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Abstract

Recently, we released two LAPACK subroutines that implement Aasen’s algorithms for
solving a symmetric indefinite linear system of equations. The first implementation is based
on a partitioned right-looking variant of Aasen’s algorithm (the column-wise left-looking panel
factorization, followed by the right-looking trailing submatrix update using the panel). The
second implements the two-stage left-looking variant of the algorithm (the block-wise left-
looking algorithm that reduces the matrix to the symmetric band form, followed by the band
LU factorization). In this report, we discuss our implementations and present our experimental
results to compare the stability and performance of these two new solvers with those of the
other two symmetric indefinite solvers in LAPACK (i.e., the Bunch-Kaufman and rook pivoting
algorithms).

1 Introduction

Solving the dense symmetric indefinite linear systems of equations is relevant to many scientific
and engineering problems. Compared with the non-symmetric linear solver, the symmetric solver
has several advantages (e.g., the symmetric factorization not only preserves the structural and
spectral properties of the matrix, but also reduces the computational and storage costs of the
factorization). However, maintaining both the symmetric structure and the numerical stability
of the factorization leads to data access patterns that present significant challenges in the de-
velopment of a high-performance symmetric indefinite linear solver. In this report, we examine
both the performance and stability of the four symmetric indefinite solvers in the current release
of LAPACK [2], including the two newly-released subroutines that are based on Aasen’s algo-
rithms [1, 10, 6]. Our experimental results show that though the backward errors of the new
two-stage Aasen algorithm can be an order of magnitude greater, this two-stage algorithm has a
superior thread-parallel scalability for factorizing a large-scale matrix on a multicore architecture.

The rest of the paper is organized as follows. Section 2 introduces LAPACK’s symmetric
indefinite solvers, while Section 3 describes the two variants of Aasen’s algorithm implemented
in LAPACK in more detail. Then, Section 4 presents the LAPACK implementations of the
two Aasen’s algorithms. Finally, Section 5 shows our numerical and performance results. For
completeness, we lists the interfaces to the new Aasen linear solvers in the Appendix. In this
paper, we use ai,j and aj to denote the (i, j)-th entry and the j-th column of the matrix A,
respectively, while Ai1:i2,j1:j2 is the submatrix consisting of the i1-th through the i2-th rows and
the j1-th through the j2-th columns of A. We also use AI,J and AI1:I2,J1:J2 to denote the (I, J)-th
block and the submatrix consisting of the I1-th through the I2-th block rows and J1-th through
the J2-th block columns of A, where nb is the block size and nt is the total number of block

columns or rows in A of dimension n
(

i.e., nt = d nnb
e
)

.
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Figure 1: Two different updating schemes.

2 LAPACK Symmetric Indefinite Solvers

For solving the symmetric indefinite linear system of equations, Ax = b, LAPACK factorizes
the dense symmetric indefinite matrix A using either the Bunch-Kaufman [7], rook pivoting [4],
or Aasen’s [10] algorithm. These algorithms maintain the numerical stability of the symmetric
factorization by selecting a diagonal pivot when computing each column and row of the factors.
The main difference between the algorithms is the way the pivot is selected. These different
pivoting schemes lead to the different forms of the factorization. Specifically, Bunch-Kaufman and
rook pivoting compute the LDLT factorization, where D is a symmetric block diagonal matrix
with either 1-by-1 or 2-by-2 diagonal blocks. In contrast, the partitioned or two-stage variants of
Aasen’s algorithm computes the LTLT factorization, where T is either a symmetric tridiagonal
matrix or a symmetric band matrix, respectively. In all the algorithms, L is a lower-triangular
matrix with unit diagonals. After the factorization, the solution x to the linear system can be
computed by first applying the forward substitution with L to the right-hand-side vector b, then
solving either the tridiagonal or band linear system with T , and finally performing the backward
substitution with LT (combined with the application of the column and row permutations).

In order to improve the data locality and the performance of the factorization, LAPACK
implements a partitioned factorization [3]. Namely, LAPACK partitions the matrix into the
leading block column, which is referred to as the panel, and the trailing submatrix. Then the
right-looking formulation of the algorithm first factorizes the panel that is then used to update
the trailing submatrix (see Figure 1(a) for an illustration). The algorithm is referred to as right-
looking because the panel is used to update the trailing submatrix, which is on the right of the
panel. This is in contrast to the left-looking formulation of the algorithm that updates the panel
using all the previous columns of the matrix, which is on the left of the panel, at each step of
the factorization (see Figure 1(b)). The same procedure is repeatedly applied to the trailing
submatrix to factorize the whole matrix. The partitioned factorization improves the performance
because the BLAS-3 matrix-matrix operations can be used for the trailing submatrix or panel
update that dominates the number of floating point operations (flops) needed to factorize the
matrix. In particular, if n is the number of the columns in A and nb is the block size, then both
Bunch-Kaufman and Aasen’s perform a total of O(nbn

2) flops to factorize the nt panels of A
(i.e., O(nt · n2

bn) flops with nt = n
nb

). This is a lower term in the total number of flops needed

to factorize the whole matrix, i.e., total of 1
3(1 + 1

nb
)n3 +O(n2nb) flops with the Bunch-Kaufman
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algorithm or 1
3n

3 +O(n2nb) flops with the partitioned Aasen’s algorithm (the partitioned Aasen’s
has the additional 1

nb
factor in the leading term of the flop count because it requires an additional

rank-one update for each trailing submatrix update).

3 Aasen’s Algorithms

We now recall the algorithms to compute the LTLT factorization of the matrix A,

PAP T = LTLT (1)

where P is a row permutation matrix constructed to maintain the numerical stability of the
factorization, T is a symmetric tridigonal matrix, and L is a lower triangular matrix with unit
diagonals.

