
1
Assessing general-purpose algorithms to cope with fail-stop and
silent errors

Anne Benoit, École Normale Supérieure de Lyon, CNRS & INRIA, France
Aurélien Cavelan, École Normale Supérieure de Lyon, CNRS & INRIA, France
Yves Robert, École Normale Supérieure de Lyon, CNRS & INRIA, France, and University of Tennessee
Knoxville, USA
Hongyang Sun, École Normale Supérieure de Lyon, CNRS & INRIA, France

In this paper, we combine the traditional checkpointing and rollback recovery strategies with verification
mechanisms to cope with both fail-stop and silent errors. The objective is to minimize makespan and/or
energy consumption. For divisible load applications, we use first-order approximations to find the optimal
checkpointing period to minimize execution time, with an additional verification mechanism to detect silent
errors before each checkpoint, hence extending the classical formula by Young and Daly for fail-stop errors
only. We further extend the approach to include intermediate verifications, and to consider a bi-criteria prob-
lem involving both time and energy (linear combination of execution time and energy consumption). Then,
we focus on application workflows whose dependence graph is a linear chain of tasks. Here, we determine
the optimal checkpointing and verification locations, with or without intermediate verifications, for the bi-
criteria problem. Rather than using a single speed during the whole execution, we further introduce a new
execution scenario, which allows for changing the execution speed via dynamic voltage and frequency scal-
ing (DVFS). We determine in this scenario the optimal checkpointing and verification locations, as well as
the optimal speed pairs. Finally, we conduct an extensive set of simulations to support the theoretical study,
and to assess the performance of each algorithm, showing that the best overall performance is achieved
under the most flexible scenario using intermediate verifications and different speeds.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Fault tolerance; D.4.5 [Operating
Systems]: Reliability—checkpoint/restart, fault-tolerance, verification

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: HPC, resilience, checkpoint, verification, failure, fail-stop error, silent
data corruption, silent error

ACM Reference Format:
Anne Benoit, Aurélien Cavelan, Yves Robert, Hongyang Sun, 2014. Assessing general-purpose algorithms to
cope with fail-stop and silent errors. ACM Trans. Parallel Comput. 1, 1, Article 1 (January 2014), 36 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
For HPC applications, scale is a major opportunity. Massive parallelism with 100,000+
nodes is the most viable path to achieving sustained petascale performance. Future
platforms will enrol even more computing resources to enter the exascale era.

Unfortunately, scale is also a major threat. Resilience is the first challenge. Even
if each node provides an individual MTBF (Mean Time Between Failures) of, say, one
century, a machine with 100,000 such nodes will encounter a failure every 9 hours

Author’s addresses: Anne Benoit, Aurélien Cavelan, Yves Robert and Hongyang Sun, École Normale
Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1539-9087/2014/01-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:2 A. Benoit et al.

on average, which is smaller than the execution time of many HPC applications. Fur-
thermore, a one-century MTBF per node is an optimistic figure, given that each node
is composed of several hundreds of cores. Worse, several types of errors need to be
considered when computing at scale. In addition to the classical fail-stop errors (such
as hardware failures), silent errors (a.k.a. silent data corruptions) constitute another
threat that cannot be ignored any longer [O’Gorman 1994; Ziegler et al. 1996a; Ziegler
et al. 1996b; Ziegler et al. 1998; Moody et al. 2010].

Another challenge is energy consumption. The power requirement of current petas-
cale platforms is that of a small town, hence measures must be taken to reduce the
energy consumption of future platforms. A popular technique is dynamic voltage and
frequency scaling (DVFS): modern processors can run at different speeds, and lower
speeds induce bigger savings in energy consumption. In a nutshell, this is because the
dynamic power consumed when computing at speed s is proportional to s3, while exe-
cution time is proportional to 1/s. As a result, computing energy (which is the product
of time and power) is proportional to s2. However, static power must also be accounted
for, and it is paid throughout the duration of the execution, which calls for a shorter
execution (at higher speeds). Overall, there are trade-offs to be found, but in most
practical settings, using lower speeds reduces the global energy consumption.

To further complicate the picture, energy savings have an impact on resilience. Ob-
viously, the longer the execution time, the higher the expected number of errors, hence
using a lower speed to save energy may well induce extra time and overhead to cope
with more errors throughout execution. Even worse (again!), lower speeds are usually
obtained via lower voltages, which themselves induce higher error rates and further
increase the latter overhead.

In this paper, we introduce a model that addresses both challenges: resilience and
energy consumption. In addition, we address both fail-stop and silent errors, which,
to the best of our knowledge, has only been achieved before through costly replication
techniques [Ni et al. 2013]. While checkpoint/restart [Chandy and Lamport 1985; El-
nozahy et al. 2002] is the de-facto recovery technique for dealing with fail-stop errors,
there is no widely adopted general-purpose technique to cope with silent errors. The
problem with silent errors is detection latency: contrarily to a fail-stop error whose
detection is immediate, a silent error is identified only when the corrupted data is ac-
tivated and/or leads to an unusual application behavior. However, checkpoint and roll-
back recovery assumes instantaneous error detection, and this raises a new difficulty:
if the error stroke before the last checkpoint, and is detected after that checkpoint, then
the checkpoint is corrupted and cannot be used to restore the application. To solve this
problem, one may envision to keep several checkpoints in memory, and to restore the
application from the last valid checkpoint, thereby rolling back to the last correct state
of the application [Lu et al. 2013]. This multiple-checkpoint approach has three major
drawbacks. First, it is very demanding in terms of stable storage: each checkpoint typ-
ically represents a copy of the entire memory footprint of the application, which may
well correspond to several terabytes. The second drawback is the possibility of fatal
failures. Indeed, if we keep k checkpoints in memory, the approach assumes that the
error that is currently detected did not strike before all the checkpoints still kept in
memory, which would be fatal: in that latter case, all live checkpoints are corrupted,
and one would have to re-execute the entire application from scratch. The probabil-
ity of a fatal failure is evaluated in [Aupy et al. 2013] for various error distribution
laws and values of k. The third drawback of the approach is the most serious, and
applies even without memory constraints, i.e., if we could store an infinite number of
checkpoints in storage. The critical question is to determine which checkpoint is the
last valid one. We need this information to safely recover from that point on. However,
because of the detection latency, we do not know when the silent error has indeed oc-

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:3

curred, hence we cannot identify the last valid checkpoint, unless some verification
mechanism is enforced.

We consider such a verification mechanism in this paper. This approach is agnostic of
the nature of the verification mechanism (checksum, error correcting code, coherence
tests, etc.). It is also fully general-purpose, although application-specific information,
if available, can always be used to decrease the cost of verification (see the overview
of related work in Section 2 for examples). In this context, the simplest protocol is to
take only verified checkpoints (VC), which corresponds to performing a verification just
before taking each checkpoint. If the verification succeeds, then one can safely store the
checkpoint. If the verification fails, it means that a silent error has struck since the last
checkpoint, which was duly verified, and one can safely recover from that checkpoint
to resume the execution of the application. Of course, if a fail-stop error strikes, we
can also safely recover from the last checkpoint, just as in the classical checkpoint
and rollback recovery method. We refer to this protocol as the VC-ONLY protocol, and
it basically amounts to replacing the cost C of a checkpoint by the cost V + C of a
verification followed by a checkpoint. However, because we deal with two sources of
errors, one detected immediately and the other only when we reach the verification,
the analysis of the optimal strategy is more involved.

While taking checkpoints without verifications seems a bad idea (because of the
memory cost, and of the risk of saving corrupted data), taking a verification without
checkpointing may be interesting. Indeed, if silent errors are frequent enough, it is
worth verifying the data in between two (verified) checkpoints, so as to detect a possible
silent error earlier in the execution, and thereby re-executing less work. We refer to
this protocol as the VC+V protocol, which allows for both verified checkpoints and
intermediate verifications.

One major objective of this paper is to study both VC-ONLY and VC+V protocols,
and to analytically determine the best balance of verifications between checkpoints
so as to minimize makespan (total execution time) and/or energy consumption. To
achieve this ambitious goal, we restrict to two simplified, yet realistic, application
frameworks. First, we consider divisible load applications, which represent the stan-
dard framework to analyze resilience protocols, because checkpoints and verifications
can be taken at any time during the execution. In this case, we focus on periodic com-
puting patterns, and use first-order approximations to find the optimal checkpointing
and verification periods. Our results extend the classical formula by Young [Young
1974] and Daly [Daly 2006] to deal with both fail-stop and silent errors. Then, we con-
sider application workflows consisting of a number of parallel tasks that execute on
the platform, and that exchange data at the end of their execution. In other words,
the task graph is a linear chain, and each task (except maybe the first one and the
last one) reads data from its predecessor and produces data for its successor. This
scenario corresponds to a high-performance computing application whose workflow is
partitioned into a succession of (typically large) tightly-coupled computational kernels,
each of which is identified as a task by the model. At the end of each task, we have the
opportunity either to perform a verification of the task output or to perform a verifica-
tion followed by a checkpoint. For such applications, we improve and extend the result
by Toueg and Babaoglu [Toueg and Babaoglu 1984] and derive the exact optimal solu-
tions using dynamic programming algorithms, while accounting for both fail-stop and
silent errors.

For both application frameworks, we show where to place checkpoints and verifica-
tions in order to minimize makespan, or a linear combination of makespan and energy,
hence tackling the bi-criteria problem, when the whole application is executed at a
single constant speed s. While we derive first-order approximations of the optimal so-
lution for divisible load applications, we obtain exact optimal solutions for linear task

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:4 A. Benoit et al.

chains. In addition, for linear task chains, we introduce a new execution scenario called
MULTISPEED, which allows for changing the execution speed via DVFS. This advanced
scenario uses two different speeds s and σ to execute the tasks in between two consecu-
tive checkpoints (which we call a task segment). Within each segment, we use a speed s
for the first execution, and a possibly different speed σ for all the re-executions after a
fail-stop error or a silent error has occurred. Here, s can be considered as the regular
speed, while σ corresponds to an adjusted speed to either speed up or slow down the re-
executions, depending on the optimization objective. The speeds s and σ can be freely
chosen among a set of K discrete speeds, and these speed pairs may well be different
from one segment to another.

The main contributions of this paper are summarized as follows:
(1) We introduce a general-purpose model to deal with both fail-stop and silent er-

rors, combining the traditional checkpointing and rollback recovery strategies with
verification mechanisms.

(2) We express the objective function for all problems as a linear combination of exe-
cution time and consumed energy, in order to find optimal solutions for either time,
or energy, or the bi-criteria problem.

(3) We consider two resilience protocols: (i) VC-ONLY, which uses only verified check-
points, and (ii) VC+V, which uses both verified checkpoints and intermediate veri-
fications.

(4) For the divisible load application model, where checkpoints and verifications can
be placed at any point in the execution of the application, we derive first-order ap-
proximations of the optimal checkpointing and verification periods.

(5) For a linear chain of tasks, where checkpoints and verifications can be placed only
at the end of the tasks, we provide optimal dynamic programming algorithms, both
with a single speed and with an advanced scenario based on DVFS. In this later
scenario, any two different speeds can be chosen within each segment between two
checkpoints.

(6) We conduct an extensive set of simulations to support the theoretical study and
to assess the performance of each algorithm, hence demonstrating the quality and
trade-off of our optimal algorithms under a wide range of parameter settings.

The rest of the paper is organized as follows. Section 2 provides an overview of re-
lated work. The next three sections deal with the main algorithmic contributions: Sec-
tion 3 derives first-order approximations of the optimal checkpointing and verification
periods for divisible load applications; Section 4 provides dynamic programming algo-
rithms to solve exactly the problems for a linear chain of tasks; and Section 5 considers
execution scenarios using different speeds for a linear chain of tasks. Then in Section 6,
we report on a comprehensive set of simulations to assess the impact of each scenario
and approach. Finally, we outline main conclusions and directions for future work in
Section 7.

2. RELATED WORK
In this section, we discuss related work on fail-stop errors and silent errors, and finally
we discuss the energy model and the impact of the execution speed on the error rate.

2.1. Fail-stop errors
The de-facto general-purpose error recovery technique in high performance computing
is checkpoint and rollback recovery [Chandy and Lamport 1985; Elnozahy et al. 2002].
Such protocols employ checkpoints to periodically save the state of a parallel applica-
tion, so that when an error strikes some process, the application can be restored back
to one of its former states. There are several families of checkpointing protocols, but

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:5

they share a common feature: each checkpoint forms a consistent recovery line, i.e.,
when an error is detected, one can rollback to the last checkpoint and resume execu-
tion, after a downtime and a recovery time.

Many models are available to understand the behavior of checkpoint/restart [Young
1974; Daly 2006; Ozaki et al. 2006; Bougeret et al. 2011]. For a divisible load applica-
tion where checkpoints can be inserted at any point in execution for a nominal cost C,
there exist well-known formulas due to Young [Young 1974] and Daly [Daly 2006] to
determine the optimal checkpointing period. For an application composed of a linear
chain of tasks, which is also the subject of this paper, the problem of finding the op-
timal checkpoint strategy, i.e., of determining which tasks to checkpoint, in order to
minimize the expected execution time, has been solved by Toueg and Babaoglu [Toueg
and Babaoglu 1984], using a dynamic programming algorithm.

One major contribution of this paper is to extend both the Young/Daly formu-
las [Young 1974; Daly 2006] and the result of Toueg and Babaoglu [Toueg and Babaoglu
1984] to deal with silent errors in addition to fail-stop errors, and to minimize a linear
combination of time and energy rather than to focus solely on time. Therefore, we also
consider using several discrete speeds instead of a single one.

2.2. Silent errors
Most traditional approaches maintain a single checkpoint. If the checkpoint file in-
cludes errors, the application faces an irrecoverable failure and must restart from
scratch. This is because error detection latency is ignored in traditional rollback and
recovery schemes, which assume instantaneous error detection (therefore mainly tar-
geting fail-stop failures) and are unable to accommodate silent errors. We focus in this
section on related work about silent errors. A comprehensive list of techniques and
references is provided by Lu, Zheng and Chien [Lu et al. 2013].

