith register blocking.

While the canonical form of matrix multiplication looks like this:
1 for (i=0; i < M; i++)

73

5.1. ATLAS LAYOUTS CHAPTER 5. MATRIX LAYOUT CONSIDERATIONS

2 for (j=0; j < N; j++)
3 for (k=0; k < K; k++)
4 C(i,j) = C(i,j) + A(i,k) * B(k,j);

the unrolled and jammed version looks like this:

1 for (i=0; i < M; i += 3)
2 for (j=0; j < N; j += 2)
3 for (k=0; k < K; k++)
4 {
5 C(i,j) += A(i,k) * B(k,j);
6 C(i+1,j) += A(i+1,k) * B(k,j);
7 C(i+2,j) += A(i+2,k) * B(k,j);
8 C(i,j+1) += A(i,k) * B(k,j+1);
9 C(i+1,j+1) += A(i+1,k) * B(k,j+1);

10 C(i+2,j+1) += A(i+2,k) * B(k,j+1);
11 }

and like this with register blocking:

1 for (i=0; i < M; i += 3)
2 for (j=0; j < N; j += 2)
3 {
4 register c00 , c10 , c20 , c01 , c11 , c21;
5 c00 = c10 = c20 = c01 = c11 = c21 = 0.0;
6 for (k=0; k < K; k++)
7 {
8 register a0=A(i,k), a1=A(i+1,k), a2=A(i+2,k);
9 register b0=B(k,j), b1=B(k,j+1);

10 c00 += a0 * b0;
11 c10 += a1 * b0;
12 c20 += a2 * b0;
13 c01 += a0 * b1;
14 c02 += a1 * b1;
15 c03 += a2 * b1;
16 }
17 C(i,j) += c00;
18 C(i+1,j) += c10;
19 C(i+2,j) += c20;
20 C(i,j+1) += c01;
21 C(i+1,j+1) += c11;
22 C(i+2,j+1) += c21;
23 }

At the same time, virtually all modern CPUs get their performance from SIMD vectorization, which has
further consequences for the data layout.

The term access-major layout was coined by Clint Whaley to describe an arrangement of matrix elements
in memory corresponding to the access pattern of the GEMM implementation. I.e., the GEMM routine
produces a consecutive memory access pattern during its execution. This has some profound conse-
quences. First, one GEMM kernel is likely to have di�erent storage patterns for each of its three operands.
Second, two di�erent GEMM kernels are likely to have incompatible storage patterns.

Currently, ATLAS is based on a new framework that supports several access-major storage patterns. The
framework autogenerates routines that copy the data between the standard layout and the access-major
layout for the input arrays (A and B), and for the output array (C). Once the operands are in access-major
storage, the ATLAS GEMM kernel always accesses them sequentially, generating the most e�cient
memory tra�c.

The GEMM routine in ATLAS is based on a lower-level building block called the access-major matrix
multiply Kernel (ammmK). The dimensions of the ammmK are selected such that it �ts in some level of
cache. I.e., cache blocking is taken care of at a higher level, such that it is not a concern for the ammmK
kernel itself. The focus of the ammmK kernel is instruction-level parallelism, accomplished through
loop optimizations, vectorization, and register blocking, while implementing the access-major layout.

“The arrays used by ammmK have a more complex storage pattern, where the matrix has been permuted
so that all arrays are naturally accessed in a purely sequential fashion when the computation is being

74

5.2. MKL PACKED GEMM CHAPTER 5. MATRIX LAYOUT CONSIDERATIONS

performed. Completely sequential access allows us to minimize cache line con�icts, maximize cache
line packing and hardware prefetch accuracy, and ensures that our bus access is as ‘smooth’ as possible
(i.e., it minimizes the number of cache misses that happen at any one time).” – Clint Whaley

5.2 MKL Packed GEMM

Intel recently introduced Math Kernel Library (MKL) routines for multiplying matrices stored in a
packed form—meaning internal, proprietary, opaque layout that is optimal for performance. Since the
layout is opaque, MKL provides routines for allocating the space, translating the matrices, computing
the multiplication, and freeing the space.

First, the space for copies of A and/or B needs to be allocated using one of the allocation functions
(depending on precision):

1 float* cblas_sgemm_alloc (const CBLAS_IDENTIFIER identifier ,
2 const MKL_INT m, const MKL_INT n, const MKL_INT k);
3
4 double* cblas_dgemm_alloc (const CBLAS_IDENTIFIER identifier ,
5 const MKL_INT m, const MKL_INT n, const MKL_INT k);

Then the matrices can be packed using:

1 void cblas_sgemm_pack (const CBLAS_LAYOUT Layout , const CBLAS_IDENTIFIER identifier ,
2 const CBLAS_TRANSPOSE trans ,
3 const MKL_INT m, const MKL_INT n, const MKL_INT k,
4 const float alpha , const float *src , const MKL_INT ld,
5 float *dest);
6
7 void cblas_dgemm_pack (const CBLAS_LAYOUT Layout , const CBLAS_IDENTIFIER identifier ,
8 const CBLAS_TRANSPOSE trans ,
9 const MKL_INT m, const MKL_INT n, const MKL_INT k,

10 const double alpha , const double *src , const MKL_INT ld,
11 double *dest);

And then matrix multiplication can be performed using:

1 void cblas_sgemm_compute (const CBLAS_LAYOUT Layout ,
2 const MKL_INT transa , const MKL_INT transb ,
3 const MKL_INT m, const MKL_INT n, const MKL_INT k,
4 const float *a, const MKL_INT lda ,
5 const float *b, const MKL_INT ldb ,
6 const float beta , float *c, const MKL_INT ldc);
7
8 void cblas_dgemm_compute (const CBLAS_LAYOUT Layout ,
9 const MKL_INT transa , const MKL_INT transb ,

10 const MKL_INT m, const MKL_INT n, const MKL_INT k,
11 const double *a, const MKL_INT lda ,
12 const double *b, const MKL_INT ldb ,
13 const double beta , double *c, const MKL_INT ldc);

The packed copies can be free, using:

1 void cblas_sgemm_free (float *dest);
2 void cblas_dgemm_free (double *dest);

The identifier parameter indicates whether the operation (allocation, packing) applies to the A matrix
or the B matrix (CblasAMatrix or CblasBMatrix).

The Layout parameter takes the standard CBLAS values (CblasRowMajor or CblasColMajor). How-
ever, it must use the same value for the entire sequence of related cblas_?gemm_pack() and
cblas_?gemm_compute() calls. Also, for multi-threaded calls, the same number of threads must be used
for packing A and B. Intel also recommends that the same number of threads be used for packing and
computing.

75

5.3. GPU BATCHED GEMM CHAPTER 5. MATRIX LAYOUT CONSIDERATIONS

The cblas_?gemm_compute function can be called using any combination of packed or unpacked matrices
A and B. The transa and transb parameters indicate whether the corresponding matrix is packed. In
addition to the standard CBLAS values (CblasTrans, CblasNoTrans, CblasConjTrans), they can also take
the value CblasPacked, in which case the lda / ldb parameters are ignored.

Figure 5.1: Performance of sgemm_compute() on Xeon Phi (source: https://software.intel.com/en-us/articles/
introducing-the-new-packed-apis-for-gemm).

5.3 GPU Batched GEMM

Traditionally, dense matrices are stored in Fortran-style, column-major layout. LAPACK relies on
this layout, as does ScaLAPACK to store the node-local portion of the matrix in the 2-D block cyclic
distribution. At the same time, there are numerous advantages of storing the matrix by tiles of relatively
small size (128, 192, 256, ...). The PLASMA project stores matrices by tiles, with tiles arranged in a
column-major layout and elements within tiles arranged in a column-major layout. The DPLASMA
project relies on tile layout for storing node-local portions of distributed matrices.