The Parlett-Reid algorithm [9] is a column-wise algorithm (unlike a partitioned algorithm
that is block-column wise) to compute the LTLT factorization (1) in a right-looking fashion.
Compared with Bunch-Kaufman, it requires about twice as many flops, i.e., 2

3n
3 + O(n2) flops,

because it performs a rank-two update of the trailing submatrix after factorizing each column,
compared with Bunch-Kaufman that performs only a rank-one update. The left-looking Aasen
algorithm [1] halves the number of flops needed to compute the LTLT factorization, using an
intermediate Hessenberg matrix H which is defined as H = LT . In this section, we discuss two
variants of Aasen’s algorithm that are implemented in LAPACK; the first one is a partitioned
right-looking algorithm that generates a symmetric tridiagonal matrix T , while the second one is
a two-stage algorithm whose first stage reduces the matrix A into a symmetric band matrix T
with the bandwidth equal to the block size nb.

3.1 Partitioned Right-looking Aasen

To exploit the memory hierarchy on a modern computer, a partitioned variant of Aasen’s algorithm
was proposed in [10]. It is a right-looking algorithm that first performs the panel factorization
and then updates the trailing submatrix using the panel. Here, we describe the algorithm that
only accesses the lower-triangular part of the matrix and factorizes a block-column at a time. We
can reformulate the algorithm such that it only accesses the upper-triangular part of the matrix
by factorizing a block-row at a time.

The algorithm first factorizes the leading block column, or the panel, in a left-looking column-
wise fashion; it first sets the first column `1 of L to be the first column of an identity matrix.
Then, for j = 1, 2, . . . , nb, assuming that the first (j − 1) columns of H and the first j columns
of L have been computed, the j-th column h1:j,j of H is computed from the j-th column of the
equation A = HLT ,

hj:n,j`
T
j,j := aj:n,j −Hj:n,1:j−1`

T
j,1:j−1,

where `j,j is one. Also, from the j-th column of the equation H = LT , we have

hj:n,j = `j:n,j−1tj−1,j + `j:n,jtj,j + `j:n,j+1tj+1,j .

Hence, if we let w = `j:n,jtj,j + `j:n,j+1tj+1,j , then we can compute w by

w := hj:n,j − `j:n,j−1tj−1,j ,

and since w1 = `j,jtj,j + `j,j+1tj+1,j , and `j,j is one and `j,j+1 is zero, we have

tj,j := w1.
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Finally, since w2:n = `j+1:n,jtj,j +`j+1:n,j+1tj+1,j , the (j + 1)-th column of L can be computed by

`j+1:n,j+1 :=
v

v1
and tj+1,j := v1,

where v = w2:n−`j+1:n,jtj,j . To maintain numerical stability, the element with the largest module
in v is used as the pivot.

After the panel factorization, the trailing submatrix is updated in a right-looking fashion,

A(2,2) := A(2,2) −H(2,1)(L(2,1))T − `(2,1)
nb

tnb+1,nb
(`

(2,2)
1 )T , (2)

where the matrix A is partitioned as

A =

(
A(1,1) A(2,1)T

A(2,1) A(2,2)

)
with A(1,1) = A1:nb,1:nb

, and A is factorized as

L =

(
L(1,1)

L(2,1) I

)
and T =

(
T (1,1)

A(2,2)

)
.

and `
(2,1)
nb and `

(2,2)
1 are the last and first columns of L(2,1) and L(2,2), respectively. Then, the

same procedure is recursively applied on the trailing submatrix A(2,2). The resulting algorithm is
implemented in LAPACK’s xSYTRF AA subroutine and released as a part of LAPACK version 3.7.0.

We compare this partitioned Aasen algorithm with the Bunch-Kaufman algorithm (Figure 2
shows the pseudocodes of the partitioned Bunch-Kaufman and Aasen algorithms):

• To compute the (j + 1)-th column of L, the standard left-looking algorithm updates the
current column using the 1-st through the j-th columns. The j-th step of the Aasen panel
factorization update aj using j xAXPY’s to compute hj+1 and then w, but requires one ad-
ditional xAXPY to compute v and `j+1. Moreover, compared with Bunch-Kaufman, Aasen’s
algorithm requires an additional rank-1 update for updating the trailing submatrix. Hence,
Aasen’s algorithm performs about 1

3ntn
2 additional flops for factorizing A, where nt is the

number of block columns
(

i.e., nt =
⌈
n
nb

⌉)
1.

• To select the j-th pivot, Aasen’s algorithm only uses the j-th column of A, while Bunch-
Kaufman may access and update two columns for factorizing each column of its panel. If
Bunch-Kaufman tests for the 2-by-2 pivots but selects a 1-by-1 pivot, then the computation
used to update the second column is wasted. However, if Bunch-Kaufman selects a 2-by-2
pivot, it only swaps one column and row for factorizing these two columns of L.

• Bunch-Kaufman, and rook pivoting, compute the block diagonal D whose diagonal blocks
represent either 1-by-1 or 2-by-2 pivots, and this block structure simplifies many of the
matrix operations. For instance, during the factorization, updating the trailing submatrix
with the tridiagonal matrix T of the partitioned Aasen algorithm requires one additional
rank-one update. It is also a challenge to stably factorize the symmetric band matrix T
while preserving its band structure because the symmetric pivoting (required to ensure the
numerical stability) can completely destroy its band structure. LAPACK currently does

1When nb = 1, or equivalently nt = n, the partitioned Aasen algorithm becomes the right looking Parlett-Reid
algorithm [9], performing 2

3
n3 +O(n2) flops.
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1: α = (1 +
√

17)/8
2: j = 1
3: while j < n do
4: k = j
5: {Panel factorization}
6: while j < k + nb − 1 do
7: Update aj with the previous columns
8: r = argmaxi>j |ai,j | and ω1 = |ar,j |
9: if ω1 > 0 then