Considerable efforts have been directed at error-checking to reveal silent errors. Er-
ror detection is usually very costly. Hardware mechanisms, such as ECC memory, can
detect and even correct a fraction of errors, but in practice they are complemented with
software techniques. The simplest technique is triple modular redundancy and vot-
ing [Lyons and Vanderkulk 1962], which induces a highly costly verification. For high-
performance scientific applications, process replication (each process is equipped with
a replica, and messages are quadruplicated) is proposed in the RedMPI library [Fiala
et al. 2012]. Elliot et al. [Elliott et al. 2012] combine partial redundancy and check-
pointing, and confirm the benefit of dual and triple redundancy. The drawback is that
twice the number of processing resources is required (for dual redundancy). As already
mentioned, an approach based on checkpointing and replication is proposed in [Ni et al.
2013], in order to detect and enable fast recovery of applications from both silent errors
and hard errors.

Application-specific information can be very useful to enable ad-hoc solutions, which
dramatically decrease the cost of detection. Many techniques have been advocated.
They include memory scrubbing [Hwang et al. 2012] and ABFT techniques [Huang
and Abraham 1984; Bosilca et al. 2009; Shantharam et al. 2012], such as coding for
the sparse-matrix vector multiplication kernel [Shantharam et al. 2012], and cou-
pling a higher-order with a lower-order scheme for PDEs [Benson et al. 2014]. These
methods can only detect an error but do not correct it. Self-stabilizing corrections
after error detection in the conjugate gradient method are investigated by Sao and
Vuduc [Sao and Vuduc 2013]. Heroux and Hoemmen [Heroux and Hoemmen 2011] de-
sign a fault-tolerant GMRES capable of converging despite silent errors. Bronevetsky
and de Supinski [Bronevetsky and de Supinski 2008] provide a comparative study of
detection costs for iterative methods.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:6 A. Benoit et al.

A nice instantiation of the checkpoint and verification mechanism that we study in
this paper is provided by Chen [Chen 2013], who deals with sparse iterative solvers.
Consider a simple method such as the PCG, the Preconditioned Conjugate Gradient
method: Chen’s approach performs a periodic verification every d iterations, and a
periodic checkpoint every d × c iterations, which is a particular case of the VC+V ap-
proach with equi-distance verifications. For PCG, the verification amounts to checking
the orthogonality of two vectors and to recomputing and checking the residual. The
cost of the verification is small in front of the cost of an iteration, especially when the
preconditioner requires much more flops than a sparse matrix-vector product.

As already mentioned, our work is agnostic of the underlying error-detection tech-
nique and takes the cost of verification as an input parameter to the model.

2.3. Energy model and error rate
Modern processors are equipped with dynamic voltage and frequency scaling (DVFS)
capability. The total power consumption is the sum of the static/idle power and the
dynamic power, which is proportional to the cube of the processing speed s [Yao et al.
1995; Bansal et al. 2007], i.e., P (s) = Pidle + β · s3, where β > 0. A widely used re-
liability model assumes that radiation-induced transient faults (soft errors) follow a
Poisson process with an average arrival rate λ. The impact of DVFS on the error rate
is, however, not completely clear.

On the one hand, lowering the voltage/frequency is believed to have an adverse effect
on the system reliability [Dixit and Wood 2011; Zhu et al. 2004]. In particular, many
papers (e.g., [Zhu et al. 2004; Zhao et al. 2008; Aupy et al. 2012; Das et al. 2014]) have
assumed the following exponential error rate model:

λ(s) = λ0 · 10
d(smax−s)
smax−smin , (1)

where λ0 denotes the average error rate at the maximum speed smax, d > 0 is a con-
stant indicating the sensitivity of error rate to voltage/frequency scaling, and smin is
the minimum speed. This model suggests that the error rate increases exponentially
with decreased processing speed, which is a result of decreasing the voltage/frequency
and hence lowering the circuit’s critical charge (i.e., the minimum charge required to
cause an error in the circuit).

On the other hand, the failure rates of computing nodes have also been observed
to increase with temperature [Patterson 2008; Feng 2003; Hsu and Feng 2005; Sa-
rood et al. 2013], which generally increases together with the processing speed (volt-
age/frequency). As a rule of thumb, Arrenhius’ equation when applied to microelec-
tronic devices suggests that the error rate doubles for every 10◦C increase in the tem-
perature [Feng 2003]. In general, the mean time between failure (MTBF) of a processor,
which is the reciprocal of failure rate, can be expressed as [Sarood et al. 2013]:

MTBF =
1

λ
= A · e−b·T ,

where A and b are thermal constants, and T denotes the temperature of the processor.
Under the reasonable assumption that higher operating voltage/frequency leads to
higher temperature, this model suggests that the error rate increases with increased
processing speed.

Clearly, the two models above draw contradictory conclusions on the impact of DVFS
on error rates. In practice, the impact of the first model may be more evident, as the
temperature dependency in some systems has been observed to be linear (or even not
exist) instead of being exponential [El-Sayed et al. 2012]. Generally speaking, the pro-
cessing speed should have a composite effect on the average error rate by taking both
voltage level and temperature into account. In the experimental section of this paper

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:7

(Section 6), we adopt a trade-off model and modify Equation (1) to include the impact
of temperature. We use

λ(s) = λref · 10
d·|sref−s|
smax−smin , (2)

where sref ∈ [smin, smax] denotes the reference speed with the lowest error rate λref
among all possible speeds in the range. Equation (2) leads to a U-shaped curve where
the error rate increases when the speed is either too high or too low.

3. DIVISIBLE LOAD APPLICATIONS
In this section, we consider divisible load applications, for which checkpoints can be
taken at any instant. In the presence of fail-stop errors only, the classical formula
due to Young [Young 1974] and Daly [Daly 2006] gives the optimal checkpointing pe-
riod to minimize execution time. In this section, we first extend their result to include
both fail-stop and silent errors (Section 3.2). Then, we further extend the approach
to include intermediate verifications (Section 3.3). Finally, we show how to solve the
bi-criteria problem where the objective is to minimize a linear combination of execu-
tion time and consumed energy (Section 3.4). We start by detailing the framework for
divisible load applications in Section 3.1.

3.1. Framework
In this section we introduce all model parameters for divisible load applications. For
reference, main notations are summarized in Table I. The platform is composed of p
identical processors, which are subject to both fail-stop and silent-errors. A fundamen-
tal characteristic of the divisible application load model is that it allows us to view
the platform as a single (very powerful but very error-prone) macro-processor, thereby
providing a tractable abstraction of the problem.

Protocols. The application is partitioned into periodic patterns that repeat over time.
Each pattern consists of some amount of work followed by a verified checkpoint, i.e., a
verification immediately followed by a checkpoint. We consider two resilience protocols.

Table I. Notations for divisible load applications.

Protocols
VC-ONLY Single-chunk pattern with final verified checkpoint
VC+V Multi-chunk pattern with intermediate verifications and final verified checkpoint
T (s) Pattern period, or duration of computations of the pattern at speed s
k Number of verifications inside a VC+V pattern (k = 1 for a VC-ONLY pattern)

Time
V (s) Time needed for verification at speed s
C Time needed for checkpoint
R Time needed for recovery

Error rates
λF (s) Fail-stop error rate for a given speed s
λS(s) Silent error rate for a given speed s
pF (s, L) Probability of a fail-stop error during an execution of duration L at speed s
pS(s, L) Probability of a silent error during an execution of duration L at speed s

Energy
Pidle Static/idle power dissipated when the platform is switched on
Pcpu(s) Dynamic power spent by operating the CPU at speed s
Pio Dynamic power spent by I/O transfers (checkpoints and recoveries)
EV (s) Energy needed for verification at speed s
EC Energy needed for checkpoint
ER Energy needed for recovery

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:8 A. Benoit et al.

Time

V C W V C W V C (Without error)

Time

V C R W V C W V C

Fail-stop Error

(With fail-stop error)

Time

V C W V R W V C W V C

Silent Error
Detection

(With silent error)

Fig. 1. The VC-ONLY pattern executed at unit speed s = 1. The first figure shows the execution of a pattern
without any error. The second figure shows that the execution is stopped immediately when a fail-stop error
strikes, in which case the pattern is re-executed after a recovery. The third figure shows that the execution
continues after a silent error strikes and it is detected by the verification at the end of the pattern. In this
case, the pattern is also re-executed after a recovery.

Time

V C W/3 V W/3 V W/3 V C (Without error)

Time

V C W/3 V R W/3 V W/3 V W/3 V C

Fail-stop Error

(With fail-stop error)

Time

V C W/3 V W/3 V R W/3 V W/3 V W/3 V C

Silent Error
Detection

(With silent error)

Fig. 2. The VC+V pattern with k = 3 chunks executed at unit speed s = 1. The first figure shows the
execution of a pattern without any error. The second figure shows that the execution is stopped immediately
when a fail-stop error strikes anywhere in the pattern. The third figure shows that the execution continues
after a silent error strikes and it is detected by an additional verification before the end of the pattern. In
both cases, the pattern is re-executed after a recovery.

VC-ONLY: Placing only verified checkpoints. See Figure 1 for an illustration. The
pattern consists of a single computational chunk of size W , which takes a time
T (s) = W/s to execute without any error at CPU speed s. The total duration of the
pattern without any error is T (s) + V (s) + C, where V (s) is the time to perform a
verification at speed s, and C is the time to checkpoint. We assume that C does not
depend upon s because checkpointing time mainly depends on I/O operations. On
the contrary, the verification time V (s) could well depend on s (think of checksums
to recompute).

VC+V: Placing additional verifications. See Figure 2 for an illustration. The pattern
consists of k computational chunks of size W/k, which also takes T (s) = W/s to
execute without any error at speed s. Each chunk ends with a verification, and the

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:9

last chunk ends with a verified checkpoint. Now the total duration of the pattern
without any error is T (s) + kV (s) + C.

For both protocols, we say that T (s) is the period of the pattern, because it corresponds
to the same amount of useful work. However, the total duration of the VC-ONLY pat-
tern is smaller for an error-free execution. This is balanced by the fact that silent
errors may be detected earlier on with the VC+V pattern, thereby decreasing the re-
execution time whenever a silent error has struck.

Error rates. As already mentioned, we consider two types of errors: fail-stop and silent.
The arrivals of both fail-stop errors and silent errors on the platform follow exponential
distribution with average rates λF (s) and λS(s), respectively, where s denotes the CPU
speed. The variation of the error rates as a function of the speed s is discussed in
Section 2. Note that the error rates are aggregated onto the macro-processor, so to
speak: if each of the p processors has an individual fail-stop error rate λFind(s), then the
macro-processor has a fail-stop error rate λF (s) = pλFind(s) [Hérault and Robert 2015,
Proposition 1.2] (and similarly for silent errors).

For an execution of duration L, the probability of a fail-stop error is pF (s, L) = 1 −
e−λ

F (s)L, and that of a silent error is pS(s, L) = 1 − e−λ
S(s)L. We assume that both

error rates are in the same order, i.e., λF (s) = Θ (λ(s)) and λS(s) = Θ (λ(s)), where
λ(s) = λF (s) + λS(s) = 1/µ(s) denotes the reciprocal of the platform MTBF running at
speed s while accounting for both error sources.

When an error (of any source) strikes, we roll-back and recover from the previous
checkpoint (or from the original data for the first pattern). Let R denote the recov-
ery time. We assume that errors only strike during computations, and not during I/O
transfers (checkpoints and recoveries) nor verifications.

Optimizing for time. The TIME-VC-ONLY optimization problem is to determine the op-
timal period T (s) to minimize the expected overhead in the execution time in the
presence of errors. The overhead is the ratio Time(T (s))

T (s) of the expected execution time
Time (T (s)) over the base time T (s). The TIME-VC+V optimization problem is defined
similarly, but we also need to compute the optimal number k of verifications inside the
pattern. Recall that for both problems, the overhead is due to two different sources:
the error-free overhead (verifications and checkpoints) and the error-induced overhead
(recovery and re-execution after an error). The impact of both overhead sources must
obey a delicate trade-off, which makes both optimization problems challenging.

Optimizing for energy. Another important optimization objective is energy consump-
tion. Altogether, the total power consumption of the macro-processor is p times the
power consumption of each individual resource. It is decomposed into three different
components:
— Pidle, the static power dissipated when the platform is on (even idle);
— Pcpu(s), the dynamic power spent by operating the CPU at speed s;
— Pio, the dynamic power spent by I/O transfers (checkpoints and recoveries).
During checkpointing and recovery, we assume a dedicated (constant) power consump-
tion, while during computation and verification, the power consumption depends upon
the operating speed s. Assume w.l.o.g. that there is no overlap between CPU operations
and I/O transfers. Then the total energy consumed during the execution of a pattern
at speed s can be expressed as

Energy = Tcpu(s)(Pidle + Pcpu(s)) + Tio(Pidle + Pio) ,

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:10 A. Benoit et al.

where Tcpu(s) is the total time spent on computing and verifying, and Tio is the total
time spent on I/O transfers (checkpointing and recovering). The energy consumed to
checkpoint is EC = C(Pidle + Pio), to recover is ER = R(Pidle + Pio), and to verify at
speed s is EV (s) = V (s)(Pidle+Pcpu(s)). Just as for time, resilience has a double cost in
terms of energy consumption: the error-free overhead (verifications and checkpoints)
and the error-induced overhead (recovery and re-execution after an error).

Bi-criteria problem. The most general problem can be expressed as a linear combination
of execution time and energy consumption, and it is addressed in Section 3.4. We first
tackle the problem of minimizing the expected execution time, both for the VC-ONLY
protocol and for the VC+V protocol.

3.2. The TIME-VC-ONLY problem
In this section, we deal with the VC-ONLY protocol and we aim at minimizing the
expected execution time.

THEOREM 3.1. For a divisible load application subject to both fail-stop and silent
errors, a first-order approximation of the optimal checkpointing period to minimize the
expected execution overhead at speed s with the VC-ONLY protocol is

T ∗(s) =

√
2(V (s) + C)

λF (s) + 2λS(s)
.

Note that when silent errors are not considered, i.e., λS(s) = 0 and V (s) = 0, we
retrieve the original Young/Daly formula T ∗(s) =

√
2C
λF (s)

[Young 1974; Daly 2006].