Tile layout creates challenges for GPU acceleration. The standard GEMM routine cannot be used
because GPUs are not capable of executing them e�ciently for small problems one at a time. The
solution is the use of batch GEMM operations, which execute a large number of small matrix multiplies
concurrently. The question of the performance of batch operations compared to standard GEMMS
remains—speci�cally in the case of the Schur complement operations critical to the performance of
dense matrix factorizations.

Figure 5.2 shows the performance of the Schur complement operation using the NVIDIA Pascal GPU
and the CUDA 8.0 SDK. The operation is C = C − A × B, with C of size 40, 000 × 40, 000, A of size
40, 000× k, and B of size k × 40, 000. The darker curve shows the performance when the matrices are
stored in the canonical, column-major layout, and the regular GEMM is used. The lighter curve shows
the performance when the matrices are stored by tiles of size k × k and batched GEMM is used. Double
precision is used in both cases.

76

https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm
https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm

5.4. CONSEQUENCES FOR SLATE CHAPTER 5. MATRIX LAYOUT CONSIDERATIONS

1

0

1000

2000

3000

4000

5000

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

gfl
op

s

k dimension

Schur complement performance on NVIDIA Pascal

regular DGEMM
tiled / batched

Figure 5.2: Performance of Schur complement on NVIDIA Pascal.

There are no surprises here. The standard GEMM curve is smooth, while the batched GEMM curve
has a sawtooth shape, with peaks at the values of 192, 256, 320, 384, 448, 512, due to internal blocking of
the GEMM implementations with the factor of 64. This is because very e�cient code is used to handle
64-divisible regions, and much less e�cient code is used to handle the remainder. In the case of the
standard GEMM, the ine�ciency only a�ects the outskirts of the large matrix. In the case of the batched
GEMM, the ine�ciency a�ects every tile.

The irregular pattern is by no means a problem for SLATE, as the tiling size may be chosen to match the
tiling of the batched GEMM implementation. At the same time, it is not a fundamental challenge for
GPU vendors to implement batched GEMM which matches the performance of the standard GEMM for
certain tiling sizes. Therefore, the use of tile layout seems to be a legitimate choice for SLATE.

5.4 Consequences for SLATE

The observations in this chapter led us to the following conclusions:

Presenting OpaqueMatrix Layout makes perfect sense for SLATE, as this is the de facto modus
operandi at the BLAS level anyway. At the same time, the transparency of the ScaLAPACK layout
does not really provide much comfort in the face of its complexity.

Facilitating Packing is a great idea for SLATE because two mainstream BLAS implementations, MKL
and ATLAS, openly promote the solution, and the performance bene�ts of packing can be stagger-
ing (over 75% improvement reported by Intel).

77

5.4. CONSEQUENCES FOR SLATE CHAPTER 5. MATRIX LAYOUT CONSIDERATIONS

Tiling is a legitimate option for SLATE as GPUs are no longer handicapped by tile opeartions, due
in large part to the ongoing standardization of batch BLAS routines, and their availability in
vendor-supplied libraries.

78

CHAPTER 6

Algorithmic Considerations

6.1 LU

Solving a dense, non-symmetric system of linear equations is a fundamental dense linear algebra
capability; the LU factorization is usually the method of choice because of its practical numerical stability
and low operation count compared to more robust methods. It is commonly known as the operation
behind the MATLAB backslash operator, and as the benchmark of the TOP500 list. Because of its role as
a benchmark, it is usually one of the �rst workloads implemented and optimized for new architectures.

The Netlib implementation of the High Performance LINPACK (HPL) benchmark [37] is a testimony
to the optimization e�orts required for maximum performance of the LU factorization on distributed
memory systems—especially compared to the implementation of the LU factorization routine in ScaLA-
PACK, which could be taken as the baseline here. One thing that HPL inherited from ScaLAPACK is the
2-D block cyclic data distribution. Otherwise, the Netlib HPL is basically a custom implementation.

Most of the optimization e�ort goes into dealing with the bottleneck of the panel factorization, which is
inherently ine�cient and lies on the critical path of the algorithm. To ensure fast execution of the panel
factorization, HPL moved from an iterative approach to a recursive approach, and actually provides a
couple of di�erent recursive implementations. It also relies on a few di�erent custom implementations of
the collective communication operations in order to be able to overlap communication with computation,
as at the time of writing the code MPI did not support non-blocking collectives. Finally, HPL utilizes the
idea of lookahead, which allows for overlapping the panel factorization with the update of the trailing
submatrix, so that the ine�cient operations run in the background of the e�cient matrix multiplication.
Still, the Netlib HPL is an outdated code, as it has no notion of multi-core CPUs or GPUs, and is usually
heavily modi�ed before being used to benchmark modern machines.

There have also been numerous attempts to improve the algorithms in order to remove the panel
factorization bottleneck. In the 2014 survey, we analyzed the impact of di�erent approaches on the
performance and numerics of the algorithm [31]. Speci�cally, we looked at the e�ects of: incremental
pivoting, tournament pivoting, and applying random butter�y transformation to the input matrix instead

79

6.1. LU CHAPTER 6. ALGORITHMIC CONSIDERATIONS

of pivoting. When the numerical accuracy su�ered, we tried to recover it with iterative re�nement.
The consensus of that work was, in essence, that the traditional algorithm with partial pivoting works
best if implemented well. This study was done in the context of multi-core CPUs only—no GPUs, no
distributed memory.

An important contribution to the topic is the idea of parallel cache ssignment (PCA) introduced by
Castaldo and Whaley [25]. It relies on the observation that BLAS 2 operations are e�cient if executed
in cache. For maximum performance on multi cores, the panel factorization is multi threaded, with
static assignment of panel chunks to threads/cores. At the same time, synchronization is done using the
memory consistency protocol implemented in hardware instead of slower so�ware mechanisms such as
mutexes.

Subsequently, we applied the idea of cache residency to a recursive implementation [32, 34], which
became the basis for the panel factorization in the PLASMA library. This implementation delivered
performance in great excess of the memory barrier and scaled very well with the number of cores.
However, a short study was conducted before porting the PLASMA library from the QUeuing And
Runtime for Kernels (QUARK) runtime to the OpenMP runtime, which showed inferior performance
of plain recursion compared to simple blocking. Therefore, the current PLASMA implementation is
based on cache residency and low-level synchronization—with blocking rather than recursion. Precise
performance experiments for the new panel factorization routine have not been conducted yet. The
added bene�t of the blocked implementation is its reduced complexity.

Given the level of trust that the technical computing community has for LU factorization with partial
pivoting, this algorithm is the most likely target for SLATE implementation. Ideally, the SLATE imple-
mentation of the LU factorization and solve should serve as a replacement for the HPL benchmark for
the CORAL machines and the exascale machines to follow. Critical to accomplishing this objective is a
fast implementation of the panel factorization and application of the lookahead technique.

80

6.2. LDLT CHAPTER 6. ALGORITHMIC CONSIDERATIONS

6.2 LDLT

Many applications require the solution of dense linear systems of equations, the coe�cient matrices of
which are symmetric inde�nite. To solve such linear systems on a shared-memory computer, LAPACK
computes the LDLT factorization of the matrix using the Bunch Kaufman [22] or rook pivoting [9],
or the LTLT factorization using the Aasen’s algorithm [6, 71]. The main challenge is that in order to
maintain the numerical stability of the factorization, the algorithms require symmetric pivoting. This
symmetric pivoting leads to the data accesses and dependencies that make it di�cult to obtain high
performance of the factorization. For instance, with the symmetric pivoting, it becomes a challenge to
integrate the lookahead, which was a critical component in obtaining the high performance of the LU
factorization (Section 6.1). ScaLAPACK still does not support a symmetric inde�nite solver.