10: if |aj,j | ≥ αω1 then
11: s = 1
12: Use aj,j as a 1× 1 pivot.
13: else
14: Update ar with the previous

columns
15: ωr = maxi≥j;i6=r |ai,r|
16: if |aj,j |ωr ≥ αω2

1 then
17: s = 1
18: Use aj,j as a 1× 1 pivot.
19: else
20: if |ar,r| ≥ αωr then
21: s = 1
22: Swap rows/columns (j, r)
23: Use ar,r as a 1× 1 pivot.
24: else
25: s = 2
26: Swap rows/columns (j + 1, r)

27: Use

(
aj,j aj,r
ar,j arr

)
as 2 × 2

pivot.
28: end if
29: end if
30: end if
31: else
32: s = 1
33: end if
34: Scale the pivot columns to extract

`j:j+s−1

35: j = j + s
36: end while
37: {Trailing submatrix update}
38: A(2,2) := A(2,2) − L(2,1)D(1,1)(L(2,1))T

39: end while
(a) Bunch-Kaufman algorithm.

1: for J = 0, nb, 2nb, . . . , n do
2: for j = J, J + 1, . . . , J + nb − 1 do
3: hj+1:n,j+1 := aj+1:n,j+1 −Hj:n,1:j`

T
j+1,J:j

4: w := hj+1:n,j+1

5: if j > 0 then
6: w := w − `j+1:n,jtj,j+1

7: end if
8: tj+1,j+1 := w1

9: if j < n− 1 then
10: v := w2:n − `j+2:n,j+1tj+1,j+1

11: k := arg min |v|i
12: swap i-th and k-th rows of L and H
13: swap i-th and k-th rows and columns

of A
14: tj+2,j+1 := v1
15: `j+1:n,j+1 := v/tj+2,j+1

16: end if
17: end for
18: A(2,2) := A(2,2) −H(2,1)(L(2,1))T

−`j+1:n,jtj+1,j`
T
j+1:n,j+1

19: end for
(b) Aasen’s algorithm where H = LT and `1 is the
first column of the identity matrix.

Figure 2: The partitioned Bunch-Kaufman and Aasen algorithms.

not have a subroutine that solves a symmetric indefinite band linear system of equations.
Hence, to compute the solution with Aasen’s algorithm, our current implementations rely
on the non-symmetric tridiagonal or non-symmetric band factorization (xGTTRF or xGBTRF).
Furthermore, since these diagonal blocks of D can be easily factorized and inverted in place,
the Bunch-Kauffman, or rook pivoting, algorithm makes it feasible to compute the inverse
of A without additional storage. On the other hand, it is more challenging to compute the
matrix inverse in place (i.e., using only the lower or upper triangular part of the matrix)
when Aasen’s algorithm computes T which is either a tridiagonal or a band matrix and
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1: for J = 1, 2, . . . , nt do
2: for I = 2, 3, . . . , J − 1 do
3: HI,J := TI,I−1L

T
J,I−1 + TI,IL

T
J,I + TI,I+1L

T
J,I+1

4: end for
5:
6: if J > 2 then
7: AJ,J := AJ,J − LJ,2:J−1H2:J−1,J − LJ,JTJ,J−1L

T
J,J−1

8: end if
9: TJ,J := L−1

J,JAJ,JL
−T
J,J

10:
11: if J < nt then
12: if J > 1 then
13: HJ,J := TJ,J−1L

T
J,J−1 + TJ,jL

T
j,j

14: end if
15:
16: AJ+1:nt,J := AJ+1:nt,J − LJ+1:nt,2:JH2:J,J

17: [LJ+1:nt,J+1, HJ+1,J , P
(J)] := LU(AJ+1:nt,J)

18:
19: TJ+1,J := HJ+1,JL

−T
J,J

20:
21: LJ+1:nt,2:J := P (J)LJ+1:nt,2:J

22: AJ+1:nt,J+1:nt := P (J)AJ+1:nt,J+1:ntP
(J)T

23: PJ+1:nt,1:nt := P (J)PJ+1:nt,1:nt

24: end if
25: end for

Figure 3: First stage of the two-stage Aasen [6], where the first block column L1:nt,1 is the first nb
columns of the identity matrix and [L,U, P ] = LU(AJ+1:nt,J) returns the LU factors of AJ+1:nt,J

with partial pivoting such that LU = PAJ+1:nt,J .

whose inverse is a full matrix.

3.2 Two-stage Left-looking Aasen

LAPACK implements another variant [6] of Aasen’s algorithm that exploits the memory hier-
archy on a modern computer. Unlike the partitioned algorithm that updates the trailing submatrix
using block columns, this variant of the algorithm replaces all the element-wise operations of the
left-looking column-wise Aasen algorithm [1] with block-wise operations. This is a two-stage al-
gorithm whose first stage reduces the matrix A into a symmetric band matrix T with the band
width equal to nb. Then, the second stage of the algorithm factorizes the band matrix T .

The j-th step of the algorithm computes the j-th block column of H = TLT , and uses the
block column to update the panel,

Aj+1:Nt:,j := AJ+1:nt,J − Lj+1:nt,1:jH1:j,j .

Then, the LU factorization of the panel is computed to generate the (J+1)-th block column of L,

Lj+1:nt,j+1Hj+1,j = P (J)Aj+1,nt,j ,

where P (J) denotes the partial pivoting used for the numerical stability of the factorization.
Figure 3 shows the pseudocode of the algorithm, and Figure 4 illustrates the main phases of the
algorithm. The algorithm performs about the same number of flops as Bunch-Kaufman. It was
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T L
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(a) Computation of H:,J .

HL
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(b) Panel update.

Figure 4: Illustration of Aasen’s algorithm.

implemented in LAPACK’s xSYTRF AA 2STAGE subroutine and released as a part of LAPACK
version 3.7.2.