PROOF. With both fail-stop and silent errors, let T (s) denote the checkpointing pe-
riod. Silent errors can occur at any time during the computation but we only detect
them after the pattern has been executed. Thus, we always have to pay T (s) + V (s),
the time needed to execute a segment between two consecutive checkpoints and to
verify the result. If the verification fails, which happens with probability pS(s, T (s)),
a silent error has occurred and we have to recover from the last checkpoint and start
anew.

Things are different when accounting for fail-stop errors, because the application
will stop immediately when a fail-stop error occurs, even in the middle of the com-
putation. Let Tlost(s) denote the expected time lost during the execution of a segment
between two consecutive checkpoints if a fail-stop error strikes, and it can be expressed
as

Tlost(s) =

∫ ∞
0

xP(X = x|X < T (s))dx =
1

P(X < T (s))

∫ T (s)

0

xλF (s)e−λ
F (s)xdx ,

where P(X = x) denotes the probability that a fail-stop error strikes at time x. By
definition, we have pS(s, T (s)) = P(X < T (s)) = 1 − e−λF (s)T (s). Integrating by parts,
we can get

Tlost(s) =
1

λF (s)
− T (s)

eλF (s)T (s) − 1
. (3)

When accounting for both fail-stop and silent errors, we consider fail-stop errors
first. If the application stops, with probability pF (s, T (s)), then we do not need to per-
form a verification since we must do a recovery anyway. If no fail-stop error strikes
during the execution, with probability 1 − pF (s, T (s)), we proceed with the verifica-
tion and check for silent errors. If there is no error, we are done and we pay the cost

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:11

for the checkpoint. Therefore, the expected execution time for a segment between two
consecutive checkpoints (accounting for the cost of the checkpoint itself) is given by

Time (T (s)) = pF (s, T (s)) (Tlost(s) +R+ Time (T (s)))

+
(
1− pF (s, T (s))

) (
T (s) + V (s) + pS(s, T (s)) (R+ Time (T (s)))

+
(
1− pS(s, T (s))

)
C
)
.

When plugging pF (s, T (s)), pS(s, T (s)) and Tlost(s) into the above equation, we get

Time (T (s)) = eλ
S(s)T (s)

(
eλ

F (s)T (s) − 1

λF (s)
+ V (s)

)
+
(
e(λ

F (s)+λS(s))T (s) − 1
)
R+ C . (4)

Now, we are interested in the value of T (s) that minimizes the overhead Time(T (s))
T (s)

with respect to the error-free and checkpoint-free execution time T (s). Using Taylor
expansion to approximate eλT ≈ 1 + λT + λ2T 2

2 up to the second-order term, we get the
following first-order approximation for the overhead:

Time (T (s))

T (s)
= 1 +

(
λF (s)

2
+ λS(s)

)
T (s) +

V (s) + C

T (s)

+ λS(s)V (s) +
(
λF (s) + λS(s)

)
R+ o (λ(s)) .

Differentiating the above expression with respect to T (s), we find that T ∗(s) =√
2(V (s)+C)

λF (s)+2λS(s)
minimizes the overhead, which nicely extends Young/Daly’s result to in-

clude both fail-stop and silent errors. We stress that, as in Young/Daly’s formula, this
result is a first-order approximation, which is valid only if all resilience parameters C,
R and V (s) are small in front of both MTBF values, namely 1/λF (s) for fail-stop errors
and 1/λS(s) for silent errors.

3.3. The TIME-VC+V problem
In this section, we aim at finding the optimal parameters for the VC+V protocol. The
following theorem shows the optimal checkpointing period as well as the optimal num-
ber of verifications inside the pattern.

THEOREM 3.2. For a divisible load application subject to both fail-stop and silent
errors, a first-order approximation of the optimal checkpointing period to minimize the
expected execution overhead with the VC+V protocol is T ∗(s) = k̄∗t∗(s), where k̄∗ de-
notes the optimal number of verifications in the pattern and t∗(s) denotes the optimal
length of each chunk inside the pattern. Here, we have

t∗(s) =

√
2(V (s) + C/k̄∗)

k̄∗λF (s) + (k̄∗ + 1)λS(s)
,

and k̄∗ is equal to either max(1, bk∗c) or dk∗e (whichever leads to the smallest overhead),
where k∗ is given by

k∗ =

√
λS(s)

λF (s) + λS(s)
· C

V (s)
.

Note that when there is only one verification (or chunk) in a pattern, i.e., k̄∗ = 1, we
have t∗(s) =

√
2(V (s)+C)

λF (s)+2λS(s)
= T ∗(s), retrieving the result of Theorem 3.1.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:12 A. Benoit et al.

PROOF. Consider a pattern with k chunks (hence k verifications), each of length t(s).
The total length of the pattern is thus T (s) = kt(s). For convenience, we write pF (s)

instead of pF (s, t(s)) = 1 − e−λ
F (s)t(s), which is the probability that a fail-stop error

strikes when executing a chunk. We also use pS(s) for pS(s, t(s)) = 1 − e−λS(s)t(s), the
corresponding probability with silent errors. The probability that neither type of error
occurs during the execution of a chunk is then given by q(s) = (1− pF (s))(1− pS(s)) =

e−(λ
F (s)+λS(s))T (s). The expected execution time for the whole pattern can be expressed

recursively by enumerating the failure possibilities for all its chunks as follows:

Time (T (s)) =

k∑
i=1

q(s)i−1
(
pF (s)

(
(i− 1) (t(s) + V (s)) + tlost(s) +R+ Time (T (s))

)
+
(
1− pF (s)

)
pS(s)

(
i (t(s) + V (s)) +R+ Time (T (s))

))
+q(s)k

(
k (t(s) + V (s)) + C

)
, (5)

where tlost(s) is the expected time lost during the execution of a chunk knowing that
a fail-stop error has struck. According to Equation (3), we have tlost(s) = 1

λF (s)
−

t(s)

eλF (s)t(s)−1
.

Let h =
∑k
i=1 iq(s)

i−1, and q(s)h =
∑k
i=1 iq(s)

i, so we have (1−q(s))h =
∑k
i=1 q(s)

i−1−
kq(s)k = 1−q(s)k

1−q(s) − kq(s)
k, hence h = 1−q(s)k

(1−q(s))2 −
kq(s)k

1−q(s) . Substituting h and tlost(s) into
Equation (5) and simplifying it, we get

Time (T (s)) =
1− q(s)k

1− q(s)
(
pF (s) + (1− pF (s))pS(s)

)
(R+ Time (T (s)))

+
(1− q(s)k)pF (s)

1− q(s)

(
1

λF (s)
− t(s)

eλF (s)t(s) − 1

)
+ q(s)kC

+(t(s) + V (s))

(
pF (s)(q(s)− q(s)k) + (1− pF (s))pS(s)(1− q(s)k)

(1− q(s))2

− (k − 1)pF (s)q(s)k + k(1− pF (s))pS(s)q(s)k

1− q(s)

)

= (1− q(s)k)(R+ Time (T (s))) +
(1− pF (s))(1− q(s)k)

1− q(s)
(t(s) + V (s))

+
(1− q(s)k)pF (s)

1− q(s)

(
1

λF (s)
− t(s)

eλF (s)t(s) − 1

)
+ q(s)kC ,

which leads to

Time (T (s)) =
q(s)−k − 1

1− q(s)

(
(1− pF (s))(t(s) + V (s)) + pF (s)

(
1

λF (s)
− t(s)

eλF (s)t(s)−1

))
+
(
q(s)−k − 1

)
R+ C .

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:13

Applying Taylor expansion to the equation above by approximating eλt ≈ 1 + λt+ λ2t2

2
and

ekλt − 1

1− e−λt
≈

kλt
(
1 + kλt

2

)
λt
(
1− λt

2

)
≈ k

(
1 +

(k + 1)λt

2

)
,

we can approximate, up to the first-order term, the overhead of executing the pattern
as

Time (T (s))

T (s)
= 1 +

kλF (s) + (k + 1)λS(s)

2
t(s) +

V (s) + C/k

t(s)
+
(
λF (s) + λS(s)

)
R

+
(k + 1)λS(s) + (k − 1)λF (s)

2
V (s) + o (λ(s)) . (6)

Differentiating Equation (6) with respect to t(s), we find that t∗(s) =
√

2(V (s)+C/k)
kλF (s)+(k+1)λS(s)

minimizes the overhead.
Now, substituting t∗(s) back into Equation (6), we get

Time (T (s))

T (s)
= 1 +

√
2
(
xk + y +

z

k

)
+ o

(√
λ(s)

)
, (7)

where x = V (s)(λF (s) + λS(s)), y = C(λF (s) + λS(s)) + V (s)λS(s), z = CλS(s). Differ-
entiating Equation (7) with respect to k, we find that k∗ =

√
z
x =

√
λS(s)

λF (s)+λS(s)
· C
V (s)

minimizes the overhead. Since the number of verifications in a pattern must be an
integer, the optimal strategy uses either max(1, bk∗c) or dk∗e verifications, whichever
leads to a smaller value for the overhead Time(T (s))

T (s) .
Again, as for the optimal checkpointing period in the VC-ONLY protocol, the values

of t∗(s) and k∗ are first-order approximations. The results are valid only if all resilience
parameters C, R and V (s) are small in front of the MTBF values of the platform.

Let us now consider a simple example. Suppose λF (s) = 0.001, λS(s) = 0.002, C =
R = 20 and V (s) = 1. Using the VC-ONLY protocol, the optimal checkpointing period
is given by T ∗(s) ≈ 91.65, which results in an execution overhead of Time(T (s))

T (s) ≈ 1.56.
If the VC+V protocol is used instead, the optimal value of k∗ is given by

√
z
x ≈ 3.6515,

which leads to the optimal number of verifications k̄∗ = 3 and optimal chunk length
t∗(s) ≈ 37.33. The pattern checkpointing period in this case is T (s) = 3t∗(s) ≈ 111.99

and the execution overhead becomes Time(T (s))
T (s) ≈ 1.51. This example demonstrates the

advantage of using additional verifications for coping with both fail-stop and silent
errors.

3.4. Bi-criteria problem
In this section, we take energy consumption into consideration, and aim at optimizing
a linear combination of execution time and energy consumption, i.e.,

a · Time+ b · Energy , (8)

where a and b are the weights associated with time and energy, respectively. Indeed,
optimizing a linear combination of two objectives is a common approach that has been
widely adopted by the literature for many bi-criteria optimization problems (see, e.g.,
[Dooly et al. 2001; Fabrikant et al. 2003; Albers and Fujiwara 2007; Kargar et al.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:14 A. Benoit et al.

2012]). In our case, setting b = 0 reduces to minimizing the execution time as con-
sidered in the previous sections, while setting a = 0 amounts to minimizing energy
consumption alone. Different values of the weights a and b allow for investigating var-
ious user-defined trade-offs.

The corresponding optimization problems are called TIMEENERGY-VC-ONLY for the
VC-ONLY protocol, and TIMEENERGY-VC+V for the VC+V protocol.

THEOREM 3.3. Consider a divisible load application subject to both fail-stop and
silent errors, with the objective to minimize a linear combination of expected execution
time and energy consumption as shown in Equation (8).
(i) In the TIMEENERGY-VC-ONLY problem, the optimal checkpointing period is

T ∗(s) =

√
2(V (s) + Ce(s))

λF (s) + 2λS(s)
.

(ii) In the TIMEENERGY-VC+V problem, the optimal length of each chunk is

t∗(s) =

√
2(V (s) + Ce(s)/k̄∗)

k̄∗λF (s) + (k̄∗ + 1)λS(s)
,

where k̄∗ denotes the optimal number of verifications in the pattern, and it is equal to
either max(1, bk∗c) or dk∗e, where the value of k∗ is

k∗ =

√
λS(s)

λF (s) + λS(s)
· Ce(s)
V (s)

.

Here, we define Ce(s) = a+b(Pidle+Pio)
a+b(Pidle+Pcpu(s))

C.

Note that Ce(s) is a time/energy ratio that depends on both parameters a and b, and
reduces to Ce(s) = C when b = 0, in accordance with Theorems 3.1 and 3.2. When
a = 0, we have Ce(s) = Pidle+Pio

Pidle+Pcpu(s)
C = EC

Pidle+Pcpu(s)
.

PROOF SKETCH. The proof is similar to those of Theorems 3.1 and 3.2. Below, we
only sketch the proof for the VC-ONLY protocol.

Let T (s) denote the checkpointing period and let G(s) = aT (s) + bT (s)(Pidle +
Pcpu(s)) = (a+ b(Pidle + Pcpu(s)))T (s) denote the value of the objective function for
the period in an error-free and checkpoint-free execution. Following the proof of Theo-
rem 3.1, we compute the expected cost to execute a segment between two checkpoints
as follows:

G(T (s)) = (a+ b(Pidle + Pcpu(s)))F (T (s)) , (9)

where F (T (s)) is given by

F (T (s)) = eλ
S(s)T (s)

(
eλ

F (s)T (s) − 1

λF (s)
+ V (s)

)
+
(
e(λ

F (s)+λS(s))T (s) − 1
)
Re(s) + Ce(s) ,

(10)

with Re(s) = a+b(Pidle+Pio)
a+b(Pidle+Pcpu(s))

R and Ce(s) = a+b(Pidle+Pio)
a+b(Pidle+Pcpu(s))

C.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:15

Now, considering the execution overhead, we can get

G(T (s))

G(s)
=
F (T (s))

T (s)

= 1 +

(
λF (s)

2
+ λS(s)

)
T (s) +

V (s) + Ce(s)

T (s)

+ λS(s)V (s) +
(
λF (s) + λS(s)

)
Re(s) + o (λ(s)) .

Differentiating the above expression with respect to T (s), we find that T ∗(s) =√
2(V (s)+Ce(s))
λF (s)+2λS(s)

minimizes the overhead. This result is analogous to the one in Theo-
rem 3.1 and further extends Young/Daly’s formula to cover energy consumption in the
optimization objective. The optimal parameters for the VC+V protocol can be similarly
derived and are omitted here.