Even with the performance challenges, symmetric inde�nite factorization has several numerical and
structural advantages over nonsymmetric factorization. For instance, under symmetric factorization,
the matrix inertia stays the same. Moreover, when factorizing a diagonal block of a symmetric matrix, it
is critical to maintain the symmetry in order to maintain the computational and storage costs of the
overall symmetric factorization.

To improve the performance of the LTLT factorization, a communication-avoiding (CA) variant of the
Aasen’s algorithm has been proposed [12]. The algorithm �rst reduces the symmetric matrix into a band
form based on the tiled Aasen’s algorithm. At each step, the algorithm factorizes a block column, or
panel, by �rst updating the panel in a le�-looking fashion and then LU factorizing the panel. Finally,
in the second stage of the algorithm, the band matrix is factorized. The advantage of this algorithm is
that the �rst stage dominates the computational cost of the whole factorization process; and for this �rst
stage, we can utilize the optimized LU panel factorization (Section 6.1), while the rest of the computation
is mostly based on BLAS-3.

We have studied the performance of the CA variant of Aasen’s algorithm with PLASMA [7]. Compared
with the right-looking update of the symmetric inde�nite factorization in LAPACK, the CA Aasen’s
le�-looking update has limited parallelism. To increase the parallelism for updating each tile of the panel,
PLASMA applies a parallel reduction and accumulate a set of independent updates into a user-supplied
workspace. How much parallelism the algorithm can exploit depends on the number of tiles in the
panel and the size of the workspace provided by the user. Then, the panel is factorized using PLASMA’s
multi-threaded LU panel factorization routine. Finally, we use PLASMA’s band LU factorization routine
for the second stage of the factorization. Since there is no explicit global synchronization between
the stages, a task to factorize the band matrix can be started as soon as all the data dependencies
are satis�ed. This allows the execution of these two algorithms to be merged, improving the parallel
performance—especially since both algorithms have limited amount of parallelism that can be exploited.
Our performance studies have demonstrated that, especially on a many-core architectures, the CA
Aasen’s algorithm, combined with the runtime, can obtain signi�cant speedups over the threaded MKL.

81

6.3. QR/LQ CHAPTER 6. ALGORITHMIC CONSIDERATIONS

6.3 QR/LQ

The QR factorization is a fail-safe method of solving linear systems of equations as well as the method of
choice for solving linear least squares problems. While QR is rarely an attractive option for solving linear
systems of equations—where usually the practical stability of the cheaper LU factorization su�ces—it is
the main option for solving least squares problems. Here, however, it faces the challenge of dealing with
highly overdetermined systems, resulting in very tall and thin matrices, usually referred to as tall and
skinny.

The basic problem is that a thin matrix does not expose much parallelism if the traditional algorithms
are applied, which eliminates one full column of the matrix at a time. To address this issue, classes of
algorithms were developed, referred to as Tall and Skinny QR (TSQR) and Communication-Avoiding
QR (CAQR). Seminal work in this area was done by Demmel et al. [28]. The basic idea is that the panel is
split vertically into shorter subpanels, which can be reduced in parallel. The initial parallel reduction
leaves unreduced elements (R factors from each subpanel reduction), which can then be pairwise reduced
in a tree-like pattern. This approach has tremendous performance bene�ts for factoring tall matrices in
parallel.

This idea was taken to extremes in the PLASMA project, producing the class of tile algorithms [23, 24].
In the basic tile QR factorization, the panel is reduced incrementally, one square tile at a time. This
allows for simultaneously applying updates to the trailing submatrix, resulting in perfect pipelining and
producing outstanding strong scaling. On the other hand, a naive implementation leads to a staggering
50% overhead in �oating-point operations. The remedy is internal blocking of the algorithm by a factor
IB << NB, where NB is the tile size. While this reduces the extra operations, it moves the algorithm
away from being compute-intensive and closer to being memory-intensive.

Interesting work has been done on analyzing di�erent reduction patterns in order to minimize the length
of the critical path [33]. This led to the implementation of a few di�erent patterns in the PLASMA library,
along with a mechanism for easy generation and application of the Q matrix for arbitrary reduction
patterns.

However, the real Achilles’ heel of the tile QR factorization is the complexity of the required kernels—
speci�cally the fact that the update of the trailing submatrix is not a simple matrix multiplication, but
a series of smaller matrix multiplications. This exposes the kernel to multiple overheads. One source
of overheads is the fact that most BLAS implementations (MKL, ATLAS) copy the input matrices to a
performance-oriented layout before the actual operation. Another is the overhead of invoking cleanup
code when the input is not divisible by the internal blocking factors. Finally, while GEMM-based updates
can be implemented easily on GPUs using the batched interface, the tile QR updates require custom
kernels, which can rarely match the performance of vendor-provided GEMM.

While TSQR/CAQR algorithms solidi�ed their credibility in the dense matrix community, the tile
algorithms have not really gained that much traction and, due to their demand for custom kernels, failed
to penetrate the GPU computing �eld. Therefore, it seems to be the best choice for SLATE to utilize the
TSQR/CAQR class of algorithms, but to stop short of tile QR algorithms. This will require a fast parallel
implementation of a LAPACK-style QR panel factorization, but will provide the performance bene�t of
using simple GEMM calls for updating the trailing submatrix.

6.4 Mixed Precision

On modern architectures, single-precision 32-bit �oating-point arithmetic (FP32) is usually twice as fast
as double-precision 64-bit �oating-point arithmetic (FP64). The reason for this is that the amount of
bytes moved through the memory system is essentially halved and the circuit logic inside the �oating-

82

6.4. MIXED PRECISION CHAPTER 6. ALGORITHMIC CONSIDERATIONS

point units (FPUs) allows double the execution rate for twice as short data types. Indeed, on most current
multi-core CPUs, high-end AMD GPUs (e.g., FirePro W9100), Intel Xeon Phi, and NVIDIA Pascal GPUs,
the single-precision peak is twice the double-precision peak. On most high-end NVIDIA GPUs (e.g.,
the GeForce GTX Titan Black and server Kepler cards) the ratio of single-precision peak vs. double
precision-peak is 3-fold, but can go up to 32× (e.g., on the Titan X) depending on the ratio of the available
32-bit to 64-bit CUDA cores.

6.4.1 Linear Systems

A common approach to the solution of dense linear systems is to perform the LU factorization of the
coe�cient matrix using Gaussian elimination. First, the coe�cient matrix A is factored into the product
of a lower triangular matrix L and an upper triangular matrix U . Partial row pivoting is used to improve
numerical stability, resulting in a factorization PA = LU , where P is a permutation matrix. The solution
for the system is achieved by �rst solvingLy = Pb (forward substitution) and then solvingUx = y (backward
substitution). Due to round-o� errors, the computed solution x carries a numerical error magni�ed by
the condition number κ(A) of the coe�cient matrix A.

In order to improve the computed solution, we can apply an iterative process which produces a correction
to the computed solution at each iteration, which then yields the method that is commonly known as the
iterative re�nement algorithm. As Demmel points out [29], the non-linearity of the round-o� errors makes
the iterative re�nement process equivalent to the Newton’s method applied to the function f(x) = b−Ax.
Provided that the system is not too ill-conditioned, the algorithm produces a solution correct for the
working precision. Iterative re�nement in double/double precision is a fairly well understood concept
and was analyzed by Wilkinson [84], Moler [60], and Stewart [78].

