Publications

Export 1285 results:
2017
Zhao, Y., L. Wan, W. Wu, G. Bosilca, R. Vuduc, J. Ye, W. Tang, and Z. Xu, Efficient Communications in Training Large Scale Neural Networks,” ACM MultiMedia Workshop 2017, Mountain View, CA, ACM, October 2017.  (1.41 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Factorization and Inversion of a Million Matrices using GPUs: Challenges and Countermeasures,” Procedia Computer Science, vol. 108, pp. 606–615, June 2017.  (643.44 KB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Fast Cholesky Factorization on GPUs for Batch and Native Modes in MAGMA,” Journal of Computational Science, vol. 20, pp. 85–93, May 2017.  (3.6 MB)
Anzt, H., G. Collins, J. Dongarra, G. Flegar, and E. S. Quintana-Orti, Flexible Batched Sparse Matrix Vector Product on GPUs , Denver, Colorado, ScalA'17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, November 2017.  (16.8 MB)
Anzt, H., G. Collins, J. Dongarra, G. Flegar, and E. S. Quintana-Orti, Flexible Batched Sparse Matrix-Vector Product on GPUs,” 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA '17), Denver, CO, ACM Press, November 2017.  (583.4 KB)
Kabir, K., A. Haidar, S. Tomov, A. Bouteiller, and J. Dongarra, A Framework for Out of Memory SVD Algorithms,” ISC High Performance 2017, pp. 158–178, June 2017.  (393.22 KB)
Haidar, A., A. Abdelfattah, S. Tomov, and J. Dongarra, High-performance Cholesky Factorization for GPU-only Execution,” Proceedings of the General Purpose GPUs (GPGPU-10), Austin, TX, ACM, February 2017.  (872.18 KB)
Benoit, A., F. Cappello, A. Cavelan, Y. Robert, and H. Sun, Identifying the Right Replication Level to Detect and Correct Silent Errors at Scale,” 2017 Workshop on Fault-Tolerance for HPC at Extreme Scale, Washington, DC, ACM, June 2017.  (865.68 KB)
Yamazaki, I., M. Hoemmen, P. Luszczek, and J. Dongarra, Improving Performance of GMRES by Reducing Communication and Pipelining Global Collectives,” Proceedings of The 18th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2017), Best Paper Award, Orlando, FL, June 2017.  (453.66 KB)
Haidar, A., P. Wu, S. Tomov, and J. Dongarra, Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers,” ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, Denver, CO, ACM.  (766.35 KB)
Yamazaki, I., and J. Dongarra, LAWN 294: Aasen's Symmetric Inde nite Linear Solvers in LAPACK,” LAPACK Working Note, no. LAWN 294, ICL-UT-17-13: University of Tennessee, December 2017.  (854.1 KB)
Bell, G., D. Bailey, A. H. Karp, J. Dongarra, and K. Walsh, A Look Back on 30 Years of the Gordon Bell Prize,” International Journal of High Performance Computing and Networking, vol. 31, issue 6, pp. 469–484, 2017.
Tomov, S., and A. Haidar, MAGMA Tensors and Batched Computing for Accelerating Applications on GPUs , San Jose, CA, GPU Technology Conference (GTC17), Presentation in Session S7728, May 2017.  (11.12 MB)
Ng, L., K. Wong, A. Haidar, S. Tomov, and J. Dongarra, MagmaDNN – High-Performance Data Analytics for Manycore GPUs and CPUs , Knoxville, TN, 2017 Summer Research Experiences for Undergraduate (REU), Presentation, December 2017.  (5.06 MB)
Anzt, H., E. Boman, J. Dongarra, G. Flegar, M. Gates, M. Heroux, M. Hoemmen, J. Kurzak, P. Luszczek, S. Rajamanickam, et al., MAGMA-sparse Interface Design Whitepaper,” Innovative Computing Laboratory Technical Report, no. ICL-UT-17-05, September 2017.  (1.28 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Novel HPC Techniques to Batch Execution of Many Variable Size BLAS Computations on GPUs,” International Conference on Supercomputing (ICS '17), Chicago, Illinois, ACM, June 2017.  (1.04 MB)
Benoit, A., A. Cavelan, V. Le Fèvre, and Y. Robert, Optimal Checkpointing Period with replicated execution on heterogeneous platforms,” 2017 Workshop on Fault-Tolerance for HPC at Extreme Scale, Washington, DC, IEEE Computer Society Press, June 2017.  (1.02 MB)
Dongarra, J., S. Hammarling, N. J. Higham, S. Relton, and M. Zounon, Optimized Batched Linear Algebra for Modern Architectures,” Euro-Par 2017, Santiago de Compostela, Spain, Springer, August 2017.  (618.33 KB)
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, Optimizing the SVD Bidiagonalization Process for a Batch of Small Matrices,” International Conference on Computational Science (ICCS 2017), Zurich, Switzerland, Procedia Computer Science, June 2017.  (364.95 KB)
Haidar, A., K. Kabir, D. Fayad, S. Tomov, and J. Dongarra, Out of Memory SVD Solver for Big Data,” 2017 IEEE High Performance Extreme Computing Conference (HPEC'17), Waltham, MA, IEEE, September 2017.  (1.33 MB)
Parker, S., J. Mellor-Crummey, D. H. Ahn, H. Jagode, H. Brunst, S. Shende, A. D. Malony, D. DelSignore, R. Tschuter, R. Castain, et al., Performance Analysis and Debugging Tools at Scale,” Exascale Scientific Applications: Scalability and Performance Portability: Chapman & Hall / CRC Press, pp. 17-50, November 2017.