4. OPTIMAL ALGORITHMS FOR A LINEAR CHAIN OF TASKS
This section is the counterpart of the previous one for a linear chain of tasks. Rather
than divisible load applications, we consider linear workflows. The main differences
are the following:

— Checkpoints and verifications have to be placed at the end of some tasks, while they
could be freely located for divisible load applications. Hence it is not possible to have
periodic patterns any longer.

— The goal now is to minimize total execution time (or makespan), or total energy,
or a linear combination, by judiciously placing verified checkpoints (both VC-ONLY
and VC+V protocols) and intermediate verifications (VC+V protocol).

— Owing to the specific structure of linear chains, we are able to provide exact optimal
solutions, not just first-order approximations.

For a linear chain of tasks subject to fail-stop errors only, Toueg and Babaoglu [Toueg
and Babaoglu 1984] give an optimal algorithm to compute the best checkpointing po-
sitions in order to minimize expected execution time. In this section, we extend their
results to include both fail-stop and silent errors, and to handle intermediate veri-
fications. In other words, both VC-ONLY and VC+V protocols are studied, for time
and/or energy optimization. The organization of this section follows that of divisible
load applications. We start by detailing the framework for linear chains in Section 4.1.
Then, we present optimal algorithms for TIME-VC-ONLY (Section 4.2) and TIME-
VC+V (Section 4.3) problems, before addressing the bi-criteria optimization problems
TIMEENERGY-VC-ONLY and TIMEENERGY-VC+V (Section 4.4).

4.1. Framework
We consider application workflows whose task graph is a linear chain T1 → T2 · · · → Tn.
Here n is the number of tasks, and each task Ti is weighted by its computational
cost wi. For reference, all additional notations for a linear chain are summarized in
Table II.

The time to compute tasks Ti to Tj at speed s is Ti,j(s) = 1
s

∑j
k=i wi and the corre-

sponding energy is Ei,j(s) = Ti,j(s)(Pidle +Pcpu(s)). The time to checkpoint (the output
of) task Ti is Ci, the time to recover from (the checkpoint of) task Ti is Ri, and the time
to verify (the output of) task Ti at speed s is Vi(s). We define pFi,j(s) = p(s, Ti,j(s)) to be
the probability that a fail-stop error strikes when executing from Ti to Tj , and define
pSi,j(s) = p(s, Ti,j(s)) similarly for silent errors.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:16 A. Benoit et al.

Table II. Additional notations for a linear chain of tasks.

Tasks
{T1, T2, . . . , Tn} Set of n tasks
wi Computational cost of task Ti

Time
Ti,j(s) Time needed to execute tasks Ti to Tj at speed s
Vi(s) Time needed to verify task Ti at speed s
Ci Time needed to checkpoint task Ti
Ri Time needed to recover from task Ti
pFi,j(s) Probability that a fail-stop error strikes when executing tasks Ti to Tj at speed s
pSi,j(s) Probability that a silent error strikes when executing tasks Ti to Tj at speed s

Energy
Ei,j(s) Energy needed to execute tasks Ti to Tj at speed s
EVi (s) Energy needed to verify task Ti at speed s
ECi Energy needed to checkpoint task Ti
ERi Energy needed to recover from task Ti

Finally, the energy to checkpoint task Ti is ECi = Ci(Pidle + Pio), to recover from
task Ti is ERi = Ri (Pidle +Pio), and to verify task Ti at speed s is EVi (s) = Vi(s)(Pidle +
Pcpu(s)).

4.2. The TIME-VC-ONLY problem
THEOREM 4.1. The TIME-VC-ONLY problem can be solved by a dynamic program-

ming algorithm in O(n2) time.

PROOF. We define TimeC(j, s) to be the optimal expected time to successfully ex-
ecute tasks T1, . . . , Tj at speed s, where Tj has a verified checkpoint, and there are
possibly other verified checkpoints from T1 to Tj−1. Note that we always verify and
checkpoint the last task Tn to save the final result, so the goal is to find TimeC(n, s).

To compute TimeC(j, s), we formulate the following dynamic program by trying all
possible locations for the last checkpoint before Tj (see Figure 3):

TimeC(j, s) = min
0≤i<j

{
TimeC(i, s) + TC(i+ 1, j, s)

}
+ Cj ,

where TC(i, j, s) is the expected time to successfully execute the tasks Ti to Tj , provided
that Ti−1 and Tj are both verified and checkpointed, while no other task in between
is verified nor checkpointed. Note that we also account for the checkpointing cost Cj
for task Tj , which is not included in the definition of TC . To initialize the dynamic
program, we define TimeC(0, s) = 0.

For convenience, we assume that there is a virtual task T0 that is always verified
and checkpointed, with a recovery cost R0 = 0. According to Equation (4) but without
counting the checkpointing time at the end, the expected time needed to execute tasks

T0 V0 C0 T1
. . . Ti Vi Ci Ti+1 . . . Tj Vj Cj . . .

TimeC(i, s) TC(i+ 1, j, s)

TimeC(j, s)

Fig. 3. Illustration of the dynamic programming formulation for T imeC(j, s).

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:17

Ti to Tj for each (i, j) pair with i ≤ j is given by

TC(i, j, s) = eλ
S(s)Ti,j(s)

(
eλ

F (s)Ti,j(s) − 1

λF (s)
+ Vj(s)

)
+
(
e(λ

F (s)+λS(s))Ti,j(s) − 1
)
Ri−1 .

(11)

We can now compute TimeC(j, s) for all j = 1, . . . , n. For the complexity, the compu-
tation of TC(i, j, s) for all (i, j) pairs with i ≤ j takes O(n2) time. The computation of
the dynamic programming table for TimeC(j, s) also takes O(n2) time, as TimeC(j, s)
depends on at most j other entries in the same table. Therefore, the overall complexity
is O(n2), and this concludes the proof.

We point out that our solution also improves upon Toueg and Babaoglu’s original
algorithm [Toueg and Babaoglu 1984], which has complexity O(n3). They provide an
improved O(n2) algorithm only for the special case where Ci > Cj implies Ri ≥ Rj ,
while our algorithm returns the optimal solution regardless of the values of C and R.

4.3. The TIME-VC+V problem
THEOREM 4.2. The TIME-VC+V problem can be solved by a dynamic programming

algorithm in O(n3) time.

Note that adding intermediate verifications between two verified checkpoints cre-
ates an additional step in the dynamic programming algorithm, leading to a higher
computational complexity.

PROOF. In the TIME-VC-ONLY problem, we were only allowed to place verified
checkpoints. Here, we can add intermediate verifications. The main idea is to replace
TC in the dynamic programming algorithm of Theorem 4.1 by another expression
TimeV (i, j, s), which denotes the optimal expected time to successfully execute from
task Ti to task Tj (and to verify it), provided that Ti−1 has a verified checkpoint and
only single verifications are allowed within tasks Ti, . . . , Tj−1. Furthermore, we use
TimeV C(j, s) to denote the optimal expected time to successfully execute the first j
tasks, where Tj has a verified checkpoint, and there are possibly other verified check-
points and single verifications before Tj . The goal is to find TimeV C(n, s). The dynamic
program to compute TimeV C(j, s) can be formulated as follows (see Figure 4):

TimeV C(j, s) = min
0≤i<j

{
TimeV C(i, s) + TimeV (i+ 1, j, s)

}
+ Cj .

In particular, we try all possible locations for the last checkpoint before Tj , and for
each location Ti, we compute the optimal expected time TimeV (i + 1, j, s) to execute
tasks Ti+1 to Tj with only single verifications in between. We also account for the
checkpointing time Cj , which is not included in the definition of TimeV . By initializing
the dynamic program with TimeV C(0, s) = 0, we can then compute the optimal solution
as in the TIME-VC-ONLY problem.

T0 V0 C0 T1
. . . Ti Vi Ci Ti+1 . . . Tj Vj Cj . . .

TimeV C(i, s) TimeV (i+ 1, j, s)

TimeV C(j, s)

Fig. 4. Illustration of the dynamic programming formulation for T imeV C(j, s).

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:18 A. Benoit et al.

. . . Ti−1 Vi−1 Ci−1 Ti . . . Tl Vl Tl+1 . . . Tj Vj . . .

TimeV (i, l, s) TV (l + 1, j, i− 1, s)

TimeV (i, j, s)

Fig. 5. Illustration of the dynamic programming formulation for T imeV (i, j, s).

It remains to compute TimeV (i, j, s) for each (i, j) pair with i ≤ j. To this end, we
formulate another dynamic program by trying all possible locations for the last single
verification before Tj (see Figure 5):

TimeV (i, j, s) = min
i−1≤l<j

{
TimeV (i, l, s) + TV (l + 1, j, i− 1, s)

}
,

where TV (i, j, lc, s) is the expected time to successfully execute all the tasks from Ti
to Tj (and to verify Tj), knowing that if an error strikes, we can recover from Tlc , which
is the last task before Ti to have a verified checkpoint.

First, note that if we account for fail-stop errors only, we do not need to perform
any single verification, and hence the problem becomes simply the TIME-VC-ONLY
problem. When accounting for both fail-stop and silent errors, we can apply the same
method as in the proof of Theorem 3.1. Specifically, if a fail-stop error strikes be-
tween two verifications, we directly perform a recovery from task Tlc and redo the
entire computation from Tlc+1 to Tj , which contains a single verification after Ti−1
and possibly other single verifications between Tlc+1 and Ti−2. This is done by calling
TimeV (lc + 1, i− 1, s) first, and then TV (i, j, lc, s) recursively. Otherwise, if no fail-stop
error occurs during the execution from task Ti to task Tj , we check for silent errors
by performing a verification on task Tj . If a silent error occurs, we perform the same
recovery as before. Altogether, we have the following expression:

TV (i, j, lc, s) = pFi,j(s)
(
Tlosti,j (s) +Rlc + TimeV (lc + 1, i− 1, s) + TV (i, j, lc, s)

)
+ (1− pFi,j(s))

(
Ti,j(s) + Vj(s) + pSi,j(s) (Rlc + TimeV (lc + 1, i− 1, s) + TV (i, j, lc, s))

)
,

(12)

where Tlosti,j (s) denotes the expected time lost when executing tasks Ti to Tj if a fail-
stop error strikes and, according to Equation (3), it is given by

Tlosti,j (s) =
1

λF (s)
− Ti,j(s)

eλ
F (s)Ti,j(s) − 1

. (13)

Solving TV (i, j, lc, s) from Equation (12) above, we can get

TV (i, j, lc, s) = eλ
S(s)Ti,j(s)

(
eλ

F (s)Ti,j(s) − 1

λF (s)
+ Vj(s)

)
+
(
e(λ

F (s)+λS(s))Ti,j(s) − 1
)

(Rlc + TimeV (lc + 1, i− 1, s)) .

Note that TV (i, j, lc, s) depends on the value of TimeV (lc+1, i−1, s), except when lc+
1 = i, in which case we initialize TimeV (i, i−1, s) = 0. Hence, in the dynamic program,
TimeV (i, j, s) can be expressed as a function of TimeV (i, l, s) for all l = i− 1, · · · , j − 1.

Finally, the complexity is dominated by the computation of the second dynamic pro-
gramming table for TimeV (i, j, s), which containsO(n2) entries and each entry depends

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:19

on at most n other ones. Hence, the overall complexity of the algorithm is O(n3), which
concludes the proof.

4.4. Bi-criteria problem
THEOREM 4.3. Consider a chain of tasks with the objective of minimizing a linear

combination of execution time and energy consumption as shown in Equation (8). The
TIMEENERGY-VC-ONLY problem can be solved in O(n2) time and the TIMEENERGY-
VC+V problem can be solved in O(n3) time.

PROOF SKETCH. The proof is similar to the case when minimizing time alone. Be-
low, we only sketch the proof for the VC-ONLY protocol.

Let CostC(j, s) denote the optimal expected cost (with combined time and energy) to
successfully execute tasks T1, . . . , Tj , where Tj has a verified checkpoint, and there are
possibly other verified checkpoints from T1 to Tj−1. Let GC(i, j, s) denote the expected
cost to successfully execute all the tasks from Ti to Tj without any checkpoint and
verification in between, while Ti−1 and Tj are both verified and checkpointed. The
following dynamic program can be formulated for the VC-ONLY protocol:

CostC(j, s) = min
0≤i<j

{
CostC(i, s) +GC(i+ 1, j, s)

}
+GCj ,

where GCj = aCj + bECj = (a+ b (Pidle + Pio))Cj denotes the combined cost to check-
point task Tj . The goal is to find CostC(n, s).

According to Equations (9) and (10), the combined cost to execute from task Ti to
task Tj , but without considering the checkpointing cost at the end, is given by

GC(i, j, s) = (a+ b (Pidle + Pcpu(s))) eλ
S(s)Ti,j(s)

(
eλ

F (s)Ti,j(s) − 1

λF (s)
+ Vj(s)

)
+ (a+ b (Pidle + Pio))

(
e(λ

F (s)+λS(s))Ti,j(s) − 1
)
Ri−1 .

Clearly, the computational complexity is O(n2), which is the same as that of the time
minimization algorithm shown in Theorem 4.1. The dynamic programming algorithm
for the VC+V protocol can be similarly constructed and is omitted here.

5. DVFS FOR A LINEAR CHAIN OF TASKS
We extend the optimal algorithms for a linear chain to the case where several speeds
are available. When computing (including verification), we use DVFS to change the
speed of the processors, and assume a set S = {s1, s2, . . . , sK} of K discrete computing
speeds. During checkpointing and recovery, we assume a dedicated (constant) power
consumption. The formula to compute the total energy consumed during the execution
of the chain becomes

Energy =
K∑
i=1

Tcpu(si)(Pidle + Pcpu(si)) + Tio(Pidle + Pio) ,

where Tcpu(si) is the time spent on computing at speed si, and Tio is the total time
spent on I/O transfers. We introduce two new execution scenarios:

REEXECSPEED: There are two (possibly different) speeds, s for the first execution of
each task, and σ for any potential re-execution.

MULTISPEED: The workflow chain is partitioned into segments delimited by verified
checkpoints. For each of these segments, we can freely choose a speed for the first
execution, and a (possibly different) speed for any ulterior execution, among the set
ofK speeds in S. Note that these speeds may well vary from one segment to another.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:20 A. Benoit et al.