The algorithm can be modi�ed to use a mixed-precision approach. The factorization PA = LU , the
solution of the triangular systems Ly = Pb, and Ux = y are computed using single-precision arithmetic.
The residual calculation and the update of the solution are computed using double-precision arithmetic
and the original double-precision coe�cients. The most computationally expensive operation, the
factorization of the coe�cient matrix A, is performed using single-precision arithmetic and takes
advantage of its higher speed. The only operations that must be executed in double precision are the
residual calculation and the update of the solution. The only operation with computational complexity
of O(n3) is handled in single precision, while all operations performed in double precision are of at
most O(n2) complexity.

The only drawpack is the memory overhead. The coe�cient matrixA is converted to single precision for
the LU factorization, and the resulting factors are stored in single precision while the initial coe�cient
matrix A needs to be kept in memory. Therefore, the algorithm requires 50% more memory than the
standard double-precision algorithm.

Currently, mixed-precision iterative re�nement linear systems solvers are implemented in LAPACK,
as well as the PLASMA and MAGMA libraries. On standard multi-core CPUs, iterative re�nement
typically delivers speedups between 1.6× and 1.8×. The impact of iterative re�nement is the highest for
architectures with seriously handicapped double-precision performance. The historical reference is the
Cell processor, where double-precision arithmetic was 14× slower, resulting in 7× speedup [56, 57]. The
technique is also used in the MAGMA library for GPUs and multi-GPU systems [81]. Recent experiments
on the Titan X GPU, where double precision is 32× slower, produced 26× speedups.

6.4.2 Other Algorithms

We have shown how to derive the mixed-precision versions of a variety of algorithms for solving general
linear systems of equations. In the context of overdetermined least squares problems, the iterative

83

6.4. MIXED PRECISION CHAPTER 6. ALGORITHMIC CONSIDERATIONS

re�nement technique can be applied to either the augmented system—where both the solution and
the residual are re�ned [27]—to the QR factorization, to the semi-normal equations, or to the normal
equations [19]. Iterative re�nement can also be applied to eigenvalue computations [36] and to singular-
value computations [35].

Recently, we developed an innovative mixed-precision QR for tall-and-skinny matrices [86] that uses
higher precision at critical parts of the algorithm, resulting in increased numerical stability and several
times speedup over the standard algorithms (like CGS, MGS, or Householder QR factorizations). In
particular, the algorithm starts from a Cholesky QR algorithm, which is known to be fast (expressed as
Level 3 BLAS) but numerically unstable, as the computation goes through normal equations. However,
computing the normal equations and other critical parts of the algorithm in double-double precision is
shown to be stable, while preserving the performance pro�le for Level-3 BLAS operations [87].

84

6.5. MATRIX INVERSION CHAPTER 6. ALGORITHMIC CONSIDERATIONS

6.5 Matrix Inversion

Matrix inversion is not an appropriate method for solving a linear system of equations. The appropriate
method is matrix factorization, such as LU or Cholesky, followed by forward and backward substitution.
However, multiple applications require the computation of the actual inverse. A canonical example is the
computation of the variance-covariance matrix in statistics. Higham lists more of such applications [51].
The need for computing the inverse was also expressed by some of the ECP apps teams (computational
chemistry, material science).

Computing the matrix inversion has been an attractive target for research because of its optimization
opportunities [8, 17], the Cholesky-based inversion more so than the LU-based inversion. State of the art
implementation of the Cholesky inversion is implemented in the PLASMA library. Top performance is
achieved by removal of anti-dependencies, careful ordering of loops, and pipelining of all the stages of
the algorithm.

Anti-Dependencies Removal: LAPACK and ScaLAPACK take a very conservative approach to memory
management. As a result, all stages of the matrix inversion are performed in place, as the input
matrix is gradually overwritten by the output result. From the standpoint of work scheduling, this
creates a lot of anti-dependencies, which prevent e�cient execution. This is remedied by allocating
temporary storage and performing operations out of place. In the case of matrix inversion, all
anti-dependencies can be removed this way.

Optimal Loop Ordering: The three stages constituting the matrix inversion: factorization (POTRF),
triangular inversion (TRTRI), and triangular matrix multiplication (LAUUM) all contain a large
number of GEMM operations, which are commutative. At the same time, their ordering heavily
impacts the critical path’s length. The shortest critical path and the maximum parallelism are
achieved through the correct ordering. The work by Agullo contains detailed analysis [8].

Complete Pipelining of Stages: Finally, in the case of LAPACK and ScaLAPACK, the three stages
(POTRF, TRTRI, LAUUM) are executed in a sequence, one at a time, and each one is a�ected by
the load imbalance towards the end of the execution. A superior approach is to form a single task
graph encompassing all three stages and schedule all tasks based on their data dependencies. This
leads to a very high degree of pipelining between the stages, and superior performance.

6.6 Eigenvalue and Singular-Value Problems

Eigen decomposition is a fundamental workload of dense linear algebra that is critically important to
structural engineering, quantum mechanics, and many other areas of technical and scienti�c computing.
So too is the singular-value decomposition (SVD), with applications in principal component analysis,
digital image processing, and information retrieval systems to name a few.

The eigenvalue problem is the problem of �nding an eigenvector x and eigenvalue λ that satisfyAx =
λx, where A is a symmetric or non-symmetric n × n matrix. Eigendecomposition of a matrix is a
decomposition of A = XΛX−1, where Λ is a diagonal matrix of eigenvalues and X is a matrix of
eigenvectors.

The objective of singular-value decomposition is to �nd orthogonal matrices U and V , and a diagonal
matrix Σ with nonnegative elements, such that A = UΣV T , where A is an m× n matrix. The diagonal
elements of Σ are the singular values of A, while the columns of U and V are its le� and right singular
vectors, respectively.

Typically, solutions to singular-value problems and the eigenvalue problems are found by following a
similar three-stage process:

85

6.6. EIGENVALUES AND SVD CHAPTER 6. ALGORITHMIC CONSIDERATIONS

Reduction: Orthogonal transformations are applied to the input matrix from the le� and from the right
to reduce it to a condensed form (bidiagonal for SVD, tridiagonal for symmetric eigendecomposi-
tion, and Hessenberg for non-symmetric eigendecomposition).

Solution: An iterative solver is applied to further condense the matrix in order to �nd its eigenvalues or
singular values.

Vector Computation: If desired, the eingenvectors or singular vectors are computed by �rst �nding the
eigen/singular vectors of the condensed matrix and then �nding the eigen/singular vectors of the
original matrix in the process of back-transformation.

6.6.1 Singular-Value Decomposition

For singular-value decomposition (SVD), two orthogonal matrices Q and P are applied on the le� and
right side of A, respectively, to reduce A to bidiagonal form, B = QTAP . Divide and conquer or QR
iteration is then used as a solver to �nd both the singular values and the le� and the right singular
vectors of B as B = ŨΣṼ T , yielding the singular values of A. If desired, singular vectors of B are
back-transformed to singular vectors of A as U = QŨ and V T = PT Ṽ T . In this section we describe in
detail the three computational phases involved in singular-value decomposition.

Classic Reduction to Bidiagonal Form

Due to its high computational complexity ofO(8
3n

3) (for square matrices) and interdependent data access
patterns, the bidiagonal reduction phase is the most challenging. In the classic approach of LAPACK,
referred to as the “one-stage algorithm,” orthogonal transformations are used reduce the dense matrix
to the bidiagonal form in one sweep. Performance of these algorithms is capped by the memory-bound
Level 2 BLAS gemv routine.

In the case where all singular vectors are computed, reduction to the bidiagonal form requires more
than 70% of all computational time. When only singular values are needed, the reduction requires about
90% of the total time. Because of the ine�ciency of the the classic approach, a new technique has been
developed, referred to as the “two-stage” algorithm [18, 45–47, 58, 59]. In the two-stage algorithm, the
matrix is �rst reduced to a band form, and then reduced to the “proper” bidiagonal form in the process
of band reduction.