We compare the right-looking and left-looking algorithms:

• Pivoting previous columns: One advantage of the right-looking algorithm is that after up-
dating the trailing submatrix, these previous columns of the factors are not referenced.
Hence, the pivots do not have to be applied to these previous columns. In contrast, each
step of the left-looking algorithm updates the panel using all of the previous columns, and
hence the pivots must be applied to these previous columns.

• BLAS used for update: In order to maintain the symmetry during the right-looking trailing
submatrix update, LAPACK updates one block column at a time (one column at a time to
update the diagonal block). On a multicore system, LAPACK relies on the threaded BLAS
to parallelize the factorization, and it has the artificial synchronization point at the end of
each BLAS call, and its parallelism is limited to that to update each block column. On the
other hand, at each step of the factorization, this left-looking Aasen algorithm uses BLAS-3
to update the panel with all the previous block columns at once (see Figure 1(b)). Though
there are write conflicts to update each element of the panel, the update can be performed
by single calls to xSYRK on the diagonal block and xGEMM on the off-diagonal blocks.

4 Implementations

We now describe the LAPACK implementations of the two Aasen algorithms. Both implemen-
tations rely on the BLAS and LAPACK as building blocks, and their thread-level parallelization
is obtained through the threaded BLAS. The implementation can take either the upper or lower
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a1,1 a1,2

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3 a3,4

a4,2 a4,3 a4,4 a4,5

a5,3 a5,4 a5,5


(a) Full layout.


∗ a1,2 a2,3 a2,4 a2,5

a1,1 a2,2 a3,3 a4,4 a5,5

a2,1 a3,2 a4,3 a5,4 ∗
a3,1 a4,2 a5,3 ∗ ∗


(b) Band layout.

Figure 5: To reduce the storage cost, LAPACK compactly stores a band matrix in a (k`+ku+1)-
by-n array, where k` and ku are the numbers of the subdiagonal and superdiagonal entries within
the band (ku = 1 and k` = 2 in this illustration). For the two-stage Aasen algorithm, the
bandwidth is the block size (i.e., k` = ku = nb).

triangular part of A, but here, we focus our discussion on the implementation that only accesses
the lower-triangular part of the matrix.

4.1 Partitioned Right-looking Aasen

LAPACK’s DSYTRF AA implements the partitioned Aasen algorithm, whose interface is shown in
Figure 15(a). The subroutine takes the upper or lower triangular part of the symmetric matrix A
as an input. Then on exit, the diagonal and subdiagonal entries of the tridiagonal matrix T
are stored in the diagonals and the subdiagonals of A while L is stored below (or above) the
subdiagonals such that aj:n,j−1 is replaced by `j:n,j where `:,1 is the first column of the identity
matrix and is not stored. The only error code that this subroutine may return is for an invalid
argument (e.g., a non-positive leading dimension).

This factorization subroutine xSYTRF AA uses workspace of dimension n-by-(nb + 1) to store
the nb columns of the auxiliary matrix H generated during the panel factorization. Though the
default block size is returned by ILAENV, the subroutine adjusts the block size if the user did not
provide a large enough workspace. Hence, the minimum workspace required is 2n (i.e., nb = 1).
The default workspace size is returned through the user query based on the default block size,

which is 64. The workspace has the extra column for storing `
(2,1)
nb tnb+1 and updating the trailing

submatrix with a single call to xGEMM (see Equation (2)). Like the Bunch-Kaufman and the rook
pivoting factorization subroutines (xSYTRF and xSYTRF ROOK, respectively), during the trailing
submatrix update, xSYTRF AA accesses only the triangular part of the matrix and updates one
block column at a time (one column at a time to update the diagonal block).

Though it does not need to, xSYTRF AA applies the pivoting to the previous columns of L
so that its solver xSYTRS AA can use the standard triangular solver xTRSM for the forward and
backward substitutions with L. LAPACK version 3.7.0 released the new rook pivoting subroutine
xSYTRF RK that also applies the pivoting to the previous columns so that it can use the BLAS-3
based solver xSYTRS 3. To solve the linear system with the tridiagonal matrix T , xSYTRS AA calls
xGTSV. Hence, the subroutine requires workspace of size 3n− 2 to store the tridiagonal matrix T .
Figure 16(a) shows the interface to the triangular solver xSYTRS AA that relies on the partitioned
Aasen factorization computed by xSYTRF AA.

4.2 Two-stage Left-looking Aasen

LAPACK’s xSYTRF AA 2STAGE implements the two-stage Aasen algorithm, exclusively using BLAS
and LAPACK. For instance, xSYGST is used to symmetrically apply L−1 to compute TJ,J on
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Figure 6: Illustration of T stored in the band format with nb = 3, diagonal and off-diagonal
blocks are colored in blue and red, respectively.

line 9, while xGETRF is used for the LU panel factorization on line 17.2 Then, the symmetric band
matrix T is factorized using the band LU factorization subroutine xGBTRF of LAPACK.

Figure 15(b) shows the interface to xSYTRF AA 2STAGE. Similar to xSYTRF AA, xSYTRF AA 2STAGE

stores the lower-triangular matrix L below (or above) the subdiagonal blocks such that AJ :nt,J−1

is replaced by LJ :nt,J , where L:,1 is the first nb columns of the identity matrix and is not stored.
We could store the band matrix T in the diagonal and the first subdiagonal blocks of A such that
the lower-triangular part of AJ,J and the upper-triangular part of AJ+1,J are replaced with those
of TJ,J and TJ+1,J , respectively. However, to compute the LU factorization of T , xGBTRF requires
the additional storage for the fills. Hence, if T is stored on the diagonals and subdiagonals of A,
then it needs to be copied to separate workspace before computing its LU factorization. To avoid
the data copy, during the first stage of factorization, we directly store T in separate storage using
LAPACK band layout (see Figure 5). To store the band matrix T of bandwidth nb, while leaving
nb space for the fills during its LU factorization, the workspace TB of size (3nb + 1)n is used.
Though the default block size is returned by ILAENV, the subroutine adjusts the block size if the
user did not provide large enough workspace. Hence, the minimum size of TB is 4n (i.e., nb = 1).
The workspace size is returned through the user query based on the default block size, which is
192. The subroutine also takes workspace of dimension n · nb to store the current block column
of H.