Table III. Additional notations for DVFS.

Speeds
S = {s1, s2, . . . , sK} Set of K discrete computing speeds (DVFS)
s ∈ S Regular speed
σ ∈ S Re-execution speed

Execution scenarios
SINGLESPEED All tasks execute and re-execute at speed s (Section 4)
REEXECSPEED All tasks first execute at speed s and then re-execute at speed σ
MULTISPEED Tasks are partitioned into segments. Each segment executes with any speed in S

for first execution and a (possibly different) speed for re-execution

The design of optimal algorithms for the REEXECSPEED scenario enables to assess
the impact of a simple speed change, and it paves the way to the most general and flex-
ible execution scenario, MULTISPEED, which makes full use of the potential of having
K different speeds. For reference, we use SINGLESPEED to denote the execution sce-
nario with a unique speed, which we have discussed in Section 4 for a linear chain of
tasks. The main notations for this section are summarized in Table III.

5.1. The REEXECSPEED Scenario
In the REEXECSPEED scenario, we are given two speeds s and σ, where s is the regular
speed and σ is the re-execution speed. The regular speed s is used for the first execution
of the tasks, while σ is used for all subsequent re-executions in case of failure during
the first execution. Due to the use of two speeds, the analysis is considerably more
involved than the SINGLESPEED scenario.

5.1.1. The TIME-VC-ONLY problem. We need to derive two independent expressions to
compute the expected execution time for both VC-ONLY and VC+V protocols. The first
expression is for the first execution of the tasks with the first speed s until the first
error is encountered. Once the first error strikes, we recover from the last checkpoint
and start re-executing the tasks with the second speed σ until we reach the next check-
point. This latter expression is essentially the same as when we used a single speed s,
but with speed σ instead. The following theorem shows the result.

THEOREM 5.1. For the REEXECSPEED scenario, the TIME-VC-ONLY problem can
be solved by a dynamic programming algorithm in O(n2) time.

PROOF. The proof extends that of Theorem 4.1. To account for two speeds, we re-
place TimeC(j, s) with TimeCre(j, s, σ), which denotes the optimal expected time to
successfully execute the tasks T1 to Tj , where Tj has a verified checkpoint. Similarly,
we replace TC(i, j, s) with TCre(i, j, s, σ) as the expected time to successfully execute the
tasks Ti to Tj , where both Ti−1 and Tj are verified and checkpointed. The goal is to find
TimeCre(n, s, σ), and the dynamic program is formulated as follows:

TimeCre(j, s, σ) = min
0≤i<j

{
TimeCre(i, s, σ) + TCre(i+ 1, j, s, σ)

}
+ Cj .

Note that the checkpointing cost after Tj is included in TimeCre(j, s, σ) but not in
TCre(i, j, s, σ). We initialize the dynamic program with TimeCre(0, s, σ) = 0.

To compute TCre(i, j, s, σ) for each (i, j) pair with i ≤ j, we need to distinguish the
first execution (before the first error) and all potential re-executions (after at least
one error). Let TCfirst(i, j, s) denote the expected time to execute the tasks Ti to Tj for
the very first time before the first error is encountered, and let TC(i, j, σ) denote the
expected time to successfully execute the tasks Ti to Tj in the re-executions.

While TC(i, j, σ) is given by Equation (11) but using speed σ, TCfirst(i, j, s) can be
computed by considering two possible scenarios: (i) a fail-stop error has occurred dur-
ing the execution from Ti to Tj , in which case we lose Tlosti,j (s) time as given in Equa-

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:21

tion (13); (ii) there is no fail-stop error, in which case the execution time is Ti,j(s)+Vj(s)
regardless of whether silent errors occur. Note that in both cases, we do not account
for the re-executions, as they are handled by TC separately (with the second speed).
Therefore, we have

TCfirst(i, j, s) = pFi,j(s)

(
1

λF (s)
− Ti,j(s)

eλ
F (s)Ti,j(s) − 1

)
+
(
1− pFi,j(s)

)
(Ti,j(s) + Vj(s)) . (14)

Let pEi,j(s) denote the probability that at least one error is detected in the first execu-
tion of the tasks from Ti to Tj at speed s. Since we account for both silent and fail-stop
errors, and we can only detect silent errors if no fail-stop error has occurred, we have
pEi,j(s) = pFi,j(s) +

(
1− pFi,j(s)

)
pSi,j(s). If no error strikes during the first execution, then

the time to execute from Ti to Tj is exactly TCfirst(i, j, s), which means that all the tasks
have been executed successfully with the first speed. If at least one error occurs, which
happens with probability pEi,j(s), then TCfirst(i, j, s) is the time lost trying to execute
the tasks with the first speed. In this case, we need to recover from the last checkpoint
and use TC(i, j, σ) to re-execute all the tasks from Ti to Tj with the second speed until
we pass the next checkpoint. Therefore, we have

TCre(i, j, s, σ) = TCfirst(i, j, s) + pEi,j(s) (Ri−1 + TC(i, j, σ)) . (15)

Despite the two steps needed to compute TCre(i, j, s, σ), the complexity remains the
same as in the SINGLESPEED scenario (Theorem 4.1). This concludes the proof.

5.1.2. The TIME-VC+V problem. With the VC+V protocol, we place intermediate verifi-
cations between two verified checkpoints. Because two speeds are used in the REEX-
ECSPEED scenario, we will place two sets of intermediate verifications. The first set
is used during the first execution of the tasks until the first error is encountered, in
which case we recover from the last checkpoint and start re-executing the tasks using
the second set of verifications with the second speed. The problem is to find the best
positions for the verified checkpoints as well as the best positions for the two sets of
verifications in order to minimize the total execution time.

Because two sets of intermediate verifications need to be placed, we formulate two
independent dynamic programs to determine their respective optimal positions. The
overall complexity, however, remains the same as with a single speed. The following
theorem shows the result.

THEOREM 5.2. For the REEXECSPEED scenario, the TIME-VC+V problem can be
solved by a dynamic programming algorithm in O(n3) time.

PROOF. We follow the same reasoning as in the VC-ONLY protocol (see Sec-
tion 5.1.1). Here, we replace TimeCre(j, s, σ) with TimeV Cre(j, s, σ), and replace
TCre(i, j, s, σ) with TV Cre(i, j, s, σ). Note that both expressions follow the new re-
execution model and account for both sets of intermediate verifications. The goal is
to find TimeV Cre(n, s, σ), and the dynamic program is formulated as follows:

TimeV Cre(j, s, σ) = min
0≤i<j

{
TimeV Cre(i, s, σ) + TV Cre(i+ 1, j, s, σ)

}
+ Cj .

Note that the checkpointing cost after Tj is included in TimeV Cre(j, s, σ) but not in
TV Cre(i, j, s, σ). We initialize the dynamic program with TimeV Cre(0, s, σ) = 0.

To compute TV Cre(i, j, s, σ), where both Ti−1 and Tj are verified and checkpointed,
we again consider two parts: (1) the optimal expected time TimeVfirst(i, j, s) to execute
the tasks Ti to Tj in the first execution using the first set of intermediate verifica-
tions with speed s; (2) the optimal expected time TimeV (i, j, σ) to successfully exe-
cute the tasks Ti to Tj in all subsequent re-executions using the second set of sin-

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:22 A. Benoit et al.

gle verifications with speed σ. Similarly to the proof of the TIME-VC-ONLY problem
in Section 5.1.1, TV Cre(i, j, s, σ) always includes the cost TimeVfirst(i, j, s) regardless
of whether a error strikes during the first execution. Let pEi,j(s) denote the probabil-
ity that at least one error is detected in the first execution, and it is again given by
pEi,j(s) = pFi,j(s)+

(
1− pFi,j(s)

)
pSi,j(s). If an error indeed strikes during the first execution,

then we need to recover from the last checkpoint and use TimeV (i, j, σ) to re-execute
all the tasks from Ti to Tj with the second speed until we pass the next checkpoint.
Therefore, we have

TV Cre(i, j, s, σ) = TimeVfirst(i, j, s) + pEi,j(s) (Ri−1 + TimeV (i, j, σ)) . (16)

Here, TimeV (i, j, σ) follows the same dynamic programming formulation as in Sec-
tion 4.3 but using speed σ. TimeVfirst(i, j, s), on the other hand, denotes the optimal
expected time to execute the tasks Ti to Tj at speed s until the first error strikes. Hence,
it should not include the recovery cost nor the re-executions. The following describes a
dynamic programming formulation to compute TimeVfirst(i, j, s):

TimeVfirst(i, j, s) = min
i−1≤l<j

{
TimeVfirst(i, l, s) +

(
1− pEi,l(s)

) (
TVfirst(l + 1, j, s)

)}
,

where pEi,l(s) = pFi,l(s) + (1− pFi,l(s))pSi,l(s) is the probability that at least one error is de-
tected when executing the tasks Ti to Tl, and TVfirst(i, j, s) denotes the expected time to
execute the tasks Ti to Tj with both Ti−1 and Tj verified. In particular, the computation
of TVfirst(i, j, s) is exactly the same as that of TCfirst(i, j, s) given in Equation (14). In
this dynamic program, we include the second term only when no error has happened
during the first term, otherwise we have to recover and re-execute the tasks with the
second speed, which is handled by TimeV (i, j, σ). Finally, we initialize this dynamic
program with TimeVfirst(i, i− 1, s) = 0 for all i = 1, . . . , n.

The complexity is dominated by the computation of TimeV (i, j, s) and
TimeVfirst(i, j, s), both of which take O(n3) time. Therefore, the overall complex-
ity remains the same as in the SINGLESPEED scenario (Theorem 4.2).

5.2. The MULTISPEED Scenario
In this section, we investigate the most flexible scenario, MULTISPEED, which is built
upon the REEXECSPEED scenario, to get even more control over the expected execution
time but at the cost of a higher complexity. Instead of having two fixed speeds, we
are given a set S = {s1, s2, · · · , sK} of K discrete speeds. We call a sequence of tasks
between two checkpoints a segment of the chain, and we allow each segment to use one
speed for the first execution, and a second speed for all potential re-executions. The
two speeds can well be different for different segments.

5.2.1. The TIME-VC-ONLY problem

THEOREM 5.3. For the MULTISPEED scenario, the TIME-VC-ONLY problem can be
solved by a dynamic programming algorithm in O(n2K2) time.

PROOF. The proof is built upon that of Theorem 5.1 for the REEXECSPEED scenario.
Here, we use TimeCmul(j) to denote the optimal expected time to successfully execute
tasks T1 to Tj , where Tj has a verified checkpoint and there are possibly other verified
checkpoints in between. Also, we use TCmul(i, j) to denote the optimal expected time
to successfully execute the tasks Ti to Tj , where both Ti−1 and Tj are verified and
checkpointed. In both expressions, the two execution speeds for each segment can be
arbitrarily chosen from the discrete set S. The goal is to find TimeCmul(n), and the

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:23

dynamic program can be formulated as follows:

TimeCmul(j) = min
0≤i<j

{
TimeCmul(i) + TCmul(i+ 1, j)

}
+ Cj ,

which is initialized with TimeCmul(0) = 0. Recall that TCre(i, j, s, σ) from the REEXEC-
SPEED scenario (see Equation (15)) already accounts for two speeds that are fixed. We
can use it to compute TCmul(i, j) by trying all possible speed pairs:

TCmul(i, j) = min
s,σ∈S

TCre(i, j, s, σ) .

The complexity is now dominated by the computation of TCmul(i, j) for all (i, j) pairs
with i ≤ j, and it takes O(n2K2) time. After TCmul(i, j) is computed, the dynamic
programming table can then be filled in O(n2) time.

5.2.2. The TIME-VC+V problem

THEOREM 5.4. For the MULTISPEED scenario, the TIME-VC+V problem can be
solved by a dynamic programming algorithm in O(n3K2) time.

PROOF. The proof is similar to that of the TIME-VC-ONLY problem in Theo-
rem 5.3. Here, we replace TimeCmul(j) with TimeV Cmul(j) and replace TCmul(i, j) with
TV Cmul(i, j). Again, the two expressions denote the optimal execution times with the
best speed pair chosen from S for each segment. The goal is to find TimeV Cmul(n), and
the dynamic program is formulated as follows:

TimeV Cmul(j) = min
0≤i<j

{
TimeV Cmul(i) + TV Cmul(i+ 1, j)

}
+ Cj ,

which is initialized with TimeV Cmul(0) = 0. We can compute TV Cmul(i, j) from
TV Cre(i, j, s, σ) (see Equation (16)) by trying all possible speed pairs:

TV Cmul(i, j) = min
s,σ∈S

TV Cre(i, j, s, σ) .

The complexity is still dominated by the computation of TV Cmul(i, j), which amounts
to computing TV Cre(i, j, s, σ) for all (i, j) pairs and for K2 possible pairs of speeds (see
Theorem 5.2). Therefore, the overall complexity is O(n3K2).

5.3. Bi-criteria problems
Results nicely extend to the bi-criteria problems. We state the following theorem with-
out proof, because it is similar to that of Theorem 4.3.

THEOREM 5.5. Consider a chain of tasks with the objective of minimizing a linear
combination of execution time and energy consumption as shown in Equation (8).
(i) In the REEXECSPEED scenario, the TIMEENERGY-VC-ONLY problem can be solved
in O(n2) time and the TIMEENERGY-VC+V problem can be solved in O(n3) time.
(ii) In the MULTISPEED scenario, the TIMEENERGY-VC-ONLY problem can be solved
in O(n2K2) time and the TIMEENERGY-VC+V problem can be solved in O(n3K2) time.

6. SIMULATIONS
We conduct simulations to evaluate the performance of the dynamic programming
algorithms under different execution scenarios and parameter settings. We instan-
tiate the model parameters with realistic values taken from the literature, and we
point out that the code for all algorithms and simulations is publicly available at
http://graal.ens-lyon.fr/∼yrobert/failstop-silent, so that interested readers can build
relevant scenarios of their choice.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:24 A. Benoit et al.