Two-Stage Reduction to Bidiagonal Form

Two-stage reduction is designed to overcome the limitations of one-stage reduction, which relies heavily
on memory-bound operations. The algorithm is split into the �rst stage, which reduces the original
matrix to a band matrix, and the second stage, which reduces the band matrix to the canonical bidiagonal
form.

The computational cost of the �rst stage is∼ 8
3n

3 �oating-point operations. This stage is compute-bound
and has a high degree of parallelism. Therefore, it can be implemented very e�ciently. The second stage
is much less compute-intensive and has much lower degree of parallelism, but is also responsible for a
much smaller number of overall operations. Also, it can be implemented in a cache-friendly manner,
colloquially referred to as Level 2.5 BLAS [45, 47].

86

6.6. EIGENVALUES AND SVD CHAPTER 6. ALGORITHMIC CONSIDERATIONS

Bidiagonal Singular Solver

A bidiagonal singular solver computes the spectral decomposition of a bidiagonal matrix B such that
B = ŨΣṼ H , with Ũ ŨH = I and Ṽ Ṽ H = I , where Ũ and Ṽ H are the singular vectors, and Σ are the
singular values of B. The solution is usually found either using the QR algorithm [42], or the divide and
conquer algorithm [44, 55].

Singular-Vector Computation

In the case of the two-stage approach, the �rst stage reduces the original dense matrix A to a band
matrix Aband such that QH

1 AP1 = Aband. Similarly, the second stage reduces the band matrix Aband to
the bidiagonal form such that QH

2 AbandP2 = B. Consequently, the singular vectors are computed to be
multiplied by both Q∗ and P∗, according to the formula:

U = Q1Q2Ũ = (I −G1T1G
H
1)(I −G2T2G

H
2)Ũ ,

V H = Ṽ HPH
2 P

H
1 = Ṽ T (I −W2Tr

H
2 W

H
2)(I −W1Tr

H
1 W

H
1),

where (G1, T1 and W1, T r1) and (G2, T2 and W2, T r2) represent the le� and the right Householder re�ec-
tors generated during the �rst and the second stages of the reduction to the bidiagonal form. It is clear
that the two-stage approach introduces a non-trivial amount of extra computation—the application of
Q2 and PH

2 —for the case where the singular vectors are needed.

Experiments showed that the two-stage algorithm can reach between 2× and 3× speedup when both the
le� and the right singular vectors are computed. At the same time, when only the singular values are
needed, the two-stage approach can reach more than 7× speedup [49].

6.6.2 Symmetric Eigenvalue Problem

Reduction to Tridiagonal Form

While singular-value decomposition requires reduction to the bidiagonal form, symmetric eigendecom-
position requires reduction to the tridiagonal form. Similarly to singular-value decomposition, the fast
tridiagonal reduction algorithm is based on a two-stage reduction. In the �rst stage, the full symmetric
matrix is reduced to a band symmetric matrix (A −→ Aband), and in the second stage, the band matrix is
reduced to the tridiagonal matrix, in a process very similar to the one used for SVD [48, 50, 75].

Tridiagonal Eigensolver

A tridiagonal eigensolver is used to compute eigenpairs of the tridiagonal matrix T = ZΛZT , where
Z is the matrix of orthogonal eigenvectors of T , and Λ is the diagonal matrix of eigenvalues. Four
algorithms are available: QR iterations, bisection and inverse iteration (BI), divide and conquer, and
multiple relatively robust representations (MRRR). Discussion of the �rst two algorithms can be found
in the book by Demmel [29]. A performance comparison of di�erent symmetric tridiagonal solvers by
Demmel et al. [30] shows that the D&C and the MRRR solvers are the fastest available.

While D&C requires a larger extra workspace, MRRR is less accurate. Accuracy is a fundamental
parameter; the tridiagonal eigensolver is known to be the part of the overall symmetric eigensolver

87

6.7. CONSEQUENCES FOR SLATE CHAPTER 6. ALGORITHMIC CONSIDERATIONS

where accuracy can be lost. D&C is more robust than MRRR, which can fail to provide an accurate
solution in some cases. In theory, MRRR is a O(n2) algorithm, whereas D&C is between O(n2) and O(n3)
depending on the matrix properties. In many real-life applications, D&C is o�en less than cubic while
MRRR seems to be slower than expected due to the number of �oating-point divisions and the cost
of the iterative process. The main advantage of MRRR is that computation of a subset of eigenpairs is
possible, reducing the complexity to O(nk) for computing k eigenpairs.

Eigenvector Computation

A�er the reduction to condensed form, the eigensolver �nds the eigenvalues Λ and eigenvectors Z of T .
The eigenvalues are the same as those in original matrixA. To �nd the eigenvectors of the original matrix
A, the eigenvectors Z of T need to be back-transformed by applying the same orthogonal matrices, Q1

and Q2, that were used in the reduction to the condensed form. This step is a series of DGEMM operations,
and usually achieves a high fraction of the machine’s peak performance, and ends up being a small
percentage of the total execution time.

The two-stage approach to the eigendecomposition has similar performance characteristics to the two-
stage approach to singular-value decomposition, and delivers up to 3× speedup when all the eigenvectors
are computed, and up to 7× speedup when only the eigenvalues are computed.

6.6.3 Non-Symmetric Eigenvalue Problem

The non-symmetric eigenvalue problem is used to �nd the scalar λ and the vector x satisfying Ax = λx,
where A is a non-symmetric n × n matrix. In addition to this le� eigenvector x, there is also the right
eigenvector y, such that yTA = λyT . In the symmetric case, le� and right eigenvectors are identical.

Similarly to the symmetric case, the solution to the non-symmetric eigendecomposition consists of
three phases [43]. First, the matrix is reduced to the upper Hessenberg form by applying orthogonal
transformations to form H = QT

1 AQ1. Then QR iteration is applied, which reduces the Hessenberg
matrix to the upper triangular Schur form, S = QT

2HQ2, revealing the eigenvalues of A as the diagonal
elements of S. Finally, the eigenvectors Z of the Schur form S are computed and transformed to the
eigenvectors X of the original matrix A in the process of back-transformation.

Unfortunately, the two-stage approach is not easily applicable to the Hessenberg reduction. While a full
matrix can be e�ciently reduced to the band Hessenberg form [16], there is no e�cient process for band
reduction. The only consolation is that the traditional Hessenberg reduction can easily be o�oaded to
GPUs to take advantage of their high memory bandwidth [80]. Recent developments in non-symmetric
eigenvalue solvers also include improvement of the eigenvector calculations by using Level 3 BLAS
operations in the step of back transformation [41].

6.7 Consequences for SLATE

The events of the past decade of algorithmic developments in dense linear algebra indicate that SLATE
should:

• Implement the canonical LU factorization with partial (row) pivoting. This is the technical com-
puting community’s most trusted linear solver algorithm, and performs well when implemented
well. Ideally, the SLATE implementation of the LU factorization and solve should be hard to beat
by a hand-optimized implementation of the HPL benchmark.

88

6.7. CONSEQUENCES FOR SLATE CHAPTER 6. ALGORITHMIC CONSIDERATIONS

• Implement the LDLT factorization based on the communication-avoiding variant of the Aasen’s
algorithms. The algorithm provides undeniable performance bene�ts without substantially wors-
ening numerical stability.

• Implement the communication-avoiding variants of the QR/LQ factorizations, but stop short of
implementing the tile QR/LQ algorithms. While the communication-avoiding features provide
massive performance boosts for tall and skinny matrices, the tile rendition shows performance
limitations on CPUs and demands custom kernels on GPUs.