For each column of T , we leave nb space on the top for xGBTRF to store the fills (see Figure 6).
Hence, we can call a BLAS subroutine on the blocks of T stored in band layout by shifting the
leading dimension during the first stage of the factorization. For example, we can copy AJ,J in
the full layout into TJ,J in the band layout by

CALL DLACPY( ‘ Ful l ’ , KB, KB, A( J∗NB+1, J∗NB+1 ) , LDA,
$ TB( TD+1 + ( J∗NB+1)∗LDTB ) , LDTB−1 )

where the leading dimension LDTB of TB is set to be 3nb + 1, and TD is set to be 2nb and identifies
the position of the diagonal entries in the band layout.

The (J+1)-th block column of the L is stored in AJ :nt,J−1. Instead of using xSYRK and xGEMM

to separately update the diagonal and off-diagonal blocks of LJ :nt,J , we use a single xGEMM call to

2For the symmetric complex factorization by ZSYTRF AA 2STAGE, LAPACK does not provide ZSYGST. Hence, we
expand the diagonal block AJ,J to a full block in TJ,J and then symmetrically apply the triangular solves by calling
ZTRSM twice to compute TJ,J := L−1

J,JTJ,JL
−T
J,J . Finally, the block TJ,J is expanded to a symmetric full matrix

ensuring the symmetry of the diagonal block. Also when the upper triangular part of A is stored, to factor the
panel, we transpose and copy the block row AJ,J+1:nt into a workspace before calling xGETRF.
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A :=



0 2
n n
n 0 n− 1

n− 1 0
. . .

. . .
. . . 3

2 3 0


(a) synth-1

Ψ :=



ψ1

ψ2 ψ1

ψ2 ψ2 ψ1

...
...

. . .
. . .

ψ2 ψ2 · · · · · · ψ1

ψ2 ψ2 ψ2 · · · ψ2 ψ3

...
...

...
... 1 ψ3

1 1 ψ3

...
...

. . .
. . .


(b) synth-2 with A := C ·Ψ where · is the element-
wise multiply, C is random, and Ψ is generated using
ψ1 = 10−18, ψ2 = 10−10, ψ3 = 10−1, and the leading
diagonal block is of dimension 50× 50.

Figure 7: Synthetic test matrices.

update the whole panel (both the diagonal and off-diagonal blocks) at once.
There is a variant of the formulation to update AJ,J , i.e.,

AJ,J = AJ,J − LJ,1:(J−1)W1:(J−1) −W T
1:(J−1)LJ,1:(J−1), (3)

whereWK = 1
2TK,KL

T
J,K+TK,K+1L

T
J,K+1 [6]. This variant forms the symmetric diagonal blockAJ,J

using the symmetric update xSYRK, while xSYTRF AA 2STAGE performs the unsymmetric update
using xGEMM (line 7 of Figure 3). In our previous studies [5], both variants obtain about the same
backward errors, while the variant (3) requires slightly more flops (with xGEADD, a none-standard
BLAS operation) and the additional n-by-nb workspace.

Figure 16(b) shows the interface to the triangular solver xSYTRS AA 2STAGE based on the
two-stage Aasen factorization computed by xSYTRF AA 2STAGE.

5 Experimental Results

We now compare the stability and performance of the symmetric indefinite solvers in LAPACK.

5.1 Experiment Setups

We conducted all the experiments on the following two computers:

• Haswell: This machine has two ten-core Intel Xeon E5-2650 v3 (Haswell) CPUs with
2.30GHz, and 64GB of main memory. The codes are compiled using the Intel icc version
17.0.4 compiler with the -O3 optimization flag and linked with LAPACK version 3.8.0 and
the threaded BLAS of the Intel Math Kernel Library (MKL) version 17.0.4.

• Knights Landing: This machine has the 7250 variant of 68 cores Intel Xeon Phi Many
Integrated Core (MIC) CPUs. There are two types of memory used in KNL: a larger 96
GB of DDR4-2400 memory providing up to 115.2 GB/s of bandwidth and a small 16 GB
of MCDRAM providing up to 490 GB/s of sustained bandwidth through the 2-D mesh
interconnect. The memory bandwidth per KNL core is approximately 11 GB/sec for small
thread counts. In these experiments we used the 16 GB high speed MCDRAM as a NUMA
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(a) Backward errors with random.
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(b) Forward errors with random.
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(c) Backward errors with synth-1.
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(d) Forward errors with synth-1.
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(e) Backward errors with synth-2.
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(f) Forward errors with synth-2.

Figure 8: Backward errors ‖b−Ax̂‖/(n‖A‖‖x̂‖) and forward errors ‖x− x̂‖ with the computed
and exact solution vectors x̂ and x (default block sizes of 192 for two-stage Aasen’s and 64 for
the rest).

node (flat mode) instead of transparent cache for DRAM (cache mode). The code is compiled
with gcc version 7.0.1 with the -O3 optimization flag and linked with LAPACK version 3.8.0
and threaded BLAS of MKL version 17.2.174.

All the results are in real double precision, and in this paper, we focus on the following three
types of matrices to demonstrate the stability and performance of the solvers:
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(a) random.
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(b) synth-1.
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(c) synth-2.

Figure 9: Factorization errors ‖PAP T −LDLT ‖/(n‖A‖) (default block sizes of 192 for two-stage
Aasen’s and 64 for the rest).