6.1. Simulation settings
We generate a linear chain with different number n of tasks while keeping the total
computational cost at W = 5 × 104 seconds ≈ 14 hours. The total amount of computa-
tion is distributed among the tasks in three different patterns:
(1) Uniform: all tasks share the same cost W/n, as in matrix multiplication or in some

iterative stencil kernels.
(2) Decrease: task Ti has cost α · (n + 1 − i)2, where α ≈ 3W/n3. This quadratically

decreasing function resembles some dense matrix solvers, e.g., by using LU or QR
factorization.

(3) HighLow: a set of identical tasks with large cost is followed by tasks with small
cost. This distribution is created to distinguish the performance of different execu-
tion scenarios. In the default setting, we assume that 10% of the tasks are large and
they contain 60% of the total computational cost. We will also vary these parameters
to evaluate their impact on performance.
We adopt the set of speeds from the Intel Xscale processor. Following [Rizvandi et al.

2012], the normalized set of speeds is S = {0.15, 0.4, 0.6, 0.8, 1} and the fitted power
function is given by P (s) = 1550s3 + 60. From the discussion in Section 2.3, we assume
the following model for the average error rate of fail-stop errors:

λF (s) = λFref · 10
d·|sref−s|
smax−smin , (17)

where sref ∈ [smin, smax] denotes the reference speed with the lowest error rate λFref
among all possible speeds in the range. The above equation allows us to account for
higher fail-stop error rates when the CPU speed is either too low or too high. In the
simulations, the reference speed is set to be sref = 0.6 with an error rate of λFref = 10−5

for fail-stop errors, and the sensitivity parameter is set to be d = 3. These parameters
represent realistic settings reported in the literature [Assayad et al. 2013; Aupy et al.
2012; Zhao et al. 2008], and they correspond to 0.83 ∼ 129 errors over the entire chain
of computation depending on the processing speed chosen.

For silent errors, we assume that the error rate is related to that of the fail-stop er-
rors by λS(s) = η ·λF (s), where η > 0 is the relative parameter. To achieve realistic sce-
narios, we try to vary η to assess the impact of both error sources on the performance.
However, we point out that our approach is completely independent of the evolution of
the error rates as a function of the speed. In a practical setting, we are given a set of
discrete speeds and two error rates for each speed, one for fail-stop errors and one for
silent errors. This is enough to instantiate our model.

In addition, we define cr to be the ratio between the checkpointing/recovery cost
and the computational cost for the tasks, and define vr to be the ratio between the
verification cost and the computational cost. By default, we execute the tasks using
the reference speed sref , and we set η = 1, cr = 1 and vr = 0.01. This setting corre-
sponds to the case where fail-stop and silent errors have similar probabilities to strike
the system. Moreover, the tasks have costly checkpoints (same order of magnitude as
the computational costs) and lightweight verifications (average cost 1% of computa-
tional costs); examples of such tasks are data-oriented kernels processing large files
and checksumming for verification. We will also vary these parameters to study their
impact.

6.2. Results
We first focus on the SINGLESPEED scenario and the minimization of the execution
time (Section 6.2.1). Then, we discuss in Section 6.2.2 results when energy is mini-
mized instead of time, and for a linear combination of time and energy, still with SIN-
GLESPEED. Finally, Section 6.2.3 shows the gains achieved by using several speeds,

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:25

10 20 30 40 50 60 70 80 90 100
1

1.2

1.4

1.6

1.8

2

2.2

Number of tasks

N
o
rm

a
liz

e
d
 E

x
p
e
c
te

d
 M

a
k
e
s
p
a
n

Uniform_VC

Uniform_VC+V

Decrease_VC
Decrease_VC+V

HighLow_VC

HighLow_VC+V

(a)

10 40 70 100
0

10

20

30

40

50

60

70

Number of tasks

#
V

C
 a

n
d

 #
V

Uniform_VC

Uniform_VC+V

Decrease_VC
Decrease_VC+V

HighLow_VC

HighLow_VC+V

(b)

Uniform
(Time−VC−Only)

Uniform
(Time−VC+V)

Decrease
(Time−VC−Only)

Decrease
(Time−VC+V)

HighLow
(Time−VC−Only)

HighLow
(Time−VC+V)

(c)

Fig. 6. Impact of n and cost distribution on the performance of the TIME-VC-ONLY and TIME-VC+V algo-
rithms. In (b), the thick bars represent the number of verified checkpoints and the yellow thin bars represent
the total number of verifications. In (c), the number of tasks is fixed at n = 100. The long vertical bars mark
the positions of the verified checkpoints within the task chain, whereas the short vertical bars mark the
positions of the additional verifications.

through the REEXECSPEED and MULTISPEED scenarios for a linear chain of tasks. A
summary of results is given in Section 6.2.4.

6.2.1. The SINGLESPEED scenario for execution time. The first set of simulations is devoted
to the evaluation of the time optimization algorithms in the SINGLESPEED scenario.

Impact of number of tasks and cost distribution. Figure 6(a) shows the expected ex-
ecution time, normalized by the error-free execution time at the reference speed, i.e.,

Timeref =
W

sref
, (18)

with different number n of tasks and different cost distributions. The results show that
having more tasks reduces the expected execution time (for a fixed total computation),
since it enables the algorithms to place more checkpoints and verifications, as can be
seen in Figure 6(b). The distribution that renders a larger variation in the costs of the
tasks create more difficulty in the placement of checkpoints/verifications, thus result-
ing in worse execution time. Figure 6(c) shows, for n = 100 tasks, that the checkpoints
and verifications are placed evenly within the task chain for the Uniform distribution,
while for Decrease and HighLow distributions, they are placed more densely at the be-
ginning, where large tasks need to be checkpointed and/or verified for better resilience.
The figure also compares the performance of the TIME-VC-ONLY algorithm with that
of TIME-VC+V algorithm. The latter, being more flexible, leads to improved execution
time under all cost distributions. Because of the additionally placed verifications, it
also reduces the number of checkpoints in the optimal solution.

In the rest of this section, we mainly focus on the evaluation of the TIME-VC+V
algorithm.

Impact of error mode and relative ratio. Figure 7(a) compares the performance of
the TIME-VC+V algorithm for the Uniform distribution under different error modes,
namely, fail-stop (F) only, silent (S) only, and fail-stop plus silent with different values
of η. As silent errors are harder to detect and hence to deal with, the S-only case leads
to larger execution times than the F-only case. In the presence of both types of errors,
the execution times become worse with larger η, i.e., with increased rate for silent
errors, despite the algorithm’s effort to place more checkpoints and more verifications,
as shown in Figure 7(b). Similar results (not shown) are also observed for the other
cost distributions.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:26 A. Benoit et al.

10 20 30 40 50 60 70 80 90 100
1

1.2

1.4

1.6

1.8

2

Number of tasks n

N
o
rm

a
liz

e
d
 e

x
p
e
c
te

d
 m

a
k
e
s
p
a
n

F (η = 0)

S

η=0.5

η=1

η=1.5

η=2

(a)

10 40 70 100
0

20

40

60

80

100

Number of tasks n

#
V

C
 a

n
d

 #
V

F (η = 0)

S

η=0.5

η=1

η=1.5

η=2

(b)

Fig. 7. Impact of η on the performance for the Uniform distribution. F denotes fail-stop error only and S
denotes silent error only.

0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

CPU speed s

N
o

rm
a

liz
e

d
 E

x
p

e
c
te

d
 M

a
k
e

s
p

a
n

cr=0.1, vr=0.1

cr=0.1, vr=0.01

cr=1, vr=0.1

cr=1, vr=0.01

cr=5, vr=0.1

cr=5, vr=0.01

(a)

0.4 0.6 0.8 1
0

20

40

60

80

100

CPU speed s

#
V

C
 a

n
d

 #
V

cr=0.1, vr=0.1

cr=0.1, vr=0.01

cr=1, vr=0.1

cr=1, vr=0.01

cr=5, vr=0.1

cr=5, vr=0.01

(b)

Fig. 8. Impact of cr and vr on the performance with different CPU speeds for the Uniform distribution.
Speed s = 0.15 yields extremely large execution time, which is omitted in the figure.

In the subsequent simulations, we concentrate on n = 100 tasks in the presence of
both fail-stop and silent errors with η = 1.

Impact of checkpointing and verification ratios. Figure 8(a) presents the impact of
checkpointing/recovery ratio (cr) and verification ratio (vr) on the performance of the
TIME-VC+V algorithm under different CPU speeds for the Uniform distribution. For
a given speed, a small cr (or vr) enables the algorithm to place more checkpoints (or
verifications), which leads to a better execution time. Moreover, the performance de-
grades significantly as the CPU speed is set below the reference speed sref , because
the error rate increases exponentially. A higher CPU speed also increases the error
rate, but it improves the execution time, at least for small values of cr, by executing
the tasks faster with more checkpoints. Finally, if the checkpointing cost is on par with
the verification cost (e.g., cr = 0.1), reducing the verification cost can additionally in-
crease the number of checkpoints (e.g., at s = 0.6), since each checkpoint also has a
verification cost associated with it. For a high checkpointing cost, however, reducing
the verification cost no longer influences the algorithm’s checkpointing decisions.

Comparison with divisible load application. Figure 9(a) compares the execution time
of the TIME-VC+V algorithm for the three linear task distributions with that of the
periodic checkpointing and verification algorithm for a divisible load application. Fig-
ure 9(b) also shows the number of checkpoints and verifications placed in each case.
Note that, for the divisible load application, the total computational cost, the check-
pointing cost and the verification cost are set to be the same as the corresponding
costs of a discrete task under the Uniform distribution. We see that the execution
time for uniform tasks is almost identical to that of the divisible load under all CPU
speeds, while the performance degrades significantly for the other two distributions

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:27

0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

CPU speed s

N
o

rm
a

liz
e

d
 e

x
p

e
c
te

d
 m

a
k
e

s
p

a
n

Divisible

Uniform

Decrease

HighLow

(a)

0.4 0.6 0.8 1
0

50

100

150

200

250

CPU speed s

#
V

C
 a

n
d

 #
V

Divisible

Uniform

Decrease

HighLow

(b)

Fig. 9. Performance comparison of the TIME-VC+V algorithm and the periodic checkpointing and verifica-
tion algorithm for divisible load application.

with larger variations in the costs of the tasks. Similar results (not shown) are also ob-
served when comparing the TIME-VC-ONLY algorithm with the periodic checkpoint-
ing algorithm for divisible load. Moreover, because a divisible load application does not
impose restrictions in the checkpointing and verification positions, there tends to be
more verifications (or checkpoints in the case of periodic checkpointing algorithm) than
for discrete tasks, especially when the CPU speed is further away from the reference
speed, and hence the error rate is high.

In view of these results, we could imagine the following greedy algorithm as an alter-
native to the TIME-VC-ONLY and TIME-VC+V algorithms for a linear chain of tasks
with Uniform cost: position the next checkpoint or verification as soon as the time
spent on computing since the last checkpoint or verification exceeds the optimal peri-
ods given by Theorems 3.1 and 3.2. The results here suggest that this linear-time algo-
rithm (with complexity O(n)) would give a good approximation to the optimal solution
(returned by the TIME-VC-ONLY algorithm with complexity O(n2) or the TIME-VC+V
algorithm with complexity O(n3)).

Performance with independent checkpointing cost. We now consider the case where
the checkpointing costs are independent of the tasks’ computational costs. To assess
the impact, we generate different patterns by varying the checkpointing costs linearly
within the task chain while keeping the sum a constant. Specifically, we use the follow-
ing function to generate the checkpointing cost Ci = C

(
1 + δ

n (i− n
2)
)

for each task Ti
(1 ≤ i ≤ n), where C = W/n denotes the average checkpointing cost. Here, δ represents
the gradient of the linear function: δ = 0 means that all tasks have the same check-
pointing cost, δ > 0 increases the checkpointing cost as more tasks are processed, and
δ < 0 decreases the checkpointing cost.

Figure 10 shows the performance of the TIME-VC+V algorithm for different values
of δ under the reference speed sref = 0.6. When δ increases, the execution time for tasks
with Uniform computational cost is barely affected, while significant improvements
are observed for the other two distributions. Indeed, the algorithms for the Decrease
and the HighLow distributions place more checkpoints at the beginning of the task
chain, where the large tasks are located. Therefore, reducing the checkpointing costs
for these tasks decreases the execution overhead and hence the overall execution time.

6.2.2. The SINGLESPEED scenario for energy and energy-time trade-off. This set of simula-
tions evaluates the energy optimization algorithms (i.e., obtained by setting a = 0 in
Equation (9), and denoted as ENERGY-VC-ONLY and ENERGY-VC+V) as well as the
energy-time trade-off, in the SINGLESPEED scenario. The default power parameters
are set to be Pidle = 60 and Pcpu(s) = 1550s3, according to [Rizvandi et al. 2012]. The

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:28 A. Benoit et al.

−2 −1 0 1 2
1.1

1.15

1.2

1.25

Gradient δ

N
o

rm
a

liz
e

d
 e

x
p

e
c
te

d
 m

a
k
e

s
p

a
n

Uniform

Decrease

HighLow

(a)

−2 −1 0 1 2
0

10

20

30

40

50

60

Gradient δ

#
V

C
 a

n
d

 #
V

Uniform

Decrease

HighLow

(b)

Uniform
(δ=−2)

Uniform
(δ=2)

Decrease
(δ=−2)

Decrease
(δ=2)

HighLow
(δ=−2)

HighLow
(δ=2)

(c)

Fig. 10. Impact of δ on the performance when the checkpointing cost for task Ti is given by Ci =

C
(
1 + δ

n
(i− n

2
)
)

, where C = W
n

.