• Equip all its linear solvers with mixed-precision capabilities, as the technique is generally bene�cial
on current hardware if numerical properties of the input matrices grant its usage.

• Exploit pipelining potential of the matrix inversion routines for the performance boost and
improved strong scaling properties.

• Implement singular-value routines and eigenvalue routines based on the two-stage approach,
which is clearly superior to the traditional algorithms on current hardware.

89

CHAPTER 7

Conclusions

This chapter contains a brief summary of all the �ndings from the previous chapters. More detailed
conclusions can be found in the sections titled “Consequences for SLATE” included at the end of each
chapter. The main �ndings of this document are:

SLATE is essential to the success of a large number of ECP applications as a modern replacement for
LAPACK and ScaLAPACK.

SLATE needs to target powerful nodes, with large numbers of cores and powerful accelerators. This
implies the use of breath-�rst (right-looking) algorithms, which produce large amounts of parallel
work at a time, and the use of batch operations.

SLATE needs to cope with bandwidth limitations that call for very conservative use of the network.
This implies heavy reliance on collective communication, preferably non-blocking collectives.

SLATE needs to target complex and deep-memory systems. This necessitates alternatives to the 2-D
block cyclic matrix layout of ScaLAPACK. SLATE needs to o�er a much higher level of �exibility
in laying out the matrix in the memory.

SLATE needs to leverage the tremendous progress in so�ware technology since the introduction of
ScaLAPACK. This includes new programing models of OpenMP and OpenACC, as well as major
improvements to the basic distributed programming model of MPI. This also includes emerging
technologies, such as node-level programing solutions like Kokkos and RAJA and distributed tasking
systems like PaRSEC and Legion.

SLATE needs to take advantage of the tremendous progress in dense linear algebra algorithms over the
last decade, as major improvements were made to most of the ScaLAPACK algorithms.

90

Bibliography

[1] Whitepaper: NVIDIA Tesla P100, . URL https://images.nvidia.com/content/pdf/tesla/whitepaper/
pascal-architecture-whitepaper.pdf.

[2] Inside Volta: The World’s Most Advanced Data Center GPU, . URL https://devblogs.nvidia.com/
parallelforall/inside-volta/.

[3] Workshop on portability among HPC architectures for scienti�c applications. In The International
Conference for High Performance Computing, Networking, Storage, and Analysis, November 2015. URL
http://hpcport.alcf.anl.gov/.

[4] DOE centers of excellence performance portability meeting, 2016. URL https://asc.llnl.gov/
DOE-COE-Mtg-2016/.

[5] Oak Ridge Leadership Computing Facility - Summit, 2017. URL https://www.olcf.ornl.gov/summit/.

[6] Jan Ole Aasen. On the reduction of a symmetric matrix to tridiagonal form. BIT Numerical Mathe-
matics, 11(3):233–242, 1971.

[7] Maksims Abalenkovs, Negin Bagherpour, Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak,
Piotr Luszczek, Samuel Relton, Jakub Sistek, David Stevens, Panruo Wu, Ichitaro Yamazaki, Asim
YarKhan, and Mawussi Zounon. PLASMA 17 performance report: Linear systems and least squares
Haswell, Knights Landing, POWER8. Technical Report UT-EECS-17-750, University of Tennessee,
2017. URL http://www.netlib.org/lapack/lawnspdf/lawn292.pdf.

[8] Emmanuel Agullo, Henricus Bouwmeester, Jack Dongarra, Jakub Kurzak, Julien Langou, and Lee
Rosenberg. Towards an e�cient tile matrix inversion of symmetric positive de�nite matrices on
multicore architectures. In International Conference on High Performance Computing for Computational
Science, pages 129–138. Springer, 2010.

[9] Cleve Ashcra�, Roger G Grimes, and John G Lewis. Accurate symmetric inde�nite linear equation
solvers. SIAM Journal on Matrix Analysis and Applications, 20(2):513–561, 1998.

[10] Guillaume Aupy, Mathieu Faverge, Yves Robert, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra.
Euro-Par 2013: Parallel Processing Workshops: BigDataCloud, DIHC, FedICI, HeteroPar, HiBB, LSDVE,
MHPC, OMHI, PADABS, PROPER, Resilience, ROME, and UCHPC 2013, Aachen, Germany, August 26-27,
2013. Revised Selected Papers, chapter Implementing a Systolic Algorithm for QR Factorization on

91

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://devblogs.nvidia.com/parallelforall/inside-volta/
https://devblogs.nvidia.com/parallelforall/inside-volta/
http://hpcport.alcf.anl.gov/
https://asc.llnl.gov/DOE-COE-Mtg-2016/
https://asc.llnl.gov/DOE-COE-Mtg-2016/
https://www.olcf.ornl.gov/summit/
http://www.netlib.org/lapack/lawnspdf/lawn292.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

Multicore Clusters with PaRSEC, pages 657–667. Springer Berlin Heidelberg, Berlin, Heidelberg,
2014.

[11] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoe�inger, Yuan Lin, Federico Massaioli,
Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. The design of OpenMP tasks. IEEE
Transactions on Parallel and Distributed Systems, 20(3):404–418, 2009.

[12] Grey Ballard, Dulceneia Becker, James Demmel, Jack Dongarra, Alex Druinsky, Inon Peled, Oded
Schwartz, Sivan Toledo, and Ichitaro Yamazaki. Communication-avoiding symmetric-inde�nite
factorization. SIAM Journal on Matrix Analysis and Applications, 35(4):1364–1406, 2014.

[13] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing locality and
independence with logical regions. In Proceedings of the international conference on high performance
computing, networking, storage and analysis, page 66. IEEE Computer Society Press, 2012.

[14] Michael Edward Bauer. Legion: Programming distributed heterogeneous architectures with logical regions.
PhD thesis, Stanford University, 2014.

[15] J Bennett, R Clay, et al. ASC ATDM level 2 milestone #5325: Asynchronous many-task runtime
system analysis and assessment for next generation platforms. Technical Report SAND2015-
8312, Sandia National Laboratories, 2015. URL http://www.sci.utah.edu/publications/Ben2015c/
ATDM-AMT-L2-Final-SAND2015-8312.pdf .

[16] Michael W Berry, Jack J Dongarra, and Youngbae Kim. A parallel algorithm for the reduction of a
nonsymmetric matrix to block upper-Hessenberg form. Parallel Computing, 21(8):1189–1211, 1995.

[17] Paolo Bientinesi, Brian Gunter, and Robert A Geijn. Families of algorithms related to the inversion
of a symmetric positive de�nite matrix. ACM Transactions on Mathematical So�ware (TOMS), 35(1):3,
2008.

[18] Paolo Bientinesi, Francisco Igual, Daniel Kressner, and Enrique Quintana-Ortı́. Reduction to
condensed forms for symmetric eigenvalue problems on multi-core architectures. Parallel Processing
and Applied Mathematics, pages 387–395, 2010.

[19] Åke Björck. Numerical methods for least squares problems. SIAM, 1996.

[20] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam Haidar, Thomas
Herault, Jakub Kurzak, Julien Langou, Pierre Lemarinier, Hatem Ltaief, et al. Flexible development
of dense linear algebra algorithms on massively parallel architectures with DPLASMA. In Parallel
and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on,
pages 1432–1441. IEEE, 2011.

[21] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, Pierre Lemarinier, and Jack
Dongarra. DAGuE: A generic distributed DAG engine for high performance computing. Parallel
Computing, 38(1):37–51, 2012.

[22] James R Bunch and Linda Kaufman. Some stable methods for calculating inertia and solving
symmetric linear systems. Mathematics of computation, pages 163–179, 1977.