• random: the random matrices are generated using LAPACK DLARNV with uniform distribu-
tion in the interval (0, 1).

• synth-1: These matrices, shown in Figure 7(a), are designed to stress the performance of
rook pivoting and lead to the full scan of the trailing submatrix at each step of the rook
pivoting [4].

• synth-2: The matrices, shown in Figure 7(b), are designed to stress the numerical stability
of the Bunch-Kaufman algorithm, generating large growth factors in L [4].

Both the performance and numerical results (e.g., Gflop/s and error norm) are the maximum of
three separate runs.

5.2 Numerical Results

Figure 8 shows the backward and forward errors of different LAPACK symmetric indefinite solvers.
The backward errors of two-stage Aasen depend linearly on the block size [6], and with the block
size of nb = 192, the backward errors were about one order of magnitude greater than those of
the other algorithms for random and synth-2 matrices. For synth-1 matrices, two-stage Aasen
obtained similar backward errors as Bunch-Kaufman or rook pivoting, while the partitioned Aasen
algorithm obtained slightly smaller errors. Overall, all the algorithms obtained small backward
errors (i.e., ‖Ax̂−b‖ = O(nε‖A‖‖x̂‖)). For both random and synth-1, all the algorithms obtained
similar forward errors. For synth-2, rook pivoting obtained smaller forward errors compared with
Bunch-Kaufman or the partitioned Aasen, whose forward errors were smaller than those of the
two-stage Aasen algorithm.

Figure 9 shows the factorization errors of the different algorithms. For two-stage Aasen, we

computed the factorization error from the first stage of the factorization i.e., ‖PAP
T−LTLT ‖
n‖A‖ . There

are variation in the relative sizes of the factorization errors using different algorithms. However,
the factorization errors of two-stage Aasen were often greater than those of the other algorithms,
except for the special cases with the synth-1 matrices, where due to the particular sparsity
structure of the matrices (see Figure 7(a)), two-stage Aasen leads to the empty panels, hence
leading to the lower-triangular factor L that is an identity matrix, except for the first panel. For
this reason, the partitioned Aasen algorithm obtained zero factorization errors for the synth-1

matrices. Overall, all the algorithms obtain small factorization errors. Extensive theoretical
discussion on these algorithms can be found in [8, 10, 6].
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(a) DSYTRF.
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(b) DSYTRF ROOK.

10000 20000 30000 40000 50000

Matrix dimension, n

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

G
fl
o

p
/s

32

64

128

(c) DSYTRF AA.
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(d) DSYTRF AA 2STAGE.

Figure 10: Effects of block size on the factorization performance on Haswell, using the default
block sizes of 192 for xSYTRF AA 2STAGE and 64 for the rest.

5.3 Performance Results

We focus on random matrices which provide representative performance of the subroutines. Fig-
ure 10 shows the performance of four LAPACK symmetric indefinite factorization subroutines
with different block sizes nb on our Haswell testbed. The three algorithms, Bunch-Kaufman, rook
pivoting, and partitioned Aasen, perform well with the default block size 64. On the other hand,
two-stage Aasen algorithm prefers a larger block size (e.g., nb = 192). These are the default block
sizes returned by ILAENV (i.e., 192 for two-stage Aasen, and 64 for the rest). Figure 11 then
compares the performance of the factorization using the default block sizes. Bunch-Kaufman
implemented by DSYTRF often performs best (due to the simple updating scheme and the fewer
row and column swaps due to 2-by-2 pivots). Only when the matrix sizes are large enough and
with multiple threads, the new two-stage DSYTRF AA 2STAGE shows the performance improvement.
Figure 12 shows similar results for two synthetic matrices. For synth-1, the rook pivoting ob-
tains much lower performance because the matrix is designed to cause the algorithm to scan
the whole trailing submatrix to look for each pivot. On the other hand, for synth-1, two-stage
Aasen obtains higher performance than the other algorithms because its panels are empty except
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(a) random with 20 threads.
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(b) random with 1 thread.

Figure 11: Performance on Haswell (default nb = 192 for DSYTRF AA 2STAGE or 64 for the rest).
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(a) synth-1 with 20 threads.
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(b) synth-2 with 20 threads.

Figure 12: Performance on Haswell (default nb = 192 for DSYTRF AA 2STAGE or 64 for the rest).

for the first panel, and the first stage of the algorithm performs almost no floating operations.
Figure 13 shows the performance on our KNL testbed, where the two-stage algorithm obtained
greater speedups, utilizing the manycore architecture more effectively.

Figure 14 shows the breakdown of the symmetric indefinite solvers. The solution time is
dominated by the trailing submatrix update and panel factorization. Compared with the other
two subroutines, DSYTRF RK and DSYTRF AA spend more time swapping rows because these two
subroutines apply the pivots to all the previous columns. DSYTRF AA 2STAGE reduces both the
submatrix update and panel factorization time, and obtains the performance improvement. For
the factorization time by DSYTRF AA 2STAGE, “other” is mostly the time spent computing the
auxiliary matrix H and the block tridiagonal matrix T .
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(a) DSYTRF with 68 threads.
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(b) DSYSV with 68 threads.

Figure 13: Performance on KNL (default nb = 192 for DSYTRF AA 2STAGE or 64 for the rest).

6 Conclusion

We described two new symmetric indefinite linear solvers in LAPACK. The solvers are based
on two variants of Aasen’s algorithm: the partitioned right-looking and two-stage left-looking
algorithms. Our performance results show that while Bunch-Kaufman is often the fastest in
many cases, the two-stage variant of Aasen’s algorithm may provide a performance improvement
for a large-scale matrix on a multicore system.

The backward error of the two-stage Aasen algorithm linearly depends on the block size. Since
the optimal performance of the two-stage algorithm is often obtained using a relatively large block
size (e.g, nb = 192), its backward error can be an order of magnitude greater than that of Bunch-
Kaufman. An iterative refinement may be an option to recover an equivalent backward error from
the two-stage algorithm.