10 20 30 40 50 60 70 80 90 100
1

1.2

1.4

1.6

1.8

2

Number of tasks n

N
o
rm

a
liz

e
d
 e

x
p
e
c
te

d
 e

n
e
rg

y

Uniform (Energy−VC−Only)

Uniform (Energy−VC+V)

Decrease (Energy−VC−Only)
Decrease (Energy−VC+V)

HighLow (Energy−VC−Only)

HighLow (Energy−VC+V)

(a)

10 40 70 100
0

10

20

30

40

50

60

70

Number of tasks n

#
V

C
 a

n
d

 #
V

Uniform (Energy−VC−Only)

Uniform (Energy−VC+V)

Decrease (Energy−VC−Only)
Decrease (Energy−VC+V)

HighLow (Energy−VC−Only)

HighLow (Energy−VC+V)

(b)

Uniform
(Energy−VC−Only)

Uniform
(Energy−VC+V)

Decrease
(Energy−VC−Only)

Decrease
(Energy−VC+V)

HighLow
(Energy−VC−Only)

HighLow
(Energy−VC+V)

(c)

Fig. 11. Impact of n and cost distribution on the performance of the ENERGY-VC-ONLY and ENERGY-VC+V
algorithms. In (c), the number of tasks is fixed at n = 100.

dynamic power consumption Pio due to I/O is equal to the dynamic power of the CPU
at the lowest discrete speed 0.15. We vary these parameters to study their impact.

Impact of number of tasks and cost distribution. Figure 11(a) shows the expected
energy consumption of the energy optimization algorithm, normalized by the error-
free energy consumption at the reference speed, i.e.,

Energyref =
W (Pidle + Pcpu(sref))

sref
, (19)

As with the time optimization algorithms (see Figure 6), a larger number of tasks
improves the performance, while a larger variation in the tasks’ costs worsens the
performance. Unlike the case with time, the performance difference between ENERGY-
VC-ONLY and ENERGY-VC+V is less evident. The reason is that the checkpointing
cost is much smaller in terms of energy consumption, so more checkpoints are placed
(compare Figures 11(b) and 6(b)), which reduces the number of additional verifications
required and hence their benefits.

Comparison with divisible load application. Figure 12 compares the performance of
the ENERGY-VC+V algorithm for n = 100 tasks with that of the periodic checkpointing
and verification algorithm for a divisible load application. Similarly to the execution
time case (see Figure 9), the energy consumed for tasks with Uniform distribution is
very close to that for the divisible load application, which admits more verifications
and/or checkpoints due to the flexible application model. In addition, the optimal en-
ergy is achieved by setting the CPU speed below the reference, i.e, at s = 0.4. This is

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:29

0.4 0.6 0.8 1

1

2

3

4

5

6

7

CPU speed s

N
o
rm

a
liz

e
d
 e

x
p
e
c
te

d
 e

n
e
rg

y

Divisible

Uniform
Decrease

HighLow

(a)

0.4 0.6 0.8 1
0

50

100

150

200

250

CPU speed s

#
V

C
 a

n
d

 #
V

Divisible

Uniform

Decrease

HighLow

(b)

Fig. 12. Performance comparison of the ENERGY-VC+V algorithm and the periodic checkpointing and ver-
ification algorithm for divisible load application.

0.4 0.6 0.8 1
0.5

1.5

2.5

3.5

4.5

N
o
rm

a
liz

e
d
 E

x
p
e
c
te

d
 E

n
e
rg

y

CPU speed s

0.4 0.6 0.8 1
1

1.5

2

2.5

3

N
o
rm

a
liz

e
d
 E

x
p
e
c
te

d
 M

a
k
e
s
p
a
n

Energy (TIME−VC+V)

Time (TIME−VC+V)
Energy (ENERGY−VC+V)

Time (ENERGY−VC+V)

(a)

0.4 0.6 0.8 1
0

20

40

60

80

100

CPU speed s

#
V

C
 a

n
d

 #
V

ENERGY−VC+V

TIME−VC+V

(b)

Fig. 13. Performance of the ENERGY-VC+V and TIME-VC+V algorithms with different CPU speeds.

in contrast to the TIME-VC+V algorithm, which achieves the optimal execution time
at s = 0.8, a higher speed than the reference.

Energy-time trade-off. We now study the energy-time trade-off exhibited by the
ENERGY-VC+V and TIME-VC+V algorithms. Figure 13 compares their performance
in terms of both time and energy when executing n = 100 tasks with the Uniform dis-
tribution. At speed s = 0.4, the power consumed by the CPU is still comparable to the
I/O power. This yields the same number of checkpoints placed by the two algorithms,
which in turn leads to the same performance for time and energy. As the speed s in-
creases, the I/O power becomes relatively cheaper, so ENERGY-VC+V tends to place
more checkpoints to improve the energy at the expense of execution time, and the per-
formance difference of the two algorithms becomes more obvious. The result indicates
that running at the reference speed s = 0.6 offers a good trade-off with reasonable
performance in both energy and time, while running at s = 0.4 suffers from a large
execution time and running at s = 0.8 has a large energy consumption.

Linear combination of time and energy. To further understand the energy-time
trade-off, we evaluate the TIMEENERGY-VC+V algorithm that minimizes a linear com-
bination of the two objectives. To make sure that the values of time and energy are in
the same range, both quantities are normalized by their respective reference values
shown in Equations (18) and (19). Thus, the weights in Equation (8) are set as follows:

a =
α

Timeref
, (20)

b =
1− α

Energyref
, (21)

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:30 A. Benoit et al.

0 0.2 0.4 0.6 0.8 1
1.05

1.06

1.07

1.08

1.09

1.1

1.11

N
o

rm
a

liz
e

d
 E

x
p

e
c
te

d
 E

n
e

rg
y

value of α

0 0.2 0.4 0.6 0.8 1
1.16

1.17

1.18

1.19

1.2

1.21

1.22

N
o

rm
a

liz
e

d
 E

x
p

e
c
te

d
 M

a
k
e

s
p

a
n

Energy

Time

(a)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

value of α

#
V

C
 a

n
d

 #
V

(b)

Fig. 14. Performance of the TIMEENERGY-VC+V algorithm with different values of α.

0.2 0.4 0.6 0.8 1
0

2

4

6

N
o

rm
a

liz
e

d
 E

x
p

e
c
te

d
 E

n
e

rg
y

Pidle = 1550s
3

0.2 0.4 0.6 0.8 1
1.1

1.2

1.3

1.4

N
o

rm
a

liz
e

d
 E

x
p

e
c
te

d
 M

a
k
e

s
p

a
n

Energy (TIME−VC+V)

Time (TIME−VC+V)
Energy (ENERGY−VC+V)

Time (ENERGY−VC+V)

(a)

0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

N
o
rm

a
liz

e
d
 E

x
p
e
c
te

d
 E

n
e
rg

y

Pio = 1550s
3

0.2 0.4 0.6 0.8 1
1.15

1.17

1.19

1.21

1.23

1.25

N
o
rm

a
liz

e
d
 E

x
p
e
c
te

d
 M

a
k
e
s
p
a
n

Energy (TIME−VC+V)

Time (TIME−VC+V)
Energy (ENERGY−VC+V)

Time (ENERGY−VC+V)

(b)

0.15
0.4

0.6
0.8

1

0.15

0.4

0.6

0.8

1

0

20

40

60

Pidle
Pio

#
V

C

(c)

Fig. 15. Impact of Pidle and Pio on the performance of the ENERGY-VC+V and TIME-VC+V algorithms at
the reference speed s = 0.6. The number of checkpoints placed by ENERGY-VC+V with different Pio, Pidle
values (= 1550s3) is shown in (c), while TIME-VC+V always places 11 checkpoints in this simulation.

where α ∈ [0, 1] gives the relative importance of time in the optimization. Figure 14
shows the performance of the resulting algorithm for different values of α at the refer-
ence speed s = 0.6. We can see that a larger value of α reduces the execution time by
placing fewer checkpoints, which adversely increases the energy consumption, and vice
versa. Clearly, the behavior of the algorithm evolves from ENERGY-VC+V to TIME-
VC+V as α increases from 0 to 1, and one can choose the value of α according to the
desired level of trade-off between energy and time.

Impact of Pidle and Pio. Figures 15(a) and 15(b) show the performance of the TIME-
VC+V and ENERGY-VC+V algorithms by varying Pidle and Pio separately according to
the dynamic power function 1550s3, while keeping the other one at the smallest CPU
power, i.e., 1550 · 0.153. The CPU speed is fixed at s = 0.6. Figure 15(c) further shows
the number of checkpoints placed by the ENERGY-VC+V algorithm at different Pidle
and Pio values. The TIME-VC+V algorithm is not affected by these two parameters, so
it always places the same number of checkpoints (11 in this simulation) and results in
the same execution time, while the energy consumed increases with Pidle and Pio.

Setting the smallest value for both parameters creates a big gap between the CPU
and I/O power consumptions. This leads to a larger number of checkpoints placed by
the ENERGY-VC+V algorithm, which improves its energy consumption at the expense
of execution time. Increasing Pidle closes this gap and hence reduces the number of
checkpoints, which leads to the performance convergence of the two algorithms for
both energy and time. While increasing Pio has the same effect, a larger value than
Pcpu = 1550 · 0.63 further reduces the number of checkpoints placed by ENERGY-

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:31

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.2

1.4

1.6

1.8

2

cost ratio γ

N
o
rm

a
liz

e
d
 E

x
p
e
c
te

d
 M

a
k
e
s
p
a
n

SingleSpeed (Time, s=0.6)

ReExecSpeed (Time, s=0.6, σ=0.8)

SingleSpeed (Time, s=0.8)

ReExecSpeed (Time, s=0.8, σ=0.6)

MultiSpeed (Time)

(a)
0

0.5

1

1.5

2

N
o
rm

a
liz

e
d

 e
x
p

e
c
te

d
 m

a
k
e

s
p
a

n

SingleSpeed (Time, s=0.6)

ReExecSpeed (Time, s=0.6, σ=0.8)

SingleSpeed (Time, s=0.8)

ReExecSpeed (Time, s=0.8, σ=0.6)

MultiSpeed (Time)

(b)

Fig. 16. Performance comparison of the TIME-VC+V algorithms in MULTISPEED, REEXECSPEED and SIN-
GLESPEED scenarios for n = 100 tasks under HighLow distribution. In (b), the cost ratio is fixed at γ = 0.6,
and the yellow part at the bottom of each bar represents the expected execution time for the large tasks.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.6

0.8

1

1.2

1.4

1.6

1.8

cost ratio γ

N
o
rm

a
liz

e
d
 E

x
p
e
c
te

d
 E

n
e
rg

y

SingleSpeed (Energy, s=0.6)

ReExecSpeed (Energy, s=0.6, σ=0.4)

SingleSpeed (Energy, s=0.4)

ReExecSpeed (Energy, s=0.4, σ=0.6)

MultiSpeed (Energy)

(a)
0

0.4

0.8

1.2

1.6

N
o

rm
a

liz
e
d

 e
x
p

e
c
te

d
 e

n
e
rg

y

SingleSpeed (Energy, s=0.6)

ReExecSpeed (Energy, s=0.6, σ=0.4)

SingleSpeed (Energy, s=0.4)

ReExecSpeed (Energy, s=0.4, σ=0.6)

MultiSpeed (Energy)

(b)

Fig. 17. Performance comparison of the ENERGY-VC+V algorithms in MULTISPEED, REEXECSPEED and
SINGLESPEED scenarios for n = 100 tasks with HighLow distribution. In (b), the cost ratio is fixed at
γ = 0.6, and the yellow part at the bottom of each bar represents the expected energy consumption for the
large tasks.

VC+V below 11, since checkpointing starts to be less energy-efficient. This again gives
ENERGY-VC+V advantage in terms of energy but degrades its performance in time.

6.2.3. The REEXECSPEED and MULTISPEED scenarios. This last set of simulations evalu-
ates the REEXECSPEED and MULTISPEED scenarios for execution time, energy con-
sumption, and a linear combination of time and energy. To distinguish them from the
SINGLESPEED scenario, we consider the HighLow distribution, which yields a larger
variance among the computational costs of the tasks. In the simulations, we again fo-
cus on the VC+V algorithms for n = 100 tasks, and vary the cost ratio γ, which is the
percentage of the large tasks’ computational cost in the total computational cost.

Comparison of different execution scenarios. Figure 16(a) compares the execution
time of the TIME-VC+V algorithms under the three execution scenarios. For the SIN-
GLESPEED and REEXECSPEED scenarios, only s = 0.6 and s = 0.8 are drawn, since
the other speeds lead to much larger execution time. For small cost ratios, no task has
a very large computational cost, so the distribution is close to Uniform. In this case,
the faster speed s = 0.8 offers the best performance despite its higher error rate, as
we have seen in Figure 9(a). When the cost ratio increases, tasks with larger cost start
to emerge. At the high error rate of s = 0.8, these tasks will experience much more
errors and re-executions, so their execution time will dominate the overall execution
time. Therefore, for large cost ratios, s = 0.6 becomes the best speed due to its smaller
error rate, which was also observed in Figure 9(a) under the HighLow distribution.

In the REEXECSPEED scenario, we observe that the best re-execution speed σ, re-
gardless of the initial speed s, is similarly determined by the computational costs of

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:32 A. Benoit et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 E

x
p
e
c
te

d
 E

n
e
rg

y

cost ratio γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

1

1.5

2

2.5

3

N
o
rm

a
liz

e
d
 E

x
p
e
c
te

d
 M

a
k
e
s
p
a
n

Energy (TIME−VC+V)

Time (TIME−VC+V)
Energy (ENERGY−VC+V)

Time (ENERGY−VC+V)

(a)

0.1 0.3 0.5 0.7 0.9
0

10

20

30

40

50

60

cost ratio γ

#
V

C

ENERGY−VC+V

TIME−VC+V

(b)

Fig. 18. Impact of γ on the performance of the ENERGY-VC+V and TIME-VC+V algorithms in the MULTI-
SPEED scenario.

the tasks, which are in turn decided by the cost ratio. Figure 16(b) shows, for cost
ratio γ = 0.6, that setting σ = 0.6 improves the execution of the big tasks but de-
grades the performance of the small tasks. On the other hand, setting σ = 0.8 helps
the small tasks but hurts the big tasks. These simulations suggest that, despite the
ability to select a more appropriate speed for the re-executions, the REEXECSPEED
scenario presents limited benefits compared to the best performance achievable in the
SINGLESPEED scenario. The MULTISPEED scenario, with its flexibility to choose dif-
ferent speeds depending on the costs of the tasks, offers clear performance gains. The
advantage is especially evident at medium cost ratio, where a good mix of large and
small tasks coexist, a situation that is very hard to cope with by using fixed speed(s).