Abalenkovs, M., N. Bagherpour, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Relton, J. Sistek, D. Stevens, et al., PLASMA 17 Performance Report,” Innovative Computing Laboratory Technical Report, no. ICL-UT-17-11: University of Tennessee, June 2017.  (7.57 MB)
Abalenkovs, M., N. Bagherpour, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Relton, J. Sistek, D. Stevens, et al., PLASMA 17.1 Functionality Report,” Innovative Computing Laboratory Technical Report, no. ICL-UT-17-10: University of Tennessee, June 2017.  (1.8 MB)
Castain, R. H., D. Solt, J. Hursey, and A. Bouteiller, PMIx: Process Management for Exascale Environments,” Proceedings of the 24th European MPI Users' Group Meeting, New York, NY, USA, ACM, pp. 14:1–14:10, 2017.
Dongarra, J., A. Haidar, O. Hernandez, S. Tomov, and M G. Venkata, POMPEI: Programming with OpenMP4 for Exascale Investigations,” Innovative Computing Laboratory Technical Report, no. ICL-UT-17-09: University of Tennessee, December 2017.  (1.1 MB)
Haidar, A., H. Jagode, A. YarKhan, P. Vaccaro, S. Tomov, and J. Dongarra, Power-aware Computing: Measurement, Control, and Performance Analysis for Intel Xeon Phi,” 2017 IEEE High Performance Extreme Computing Conference (HPEC'17), Best Paper Finalist, Waltham, MA, IEEE, September 2017.  (908.84 KB)
Haidar, A., H. Jagode, A. YarKhan, P. Vaccaro, S. Tomov, and J. Dongarra, Power-Aware HPC on Intel Xeon Phi KNL Processors , Frankfurt, Germany, ISC High Performance (ISC17), Intel Booth Presentation, June 2017.  (5.87 MB)
Anzt, H., M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, and M. Kohler, Preconditioned Krylov Solvers on GPUs,” Parallel Computing, June 2017.  (1.19 MB)
Dongarra, J., Report on the TianHe-2A System,” Innovative Computing Laboratory Technical Report, no. ICL-UT-17-04: University of Tennessee, September 2017.  (7.15 MB)
Fang, A., A. Cavelan, Y. Robert, and A. Chien, Resilience for Stencil Computations with Latent Errors,” International Conference on Parallel Processing (ICPP), Bristol, UK, IEEE Computer Society Press, August 2017.  (1.19 MB)
Benoit, A., L. Pottier, and Y. Robert, Resilient Co-Scheduling of Malleable Applications,” International Journal of High Performance Computing Applications (IJHPCA), May 2017.  (1.62 MB)
Abdelfattah, A., H. Anzt, A. Bouteiller, A. Danalis, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, et al., Roadmap for the Development of a Linear Algebra Library for Exascale Computing: SLATE: Software for Linear Algebra Targeting Exascale,” SLATE Working Notes, no. 01, ICL-UT-17-02: Innovative Computing Laboratory, University of Tennessee, June 2017.  (2.8 MB)
Yamazaki, I., S. Tomov, and J. Dongarra, Sampling Algorithms to Update Truncated SVD,” IEEE International Conference on Big Data, Boston, MA, IEEE, December 2017.  (700.79 KB)
Luszczek, P., J. Kurzak, I. Yamazaki, D. Keffer, and J. Dongarra, Scaling Point Set Registration in 3D Across Thread Counts on Multicore and Hardware Accelerator Platforms through Autotuning for Large Scale Analysis of Scientific Point Clouds,” IEEE International Workshop on Benchmarking, Performance Tuning and Optimization for Big Data Applications (BPOD 2017), Boston, MA, IEEE, December 2017.  (6.71 MB)
Abdelfattah, A., M. Baboulin, V. Dobrev, J. Dongarra, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov, Small Tensor Operations on Advanced Architectures for High-Order Applications,” University of Tennessee Computer Science Technical Report, no. UT-EECS-17-749: Innovative Computing Laboratory, University of Tennessee, April 2017.  (1.09 MB)
