
Using Software-Based Performance Counters to Expose
Low-Level Open MPI Performance Information

David Eberius, Thananon Patinyasakdikul, George Bosilca
Innovative Computing Laboratory, University of Tennessee, Knoxville

1122 Volunteer Blvd
Knoxville, Tennessee 37996

ABSTRACT
This paper details the implementation and usage of software-based
performance counters to understand the performance of a particu-
lar implementation of the MPI standard, Open MPI. Such counters
can expose intrinsic features of the software stack that are not avail-
able otherwise in a generic and portable way. The PMPI-interface is
useful for instrumenting MPI applications at a user level, however
it is insufficient for providing meaningful internal MPI performance
details. While the Peruse interface provides more detailed informa-
tion on state changes within Open MPI, it has not seen widespread
adoption. We introduce a simple low-level approach that instru-
ments the Open MPI code at key locations to provide fine-grained
MPI performance metrics. We evaluate the overhead associated
with adding these counters to Open MPI as well as their use in
determining bottlenecks and areas for improvement both in user
code and the MPI implementation itself.

CCS CONCEPTS
• General and reference → Metrics; Evaluation; • Networks
→ Network measurement; • Computing methodologies →
Massively parallel and high-performance simulations;

KEYWORDS
MPI, Tools, Performance Counters, Profiling

ACM Reference format:
David Eberius, Thananon Patinyasakdikul, George Bosilca. 2017. Using
Software-Based Performance Counters to Expose Low-Level Open MPI
Performance Information. In Proceedings of EuroMPI/USA ’17, Chicago, IL,
USA, September 25–28, 2017, 8 pages.
https://doi.org/10.1145/3127024.3127039

1 INTRODUCTION
The standard paradigm for distributed memory parallelization is
the Message Passing Interface (MPI) [3]. MPI has been used ex-
tensively for achieving high performance on distributed systems
within academia and industry alike. Parallelizing an application
is the first step toward a potential shorter time to solution, and it

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroMPI/USA ’17, September 25–28, 2017, Chicago, IL, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4849-2/17/09. . . $15.00
https://doi.org/10.1145/3127024.3127039

is usually supplemented by a performance analysis stage where
performance bottlenecks (either in the algorithm itself or in the
communication pattern) are identified and addressed. The MPI
standard defines a profiling interface (PMPI) that allows tools to
preempt all MPI function calls and add instrumentation or other
functionality. Many tools like Vampir [2], Paraver [8], and TAU [12]
use the PMPI interface to profile MPI applications, mainly through
inserting timing functionality to track whenMPI functions start and
complete. This information is generally stored into a binary trace
file, available to the tools post-mortem for thorough analysis. This
method provides an overview of how the application progressed
overall, but cannot expose low-level details and therefore provides
little insight into what was happening within MPI. The MPI perfor-
mance revealing extension interface (Peruse) [9] was developed as
a means to complement the lack of fine grained details in the PMPI
interface, and to provide more insight into MPI implementation
performance. As an example, using the Peruse interface a tool could
have exposed detailed MPI state change information such as when
a send request enters the queue of posted messages or when a com-
munication request is completed. This interface had great potential
for performing in-depth analysis of the state changes experienced
by each communication, however it does not provide information
about what is happening within those states.

In this paper we seek to provide low-level MPI performance
metrics to help identify the root cause of performance bottlenecks
as well as a simple overview of MPI application properties. Our
metrics are modeled after the hardware performance counters that
are exposed through PAPI [11]. Unlike PAPI, however, our counters
are based entirely in software.

This paper introduces an implementation of Software-Based Per-
formance Counters (SPCs) within the Open MPI [4] implementation.
We will start off our discussion with Section 2 in which we intro-
duce related work, then we will move on to Section 3 where we
will elaborate on our motivations behind implementing SPCs. In
Section 4 we explain our design and implementation of SPCs within
Open MPI and addresses the extent of the details we decided to
expose through our counters. Section 5 shows the overhead associ-
ated with adding our counters to Open MPI, and Section 6 shows
examples of our counters being used within both synthetic and real
world applications. The final section provides a conclusion to our
work and illuminates prospects for future work.

2 RELATEDWORK
There are a variety of different performance analysis tools avail-
able to parallel application developers that offer different views of
application performance. Each of these tools has its own strategy

https://doi.org/10.1145/3127024.3127039
https://doi.org/10.1145/3127024.3127039

EuroMPI/USA ’17, September 25–28, 2017, Chicago, IL, USA D. Eberius et al.

for meeting the challenge of scalable performance analysis. Per-
formance analysis tools in a High Performance Computing (HPC)
environment tend to either collect data during runtime or perform
postmortem analysis. Within data collection tools, there are two
approaches to data collection: instrumentation-based and interrupt-
based. Our SPC approach uses manual code instrumentation to
collect performance information during runtime.