Similar results can also be observed for the ENERGY-VC+V algorithms in the three
scenarios, which are shown in Figure 17. Note that, in terms of energy consumption,
speed s = 0.4 is more suitable for small tasks due to its better power efficiency, while
speed s = 0.6 is more suitable for big tasks due to its lower error rate. Again, the most
flexible MULTISPEED scenario is able to choose between the two speeds depending on
the costs of the tasks, and hence it offers the best overall performance.

Energy-time trade-off in the MULTISPEED scenario. Figure 18 shows the perfor-
mance of the ENERGY-VC+V and TIME-VC+V algorithms for both time and energy
in the MULTISPEED scenario. Since small cost ratios favor speed s = 0.4 for energy
and s = 0.8 for time, the two algorithms experience a large performance difference,
by more than 100% in both execution time and energy consumption. Increasing the
cost ratio creates more computationally demanding tasks, which need to be executed
at speed s = 0.6 in order to optimize both objectives as it incurs fewer errors. This
closes the performance gap of the two algorithms as well as the number of checkpoints
placed by them, because the total computational cost in the small tasks shrinks and
fewer checkpoints are required among them.

Figure 19 shows the performance of the TIMEENERGY-VC+V algorithm for mini-
mizing a linear combination of time and energy in the MULTISPEED scenario. Again,
the weights are set according to Equations (20) and (21), the same as the SINGLE-
SPEED scenario. We can clearly observe the energy-time trade-off as α is varied from
one extreme to the other. The result suggests that setting α ∈ [0.3, 0.8] seems to offer
a good compromise between energy and time, as both quantities turn out to be not too
far away from their respective optimal values.

6.2.4. Summary. We have evaluated and compared various algorithms under differ-
ent execution scenarios, resilience protocols, and parameter settings. In general, the
algorithms under the most flexible VC+V and MULTISPEED scenario provide the best
overall performance, which in practice translates to shorter execution time or lower
energy consumption.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:33

0 0.2 0.4 0.6 0.8 1
0.5

0.8

1.1

1.4

1.7

2

N
o

rm
a

liz
e

d
 E

x
p

e
c
te

d
 E

n
e

rg
y

value of α

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

N
o

rm
a

liz
e

d
 E

x
p

e
c
te

d
 M

a
k
e

s
p

a
n

Energy

Time

(a)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

value of α

#
V

C

(b)

Fig. 19. Performance of the TIMEENERGY-VC+V algorithm with different values of α in the MULTISPEED
scenario.

For tasks with similar computational cost as in the Uniform distribution, the SIN-
GLESPEED algorithm, or the greedy approximation in the context of divisible load ap-
plication, could provide comparable solutions with lower computational complexity.
The REEXECSPEED algorithms provide marginal benefit compared to SINGLESPEED,
but clear performance gains are observed from the MULTISPEED algorithms, espe-
cially for tasks with very different costs. The results also show that the optimal solu-
tions are often achieved by processing around the reference speed that yields the least
number of failures.

For the complexity of computing the optimal solutions, we point out that application
workflows rarely exceed a few tens of tasks. In such practical contexts, even the most
advanced algorithms have a very fast execution time, of a few seconds. To give a num-
ber, the TIME-VC+V algorithm in the MULTISPEED scenario requires less than one
second to execute for 100 tasks and 5 speed levels on a 3.7Ghz single-core processor.
Hence, all our algorithms can be applied to determine the optimal checkpointing and
verification locations with almost negligible cost.

7. CONCLUSION
In this paper, we have presented a general-purpose solution that combines checkpoint-
ing and verification mechanisms to cope with fail-stop errors and silent data corrup-
tions. We have extended the classical formula of Young/Daly for a divisible load ap-
plication while incorporating both resilience techniques in the presence of both error
sources. By using dynamic programming, we have devised polynomial-time algorithms
that decide the optimal checkpointing and verification locations for a linear chain of
tasks. The algorithms can be applied to several execution scenarios to minimize ei-
ther the expected execution time, or energy consumption, or a linear combination of
both objectives. The results are supported by a set of extensive simulations, which
demonstrate the quality and trade-off of our optimal algorithms under a wide range of
parameter settings.

Further work will be devoted to using DVFS for divisible load applications. However,
computing the optimal checkpointing period when different speeds are used, seems to
be quite a challenging problem. Another future direction is to extend our study from
linear chains to other application workflows, such as tree graphs, fork-join graphs,
series-parallel graphs, or even general directed acyclic graphs (DAGs).

Acknowledgments: We would like to thank the reviewers for their comments and sug-
gestions, which greatly helped improve the final version of the paper. This research
was funded in part by the European project SCoRPiO, by the LABEX MILYON (ANR-
10- LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), and
by the PIA ELCI project. Yves Robert is with Institut Universitaire de France.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

1:34 A. Benoit et al.

References
Susanne Albers and Hiroshi Fujiwara. 2007. Energy-efficient Algorithms for Flow Time Minimization. ACM

Transactions on Algorithms 3, 4, Article 49 (2007).
Ismail Assayad, Alain Girault, and Hamoudi Kalla. 2013. Tradeoff exploration between reliability, power

consumption, and execution time for embedded systems. International Journal on Software Tools for
Technology Transfer 15, 3 (2013), 229–245.

Guillaume Aupy, Anne Benoit, Thomas Hérault, Yves Robert, Frédéric Vivien, and Dounia Zaidouni. 2013.
On the combination of silent error detection and checkpointing. In Proceedings of the 19th IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC). 11–20.

Guillaume Aupy, Anne Benoit, and Yves Robert. 2012. Energy-aware scheduling under reliability and
makespan constraints. In Proceedings of the International Conference on High Performance Comput-
ing (HiPC). 1–10.

Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. 2007. Speed Scaling to Manage Energy and Temperature. J.
ACM 54, 1 (2007), 3:1–3:39.

Austin R. Benson, Sven Schmit, and Robert Schreiber. 2014. Silent error detection in numerical time-
stepping schemes. The International Journal of High Performance Computing Applications DOI:
10.1177/1094342014532297 (2014).

George Bosilca, Rémi Delmas, Jack Dongarra, and Julien Langou. 2009. Algorithm-based fault tolerance
applied to high performance computing. J. Parallel Distrib. Comput. 69, 4 (2009), 410–416.

Marin Bougeret, Henri Casanova, Mikael Rabie, Yves Robert, and Frédéric Vivien. 2011. Checkpointing
strategies for parallel jobs. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC). 1–11.

Greg Bronevetsky and Bronis de Supinski. 2008. Soft error vulnerability of iterative linear algebra methods.
In Proceedings of the International Conference on Supercomputing (ICS). 155–164.

K. M. Chandy and L. Lamport. 1985. Distributed Snapshots: Determining Global States of Distributed
Systems. ACM Transactions on Computer Systems 3, 1 (1985), 63–75.

Zizhong Chen. 2013. Online-ABFT: An online algorithm based fault tolerance scheme for soft error detection
in iterative methods. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP). 167–176.

J. T. Daly. 2006. A higher order estimate of the optimum checkpoint interval for restart dumps. Future
Generation Comp. Syst. 22, 3 (2006), 303–312.

A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele. 2014. Combined DVFS and Mapping Exploration
for Lifetime and Soft-error Susceptibility Improvement in MPSoCs. In Proceedings of the Conference on
Design, Automation & Test in Europe (DATE). 61:1–61:6.

Anand Dixit and Alan Wood. 2011. The impact of new technology on soft error rates. In IEEE International
on Reliability Physics Symposium (IRPS). 5B.4.1–5B.4.7.

Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. 2001. On-line Analysis of the TCP Acknowledg-
ment Delay Problem. J. ACM 48, 2 (2001), 243–273.

Nosayba El-Sayed, Ioan A. Stefanovici, George Amvrosiadis, Andy A. Hwang, and Bianca Schroeder. 2012.
Temperature Management in Data Centers: Why Some (Might) Like It Hot. SIGMETRICS Perform.
Eval. Rev. 40, 1 (2012), 163–174.

James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt Ferreira, and Christian Engelmann. 2012.
Combining partial redundancy and checkpointing for HPC. In Proceedings of the IEEE International
Conference on Distributed Computing Systems (ICDCS). 615–626.

E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. 2002. A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Survey 34 (2002), 375–408. Issue 3.

Alex Fabrikant, Ankur Luthra, Elitza Maneva, Christos H. Papadimitriou, and Scott Shenker. 2003. On
a Network Creation Game. In Proceedings of the Twenty-second Annual Symposium on Principles of
Distributed Computing (PODC ’03). 347–351.

Wu-Chun Feng. 2003. Making a Case for Efficient Supercomputing. Queue 1, 7 (Oct. 2003), 54–64.
David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron Brightwell. 2012.

Detection and correction of silent data corruption for large-scale high-performance computing. In Pro-
ceedings of the International Conference on High Performance Computing, Networking, Storage and
Analysis (SC). 78.

M.A. Heroux and M Hoemmen. 2011. Fault-tolerant iterative methods via selective reliability. Research re-
port SAND2011-3915 C. Sandia National Laboratories.

C.-H Hsu and W.-C Feng. 2005. A Power-Aware Run-Time System for High-Performance Computing. In
Proceedings of the ACM/IEEE Supercomputing Conference (SC). 1–9.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

Assessing general-purpose algorithms to cope with fail-stop and silent errors 1:35

Kuang-Hua Huang and J. A. Abraham. 1984. Algorithm-Based Fault Tolerance for Matrix Operations. IEEE
Trans. Comput. 33, 6 (1984), 518–528.

Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. 2012. Cosmic rays don’t strike twice: under-
standing the nature of DRAM errors and the implications for system design. SIGARCH Comput. Archit.
News 40, 1 (2012), 111–122.

Thomas Hérault and Yves Robert (Eds.). 2015. Fault-Tolerance Techniques for High-Performance Comput-
ing. Springer Verlag.

Mehdi Kargar, Aijun An, and Morteza Zihayat. 2012. Efficient Bi-objective Team Formation in Social Net-
works. In Proceedings of the 2012 European Conference on Machine Learning and Knowledge Discovery
in Databases - Volume Part II (ECML PKDD’12). 483–498.

Guoming Lu, Ziming Zheng, and Andrew A. Chien. 2013. When is Multi-version Checkpointing Needed?. In
Proceedings of the 3rd Workshop on Fault-tolerance for HPC at extreme scale (FTXS). 49–56.

R. E. Lyons and W. Vanderkulk. 1962. The use of triple-modular redundancy to improve computer reliability.
IBM J. Res. Dev. 6, 2 (1962), 200–209.

Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski. 2010. Design, Modeling, and
Evaluation of a Scalable Multi-level Checkpointing System. In Proc. of the ACM/IEEE SC Conf. 1–11.

Xiang Ni, Esteban Meneses, Nikhil Jain, and Laxmikant V. Kalé. 2013. ACR: Automatic Checkpoint/Restart
for Soft and Hard Error Protection. In Proc. Int. Conf. High Performance Computing, Networking, Stor-
age and Analysis (SC ’13). ACM.

T.J. O’Gorman. 1994. The effect of cosmic rays on the soft error rate of a DRAM at ground level. IEEE Trans.
Electron Devices 41, 4 (1994), 553–557.

T. Ozaki, T. Dohi, H. Okamura, and N. Kaio. 2006. Distribution-free checkpoint placement algorithms based
on min-max principle. IEEE Transactions on Dependable and Secure Computing 3, 2 (2006), 130–140.

M.K Patterson. 2008. The effect of data center temperature on energy efficiency. In Proceedings of 11th
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. 1167–
1174.

Nikzad Babaii Rizvandi, Albert Y. Zomaya, Young Choon Lee, Ali Javadzadeh Boloori, and Javid Taheri.
2012. Multiple Frequency Selection in DVFS-Enabled Processors to Minimize Energy Consumption. In
Energy-Efficient Distributed Computing Systems, A. Y. Zomaya and Y. C. Lee (Eds.). John Wiley & Sons,
Inc., Hoboken, NJ, USA.

Piyush Sao and Richard Vuduc. 2013. Self-stabilizing Iterative Solvers. In Proceedings of the Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA).

Osman Sarood, Esteban Meneses, and Laxmikant V. Kale. 2013. A ‘Cool’ Way of Improving the Reliabil-
ity of HPC Machines. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC). 58:1–58:12.

Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. 2012. Fault Tolerant Precondi-
tioned Conjugate Gradient for Sparse Linear System Solution. In Proceedings of the ACM International
Conference on Supercomputing (ICS). 69–78.

Sam Toueg and Özalp Babaoglu. 1984. On the Optimum Checkpoint Selection Problem. SIAM J. Comput.
13, 3 (1984), 630–649.

F. Yao, A. Demers, and S. Shenker. 1995. A Scheduling Model for Reduced CPU Energy. In Proceedings of
the 36th Annual Symposium on Foundations of Computer Science (FOCS). 374.

John W. Young. 1974. A first order approximation to the optimum checkpoint interval. Comm. of the ACM
17, 9 (1974), 530–531.

Baoxian Zhao, Hakan Aydin, and Dakai Zhu. 2008. Reliability-Aware Dynamic Voltage Scaling for Energy-
Constrained Real-Time Embedded Systems. In Proceedings of the IEEE International Conference on
Computer Design (ICCD). 633–639.

Dakai Zhu, R. Melhem, and D. Mosse. 2004. The Effects of Energy Management on Reliability in Real-
time Embedded Systems. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 35–40.

J.F. Ziegler, H.P. Muhlfeld, C.J. Montrose, H.W. Curtis, T.J. O’Gorman, and J.M. Ross. 1996b. Accelerated
testing for cosmic soft-error rate. IBM J. Res. Dev. 40, 1 (1996), 51–72.

J.F. Ziegler, M.E. Nelson, J.D. Shell, R.J. Peterson, C.J. Gelderloos, H.P. Muhlfeld, and C.J. Montrose. 1998.
Cosmic ray soft error rates of 16-Mb DRAM memory chips. IEEE Journal of Solid-State Circuits 33, 2
(1998), 246–252.

J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. 1996a. IBM Experiments in Soft Fails
in Computer Electronics. IBM J. Res. Dev. 40, 1 (1996), 3–18.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: January 2014.