The tiled implementation of the two-stage Aasen algorithm has been recently released through
the PLASMA library that uses OpenMP tasks [11]. Compared with the LAPACK implementa-
tion, the task-based implementation of PLASMA may be more effectively utilizing the manycore
architecture because the different phases of the solver may be executed in parallel on different
cores (e.g., the first and second stages of the factorization, and the forward substitution, can be
executed in parallel).

Appendix

Figure 15(a) shows the interface to LAPACK’s DSYTRF AA subroutine that implements the parti-
tioned Aasen algorithm. Figure 15(b) shows the interface to xSYTRF AA 2STAGE. Figure 16(a)
shows the interface to the solver based on the partitioned Aasen factorization computed by
xSYTRF AA, while Figure 16(b) shows the interface to the solver based on the two-stage Aasen
factorization computed by xSYTRF AA 2STAGE.
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(a) DSYTRF.
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(b) DSYTRF ROOK.
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(c) DSYTRF RK.
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(d) DSYTRF AA.
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Figure 14: Breakdown of factorization time on Haswell (using the default block sizes).
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* SUBROUTINE DSYTRF_AA( UPLO , N, A, LDA , IPIV , WORK , LWORK , INFO )

*

* .. Scalar Arguments ..

* CHARACTER UPLO

* INTEGER N, LDA , LWORK , INFO

* ..

* .. Array Arguments ..

* INTEGER IPIV( * )

* DOUBLE PRECISION A( LDA , * ), WORK( * )

* ..

*

* Arguments:

* ==========

*

*> \param[in] UPLO

*> UPLO is CHARACTER *1

*> = ’U’: Upper triangle of A is stored;

*> = ’L’: Lower triangle of A is stored.

*>

*> \param[in] N

*> N is INTEGER

*> The order of the matrix A. N >= 0.

*>

*> \param[in,out] A

*> A is DOUBLE PRECISION array , dimension (LDA ,N)

*> On entry , the symmetric matrix A. If UPLO = ’U’, the leading

*> N-by-N upper triangular part of A contains the upper

*> triangular part of the matrix A, and the strictly lower

*> triangular part of A is not referenced. If UPLO = ’L’, the

*> leading N-by-N lower triangular part of A contains the lower

*> triangular part of the matrix A, and the strictly upper

*> triangular part of A is not referenced.

*>

*> On exit , the tridiagonal matrix is stored in the diagonals

*> and the subdiagonals of A just below (or above) the diagonals ,

*> and L is stored below (or above) the subdiaonals , when UPLO

*> is ’L’ (or ’U’).

*>

*> \param[in] LDA

*> LDA is INTEGER

*> The leading dimension of the array A. LDA >= max(1,N).

*>

*> \param[out] IPIV

*> IPIV is INTEGER array , dimension (N)

*> On exit , it contains the details of the interchanges , i.e.,

*> the row and column k of A were interchanged with the

*> row and column IPIV(k).

*>

*> \param[out] WORK

*> WORK is DOUBLE PRECISION array , dimension (MAX(1,LWORK))

*> On exit , if INFO = 0, WORK (1) returns the optimal LWORK.

*>

*> \param[in] LWORK

*> LWORK is INTEGER

*> The length of WORK. LWORK >= MAX(1,2*N). For optimum performance

*> LWORK >= N*(1+NB), where NB is the optimal blocksize.

*>

*> If LWORK = -1, then a workspace query is assumed; the routine

*> only calculates the optimal size of the WORK array , returns

*> this value as the first entry of the WORK array , and no error

*> message related to LWORK is issued by XERBLA.

*>

*> \param[out] INFO

*> INFO is INTEGER

*> = 0: successful exit

*> < 0: if INFO = -i, the i-th argument had an illegal value.

(a) DSYTRF AA.

SUBROUTINE DSYTRF_AA_2STAGE( UPLO , N, A, LDA , TB , LTB , IPIV ,

$ IPIV2 , WORK , LWORK , INFO )

*

* .. Scalar Arguments ..

CHARACTER UPLO

INTEGER FLAG , N, LDA , LDTB , LWORK , INFO

* ..

* .. Array Arguments ..

INTEGER IPIV( * ), IPIV2( * )

DOUBLE PRECISION A( LDA , * ), TB( LDTB , *), WORK( * )

*

* Arguments:

* ==========

*

*> \param[in] UPLO

*> UPLO is CHARACTER *1

*> = ’U’: Upper triangle of A is stored;

*> = ’L’: Lower triangle of A is stored.

*>

*> \param[in] N

*> N is INTEGER

*> The order of the matrix A. N >= 0.

*>

*> \param[in ,out] A

*> A is DOUBLE PRECISION array , dimension (LDA ,N)

*> On entry , the symmetric matrix A. If UPLO = ’U’, the leading

*> N-by -N upper triangular part of A contains the upper

*> triangular part of the matrix A, and the strictly lower

*> triangular part of A is not referenced. If UPLO = ’L’, the

*> leading N-by -N lower triangular part of A contains the lower

*> triangular part of the matrix A, and the strictly upper

*> triangular part of A is not referenced.

*>

*> On exit , L is stored below (or above) the subdiaonal blocks ,

*> when UPLO is ’L’ (or ’U’).

*>

*> \param[in] LDA

*> LDA is INTEGER

*> The leading dimension of the array A. LDA >= max(1,N).

*>

*> \param[out] TB

*> TB is DOUBLE PRECISION array , dimension (LTB)

*> On exit , details of the LU factorization of the band matrix.

*>

*> \param[in] LDTB

*> The leading dimension of the array TB. LTB >= (3*NB+1)*N.