Baboulin, M., J. Dongarra, A. Remy, S. Tomov, and I. Yamazaki, Solving Dense Symmetric Indefinite Systems using GPUs,” Concurrency and Computation: Practice and Experience, vol. 29, issue 9, March 2017.  (1.94 MB)
Yamazaki, I., S. Nooshabadi, S. Tomov, and J. Dongarra, Structure-aware Linear Solver for Realtime Convex Optimization for Embedded Systems,” IEEE Embedded Systems Letters, vol. 9, issue 3, pp. 61–64, May 2017.  (339.11 KB)
Luszczek, P., J. Kurzak, I. Yamazaki, and J. Dongarra, Towards Numerical Benchmark for Half-Precision Floating Point Arithmetic,” 2017 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, IEEE, September 2017.  (1.67 MB)
Benoit, A., A. Cavelan, V. Le Fèvre, Y. Robert, and H. Sun, Towards Optimal Multi-Level Checkpointing,” IEEE Transactions on Computers, vol. 66, issue 7, pp. 1212–1226, July 2017.  (1.39 MB)
Eberius, D., T. Patinyasakdikul, and G. Bosilca, Using Software-Based Performance Counters to Expose Low-Level Open MPI Performance Information,” EuroMPI, Chicago, IL, ACM, September 2017.  (745.58 KB)
Anzt, H., J. Dongarra, G. Flegar, E. S. Quintana-Orti, and A. E. Thomas, Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning,” International Conference on Computational Science (ICCS 2017), vol. 108, Zurich, Switzerland, Procedia Computer Science, pp. 1783-1792, June 2017.  (512.57 KB)
Anzt, H., J. Dongarra, G. Flegar, and E. S. Quintana-Orti, Variable-Size Batched LU for Small Matrices and Its Integration into Block-Jacobi Preconditioning,” 46th International Conference on Parallel Processing (ICPP), Bristol, United Kingdom, IEEE, August 2017.
Dongarra, J., S. Tomov, P. Luszczek, J. Kurzak, M. Gates, I. Yamazaki, H. Anzt, A. Haidar, and A. Abdelfattah, With Extreme Computing, the Rules Have Changed,” Computing in Science & Engineering, vol. 19, issue 3, pp. 52-62, May 2017.  (485.34 KB)
2016
Dongarra, J., J. Demmel, J. Langou, and J. Langou, 2016 Dense Linear Algebra Software Packages Survey,” University of Tennessee Computer Science Technical Report, no. UT-EECS-16-744 / LAWN 290: University of Tennessee, September 2016.  (366.43 KB)
Haidar, A., A. Abdelfattah, V. Dobrev, I. Karlin, T. Kolev, S. Tomov, and J. Dongarra, Accelerating Tensor Contractions for High-Order FEM on CPUs, GPUs, and KNLs , Gatlinburg, TN, moky Mountains Computational Sciences and Engineering Conference (SMC16), Poster, September 2016.  (4.29 MB)
Anzt, H., M. Baboulin, J. Dongarra, Y. Fournier, F. Hulsemann, A. Khabou, and Y. Wang, Accelerating the Conjugate Gradient Algorithm with GPU in CFD Simulations,” VECPAR, 2016.
Benoit, A., A. Cavelan, Y. Robert, and H. Sun, Assessing General-purpose Algorithms to Cope with Fail-stop and Silent Errors,” ACM Transactions on Parallel Computing, August 2016.  (573.71 KB)
Herrmann, J., G. Bosilca, T. Herault, L. Marchal, Y. Robert, and J. Dongarra, Assessing the Cost of Redistribution followed by a Computational Kernel: Complexity and Performance Results,” Parallel Computing, vol. 52, pp. 22-41, February 2016.  (2.06 MB)
Anzt, H., E. Chow, T. Huckle, and J. Dongarra, Batched Generation of Incomplete Sparse Approximate Inverses on GPUs,” Proceedings of the 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, pp. 49–56, November 2016.
Anzt, H., E. Chow, and J. Dongarra, On block-asynchronous execution on GPUs,” LAPACK Working Note, no. 291, November 2016.  (1.05 MB)

Pages