[23] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. Parallel tiled QR factorization
for multicore architectures. Concurrency and Computation: Practice and Experience, 20(13):1573–1590,
2008.

[24] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Computing, 35(1):38–53, 2009.

[25] Anthony M Castaldo and R Clint Whaley. Scaling LAPACK panel operations using parallel cache
assignment. In ACM Sigplan Notices, volume 45, pages 223–232. ACM, 2010.

92

http://www.sci.utah.edu/publications/Ben2015c/ATDM-AMT-L2-Final-SAND2015-8312.pdf
http://www.sci.utah.edu/publications/Ben2015c/ATDM-AMT-L2-Final-SAND2015-8312.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Michel Cosnard, Emmanuel Jeannot, and Tao Yang. Compact DAG representation and its symbolic
scheduling. Journal of Parallel and Distributed Computing, 64(8):921–935, 2004.

[27] James Demmel, Yozo Hida, E Jason Riedy, and Xiaoye S Li. Extra-precise iterative re�nement for
overdetermined least squares problems. ACM Transactions on Mathematical So�ware (TOMS), 35(4):28,
2009.

[28] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. Communication-optimal
parallel and sequential QR and LU factorizations. SIAM Journal on Scienti�c Computing, 34(1):A206–
A239, 2012.

[29] James W Demmel. Applied numerical linear algebra. SIAM, 1997.

[30] James W Demmel, Osni A Marques, Beresford N Parlett, and Christof Vömel. Performance and
accuracy of LAPACK’s symmetric tridiagonal eigensolvers. SIAM Journal on Scienti�c Computing, 30
(3):1508–1526, 2008.

[31] Simplice Donfack, Jack Dongarra, Mathieu Faverge, Mark Gates, Jakub Kurzak, Piotr Luszczek,
and Ichitaro Yamazaki. A survey of recent developments in parallel implementations of Gaussian
elimination. Concurrency and Computation: Practice and Experience, 27(5):1292–1309, 2015.

[32] Jack Dongarra, Mathieu Faverge, Hatem Ltaief, and Piotr Luszczek. Exploiting �ne-grain parallelism
in recursive LU factorization. In PARCO, pages 429–436, 2011.

[33] Jack Dongarra, Mathieu Faverge, Thomas Herault, Mathias Jacquelin, Julien Langou, and Yves
Robert. Hierarchical QR factorization algorithms for multi-core clusters. Parallel Computing, 39(4):
212–232, 2013.

[34] Jack Dongarra, Mathieu Faverge, Hatem Ltaief, and Piotr Luszczek. Achieving numerical accuracy
and high performance using recursive tile LU factorization with partial pivoting. Concurrency and
Computation: Practice and Experience, 26(7):1408–1431, 2014.

[35] Jack J Dongarra. Improving the accuracy of computed singular values. SIAM Journal on Scienti�c and
Statistical Computing, 4(4):712–719, 1983.

[36] Jack J Dongarra, Cleve B Moler, and James Hardy Wilkinson. Improving the accuracy of computed
eigenvalues and eigenvectors. SIAM Journal on Numerical Analysis, 20(1):23–45, 1983.

[37] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK benchmark: past, present and
future. Concurrency and Computation: practice and experience, 15(9):803–820, 2003.

[38] H Carter Edwards, Christian R Trott, and Daniel Sunderland. Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns. Journal of Parallel and Distributed
Computing, 74(12):3202–3216, 2014.

[39] Oak Ridge Leadership Computing Facility. SUMMIT: Scale new heights. Discover new solutions.
Technical report, Oak Ridge National Laboratory, 2014. URL https://www.olcf.ornl.gov/wp-content/
uploads/2014/11/Summit FactSheet.pdf.

[40] Denis Foley and John Danskin. Ultra-performance Pascal GPU and NVLink interconnect. IEEE
Micro, 37(2):7–17, 2017.

[41] Mark Gates, Azzam Haidar, and Jack Dongarra. Accelerating computation of eigenvectors in the
dense nonsymmetric eigenvalue problem. In International Conference on High Performance Computing
for Computational Science, pages 182–191. Springer, 2014.

[42] Gene Golub and William Kahan. Calculating the singular values and pseudo-inverse of a matrix.
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(2):205–224,
1965.

93

https://www.olcf.ornl.gov/wp-content/uploads/2014/11/Summit_FactSheet.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2014/11/Summit_FactSheet.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[43] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[44] Ming Gu and Stanley C Eisenstat. A divide-and-conquer algorithm for the bidiagonal SVD. SIAM
Journal on Matrix Analysis and Applications, 16(1):79–92, 1995.

[45] Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for sym-
metric eigenvalue problems using aggregated �ne-grained and memory-aware kernels. In High
Performance Computing, Networking, Storage and Analysis (SC), 2011 International Conference for, pages
1–11. IEEE, 2011.

[46] Azzam Haidar, Hatem Ltaief, Piotr Luszczek, and Jack Dongarra. A comprehensive study of task
coalescing for selecting parallelism granularity in a two-stage bidiagonal reduction. In Parallel &
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 25–35. IEEE, 2012.

[47] Azzam Haidar, Jakub Kurzak, and Piotr Luszczek. An improved parallel singular value algorithm
and its implementation for multicore hardware. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, page 90. ACM, 2013.

[48] Azzam Haidar, Ra�aele Solcà, Mark Gates, Stanimire Tomov, Thomas Schulthess, and Jack Dongarra.
Leading edge hybrid multi-GPU algorithms for generalized eigenproblems in electronic structure
calculations. In International Supercomputing Conference, pages 67–80. Springer, 2013.

[49] Azzam Haidar, Piotr Luszczek, and Jack Dongarra. New algorithm for computing eigenvectors of the
symmetric eigenvalue problem. In Parallel & Distributed Processing SymposiumWorkshops (IPDPSW),
2014 IEEE International, pages 1150–1159. IEEE, 2014.

[50] Azzam Haidar, Stanimire Tomov, Jack Dongarra, Ra�aele Solca, and Thomas Schulthess. A novel
hybrid CPU–GPU generalized eigensolver for electronic structure calculations based on �ne-grained
memory aware tasks. The International Journal of High Performance Computing Applications, 28(2):196–
209, 2014.

[51] Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[52] Jared Hoberock. Working dra�, technical speci�cation for C++ extensions for parallelism, 2014.
URL http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4071.htm.

[53] Texas Instruments. OpenMP Accelerator Model User’s Guide, 2016. URL http://processors.wiki.ti.
com/index.php/OpenMP Accelerator Model User’s Guide.

[54] James Je�ers, James Reinders, and Avinash Sodani. Intel Xeon Phi Processor High Performance Program-
ming: Knights Landing Edition. Morgan Kaufmann, 2016.

[55] Elizabeth R Jessup and Danny C Sorensen. A divide and conquer algorithm for computing the
singular value decomposition. In Proceedings of the Third SIAM Conference on Parallel Processing for
Scienti�c Computing, pages 61–66. Society for Industrial and Applied Mathematics, 1987.

[56] Jakub Kurzak and Jack Dongarra. Implementation of mixed precision in solving systems of linear
equations on the CELL processor. Concurrency and Computation: Practice and Experience, 19(10):
1371–1385, 2007.

[57] Jakub Kurzak, Alfredo Buttari, and Jack Dongarra. Solving systems of linear equations on the CELL
processor using Cholesky factorization. IEEE Transactions on Parallel and Distributed Systems, 19(9):
1175–1186, 2008.

[58] Bruno Lang. E�cient eigenvalue and singular value computations on shared memory machines.
Parallel Computing, 25(7):845–860, 1999.