*>

*> \param[out] IPIV

*> IPIV is INTEGER array , dimension (N)

*> On exit , it contains the details of the interchanges , i.e.,

*> the row and column k of A were interchanged with the

*> row and column IPIV(k).

*>

*> \param[out] IPIV2

*> IPIV is INTEGER array , dimension (N)

*> On exit , it contains the details of the interchanges , i.e.,

*> the row and column k of T were interchanged with the

*> row and column IPIV(k).

*>

*> \param[out] WORK

*> WORK is DOUBLE PRECISION workspace of size LWORK

*>

*> \param[in] LWORK

*> The size of WORK. LWORK >= N*NB.

*>

*> \param[out] INFO

*> INFO is INTEGER

*> = 0: successful exit

*> < 0: if INFO = -i, the i-th argument had an illegal value.

(b) DSYTRF AA 2STAGE.

Figure 15: The definitions of Aasen’s factorization subroutines.
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* SUBROUTINE DSYTRS_AA( UPLO , N, NRHS , A, LDA , IPIV , B, LDB ,

* WORK , LWORK , INFO )

*

* .. Scalar Arguments ..

* CHARACTER UPLO

* INTEGER N, NRHS , LDA , LDB , LWORK , INFO

* ..

* .. Array Arguments ..

* INTEGER IPIV( * )

* DOUBLE PRECISION A( LDA , * ), B( LDB , * ), WORK( * )

* ..

*

* Arguments:

* ==========

*

*> \param[in] UPLO

*> UPLO is CHARACTER *1

*> Specifies whether the details of the factorization

*> are stored as an upper or lower triangular matrix.

*> = ’U’: Upper triangular , form is A = U*T*U**T;

*> = ’L’: Lower triangular , form is A = L*T*L**T.

*>

*> \param[in] N

*> N is INTEGER

*> The order of the matrix A. N >= 0.

*>

*> \param[in] NRHS

*> NRHS is INTEGER

*> The number of right hand sides , i.e., the number of

*> columns of the matrix B. NRHS >= 0.

*>

*> \param[in] A

*> A is DOUBLE PRECISION array , dimension (LDA ,N)

*> Details of factors computed by DSYTRF_AA.

*>

*> \param[in] LDA

*> LDA is INTEGER

*> The leading dimension of the array A. LDA >= max(1,N).

*>

*> \param[in] IPIV

*> IPIV is INTEGER array , dimension (N)

*> Details of the interchanges as computed by DSYTRF_AA.

*>

*> \param[in ,out] B

*> B is DOUBLE PRECISION array , dimension (LDB ,NRHS)

*> On entry , the right hand side matrix B.

*> On exit , the solution matrix X.

*>

*> \param[in] LDB

*> LDB is INTEGER

*> The leading dimension of the array B. LDB >= max(1,N).

*>

*> \param[in] WORK

*> WORK is DOUBLE array , dimension (MAX(1,LWORK))

*>

*> \param[in] LWORK

*> LWORK is INTEGER , LWORK >= MAX(1,3*N-2).

*>

*> \param[out] INFO

*> INFO is INTEGER

*> = 0: successful exit

*> < 0: if INFO = -i, the i-th argument had an illegal

*> value

(a) DSYTRS AA.

* SUBROUTINE DSYTRS_AA_2STAGE( UPLO , N, NRHS , A, LDA , TB, LTB ,

* IPIV , IPIV2 , B, LDB , INFO )

*

* .. Scalar Arguments ..

* CHARACTER UPLO

* INTEGER N, NRHS , LDA , LTB , LDB , INFO

* ..

* .. Array Arguments ..

* INTEGER IPIV( * ), IPIV2( * )

* DOUBLE PRECISION A( LDA , * ), TB( * ), B( LDB , * )

* ..

*

* Arguments:

* ==========

*

*> \param[in] UPLO

*> UPLO is CHARACTER *1

*> Specifies whether the details of the factorization

*> are stored as an upper or lower triangular matrix.

*> = ’U’: Upper triangular , form is A = U*T*U**T;

*> = ’L’: Lower triangular , form is A = L*T*L**T.

*>

*> \param[in] N

*> N is INTEGER

*> The order of the matrix A. N >= 0.

*>

*> \param[in] NRHS

*> NRHS is INTEGER

*> The number of right hand sides , i.e., the number of

*> columns of the matrix B. NRHS >= 0.

*>

*> \param[in] A

*> A is DOUBLE PRECISION array , dimension (LDA ,N)

*> Details of factors computed by DSYTRF_AA_2STAGE.

*>

*> \param[in] LDA

*> LDA is INTEGER

*> The leading dimension of the array A. LDA >= max(1,N).

*>

*> \param[out] TB

*> TB is DOUBLE PRECISION array , dimension (LTB)

*> Details of factors computed by DSYTRF_AA_2STAGE.

*>

*> \param[in] LTB

*> The size of the array TB. LTB >= 4*N.

*>

*> \param[in] IPIV

*> IPIV is INTEGER array , dimension (N)

*> Details of the interchanges as computed by

*> DSYTRF_AA_2STAGE.

*>

*> \param[in] IPIV2

*> IPIV2 is INTEGER array , dimension (N)

*> Details of the interchanges as computed by

*> DSYTRF_AA_2STAGE.

*>

*> \param[in,out] B

*> B is DOUBLE PRECISION array , dimension (LDB ,NRHS)

*> On entry , the right hand side matrix B.

*> On exit , the solution matrix X.

*>

*> \param[in] LDB

*> LDB is INTEGER

*> The leading dimension of the array B. LDB >= max(1,N).

*>

*> \param[out] INFO

*> INFO is INTEGER

*> = 0: successful exit

*> < 0: if INFO = -i, the i-th argument had an illegal

*> value

(b) DSYTRS AA 2STAGE.

Figure 16: The definitions of Aasen’s solver subroutines.
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