94

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4071.htm
http://processors.wiki.ti.com/index.php/OpenMP_Accelerator_Model_User's_Guide
http://processors.wiki.ti.com/index.php/OpenMP_Accelerator_Model_User's_Guide

BIBLIOGRAPHY BIBLIOGRAPHY

[59] Hatem Ltaief, Piotr Luszczek, and Jack Dongarra. Enhancing parallelism of tile bidiagonal transfor-
mation on multicore architectures using tree reduction. Parallel Processing and Applied Mathematics,
pages 661–670, 2012.

[60] Cleve B Moler. Iterative re�nement in �oating point. Journal of the ACM (JACM), 14(2):316–321, 1967.

[61] US Department of Energy. Fact Sheet: Collaboration of Oak Ridge, Ar-
gonne, and Livermore (CORAL), 2014. URL https://energy.gov/downloads/
fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral.

[62] US Department of Energy. FY 2018 Department of Energy’s Budget Request to Congress, 2017.
URL https://energy.gov/cfo/downloads/fy-2018-budget-justification.

[63] O�ce of Science. U.S. Department of Energy awards $200 million for
next-generation supercomputer at its Argonne National Laboratory. Techni-
cal report, US Department of Energy, 2015. URL https://energy.gov/articles/
us-department-energy-awards-200-million-next-generation-supercomputer-argonne-national.

[64] OpenACC Corporation. The OpenACC™ application programming interface version 1.0, November
2011.

[65] OpenACC Corporation. Proposed additions for OpenACC 2.0, OpenACC™ application program-
ming interface, November 2012.

[66] OpenMP Architecture Review Board. OpenMP application program interface, July 2013. Version
4.0.

[67] OpenMP Architecture Review Board. OpenMP application program interface, November 2015.
Version 4.5.

[68] Scott Parker, Vitali Morozov, Sudheer Chunduri, Kevin Harms, Chris Knight, and Kalyan Kumaran.
Early Evaluation of the Cray XC40 Xeon Phi System Theta at Argonne. Cray User Group 2017
proceedings, 2017.

[69] Michael K. Patterson. A CORAL system and implications for future hardware and data centers.
Technical report, Intel, Technical Computing Systems Architecture and Path�nding, 2014. URL
https://www2.cisl.ucar.edu/sites/default/files/Patterson.pdf .

[70] John Reid. The new features of Fortran 2008. In ACM SIGPLAN Fortran Forum, volume 27, pages
8–21. ACM, 2008.

[71] Miroslav Rozložnı́k, Gil Shklarski, and Sivan Toledo. Partitioned triangular tridiagonalization. ACM
Transactions on Mathematical So�ware (TOMS), 37(4):38, 2011.

[72] Satish Kumar Sadasivam, Brian W Thompto, Ron Kalla, and William J Starke. IBM Power9 processor
architecture. IEEE Micro, 37(2):40–51, 2017.

[73] Advanced Simulation and Computing. CORAL/Sierra. Technical report, Livermore National
Laboratory, 2015. URL https://asc.llnl.gov/coral-info.

[74] Balaram Sinharoy, JA Van Norstrand, Richard J Eickemeyer, Hung Q Le, Jens Leenstra, Dung Q
Nguyen, B Konigsburg, K Ward, MD Brown, José E Moreira, et al. IBM POWER8 processor core
microarchitecture. IBM Journal of Research and Development, 59(1):2–1, 2015.

[75] Ra�aele Solcà, Anton Kozhevnikov, Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Thomas C
Schulthess. E�cient implementation of quantum materials simulations on distributed CPU-GPU
systems. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, page 10. ACM, 2015.

95

https://energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral
https://energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral
https://energy.gov/cfo/downloads/fy-2018-budget-justification
https://energy.gov/articles/us-department-energy-awards-200-million-next-generation-supercomputer-argonne-national
https://energy.gov/articles/us-department-energy-awards-200-million-next-generation-supercomputer-argonne-national
https://www2.cisl.ucar.edu/sites/default/files/Patterson.pdf
https://asc.llnl.gov/coral-info

BIBLIOGRAPHY BIBLIOGRAPHY

[76] Nigel Stephens. ARMv8-A next-generation vector architecture for HPC. In Hot Chips 28 Symposium
(HCS), 2016 IEEE, pages 1–31. IEEE, 2016.

[77] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Giacomo Gabrielli, Matt
Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanael Premillieu, et al. The ARM scalable
vector extension. IEEE Micro, 37(2):26–39, 2017.

[78] G. W. Stewart. Introduction to Matrix Computations. Academic Press, 1973.

[79] Brian Thompto. POWER9 processor for the cognitive era. In Hot Chips 28 Symposium (HCS), 2016
IEEE, pages 1–19. IEEE, 2016.

[80] Stanimire Tomov, Rajib Nath, and Jack Dongarra. Accelerating the reduction to upper Hessenberg,
tridiagonal, and bidiagonal forms through hybrid GPU-based computing. Parallel Computing, 36(12):
645–654, 2010.

[81] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense linear algebra solvers
for multicore with GPU accelerators. In Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, pages 1–8. IEEE, 2010.

[82] Wikibooks. OpenMP/Tasks - Wikibooks, open books for an open world, 2016. URL https://en.
wikibooks.org/wiki/OpenMP/Tasks.

[83] Wikipedia. Mandelbrot set - Wikipedia, The Free Encyclopedia, 2017. URL https://en.wikipedia.org/
wiki/Mandelbrot set.

[84] James Hardy Wilkinson. Rounding errors in algebraic processes. Courier Corporation, 1994.

[85] Wei Wu, Aurelien Bouteiller, George Bosilca, Mathieu Faverge, and Jack Dongarra. Hierarchical
DAG scheduling for hybrid distributed systems. In Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International, pages 156–165. IEEE, 2015.

[86] Ichitaro Yamazaki, Stanimire Tomov, Tingxing Dong, and Jack Dongarra.HighPerformance Computing
for Computational Science – VECPAR 2014: 11th International Conference, Eugene, OR, USA, June 30 – July
3, 2014, Revised Selected Papers, chapter Mixed-Precision Orthogonalization Scheme and Adaptive
Step Size for Improving the Stability and Performance of CA-GMRES on GPUs, pages 17–30.
Springer International Publishing, Cham, 2015.

[87] Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra. Mixed-precision Cholesky QR factoriza-
tion and its case studies on multicore CPU with multiple GPUs. SIAM Journal on Scienti�c Computing,
37(3):C307–C330, 2015.

96

https://en.wikibooks.org/wiki/OpenMP/Tasks
https://en.wikibooks.org/wiki/OpenMP/Tasks
https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Mandelbrot_set

	Preface
	ECP Applications Survey
	Results
	Consequences for SLATE

	Hardware Technology Trends
	Upcoming Machines
	Processing
	GPUs
	Xeon Phi
	POWER
	ARM

	Communication
	NVLINK
	InfiniBand
	OmniPath

	Memory
	High Bandwidth Memory
	Hybrid Memory Cube

	Consequences for SLATE

	Software Technology Trends
	Standards
	C++
	OpenMP
	OpenACC
	MPI

	Frameworks
	PaRSEC
	Legion
	DARMA
	Kokkos
	RAJA

	Consequences for SLATE

	Matrix Layout Considerations
	ATLAS Layouts
	MKL Packed GEMM
	GPU Batched GEMM
	Consequences for SLATE

	Algorithmic Considerations
	LU
	LDLT
	QR/LQ
	Mixed Precision
	Linear Systems
	Other Algorithms

	Matrix Inversion
	Eigenvalues and SVD
	Singular Value Decomposition
	Symmetric Eigenvalue Problem
	Nonsymmetric Eigenvalue Problem

	Consequences for SLATE

	Conclusions