Before analyzing the performance of an application, one must
first collect detailed profiling data for analysis. The performance
application programming interface (PAPI) provides an interface
for accessing hardware performance counters available from many
modern microprocessors. PAPI is highly portable with support
for most hardware vendors and operating systems, and provides
a wealth of information with its counters such as the number of
cache misses and the total number of instructions issued. The Tun-
ing and Analysis Utilities (TAU) tool is another option for code
instrumentation, and has support for both compiler-based and man-
ual instrumentation of applications [12]. TAU keeps track of the
information gathered and can generate binary trace files supported
by visualization tools like Vampir and Paraver. There are many
other HPC profiling tools, and often there are redundant measure-
ment functionalities that these tools provide. The Score-P tool was
created to provide a common infrastructure for performing these
redundant performance measurement capabilities, and provides
support for several other tools, including Scalasca and TAU [10].

Once data has been collected, tools are needed for analyzing and
visualizing the data. Trace files are a simple way to represent what
happened during a parallel execution, often including a series of
time stamps for when certain events started and stopped along with
which processing unit they executed on. The Paraver and Vampir
tools are designed to parse such trace files and display their data in
a meaningful layout showing what was happening on each compu-
tational unit at any given time. The Vampir toolset also provides a
number of other visualization tools and works closely with Score-P
for producing data. In addition to providing instrumentation capa-
bility, TAU also provides a profile visualization tool called paraprof
that allows for detailed analysis of data gathered from TAU-enabled
applications. The Scalasca performance toolset architecture sup-
ports measurement and analysis of several parallel programming
paradigms in C/C++ and Fortran such as MPI and OpenMP [5].
Scalasca’s postmortem analysis automatically identifies potential
bottlenecks and critical regions within the code.

When it comes to profiling MPI applications, the PMPI interface
has been one of the major methods of doing so since it is a part of
the MPI standard. The Peruse tool was proposed as an addition to
the MPI standard, and exposes detailed internal MPI state informa-
tion through instrumentation using function callbacks [9]. Peruse
exposes similar information to our SPCs, though it does so from
a different perspective. Some of our counters, such as matching
time, could be determined through postmortem analysis of a Peruse
trace. Our SPCs offer some information that is not exposed through
Peruse such as the number of out of sequence messages and fine-
grained bytes sent/received information. The Peruse interface was
not accepted into the MPI standard, but as of the MPI 3.1 standard,
a new MPI tool information interface (MPI_T) was added [3].

The MPI_T interface is divided into two parts. The first part pro-
vides information and editing capability for control variables used
to tune the MPI implementation’s configuration [3]. The second
part provides users access to internal performance variables in the
MPI implementation. Our SPCs are similar to these internal perfor-
mance variables and could be integrated into the MPI_T standard
as performance variables.

3 MOTIVATION
When profiling MPI applications, it can often be difficult to tell
what is causing performance issues, particularly when the problem
lies within MPI itself. There are many factors that can affect the
performance of an MPI implementation, such as handling unex-
pected or out-of-sequence messages. An unexpected message is
one that arrived before the corresponding receive was posted. It
is well known that searching the unexpected message queue can
quickly become a bottleneck, particularly when there are a large
number of messages in the queue [14]. Out-of-sequence messages
are messages that were delivered out of the MPI-imposed order
(MPI is expected to deliver the messages in FIFO order between
each pair of processes within a communicator), due to multiple
network paths between the processes. These messages block the
matching queue on the target process, as all matching must be
delayed until the FIFO order can be guaranteed. We wanted to have
a tool that would be able to report such internal MPI information to
the user/tool, to provide a more precise picture of what particular
conditions could have affected the application performance.

Such a tool has the potential to be generic enough to be of use
not only to users, but also be particularly useful to those who
are developing an MPI implementation. Having metrics on the
internal MPI behavior can help identify bugs and inefficiencies in
the implementation, and correct performance critical bottlenecks
before they impact production-level scientific applications. One
active area of MPI development is in implementing efficient multi-
threaded MPI communication, which requires extra care to enforce
thread safety and ensure that messages are received in the order in
which they were sent[1]. Being able to easily access internal metrics
like when data transfers are initiated or when a message arrives
out of sequence can help decrease the burden on multi-threaded
MPI developers by giving an explanation for the performance they
are seeing.

Another crucial benefit to having these metrics internal to the
MPI implementation is that they can be exposed without using
the PMPI interface. The PMPI interface works by preempting MPI
functions, while our SPCs work through instrumentation of Open
MPI code and don’t need to interfere with this preemption. Many
existing MPI tools use the PMPI interface to perform their profiling,
so keeping this interface free allows those tools to be used concur-
rently with our SPCs. Users can also leverage the PMPI interface
for supplementing MPI functions with their own code.

We modeled our counters after PAPI ’s hardware counters due
to their simplicity and familiarity within the HPC community. We
wanted to have a similar system for exposing low level information
as PAPI, but for software-based events rather than hardware events.

Software Performance Counters in Open MPI EuroMPI/USA ’17, September 25–28, 2017, Chicago, IL, USA

4 DESIGN AND IMPLEMENTATION
In order to allow for a wide range of different functionalities, Open
MPI utilizes the modular component architecture (MCA) to deter-
mine which components and options are used both at compile-time
and runtime [15]. The standard stack of components used for com-
munication starts with MPI at the top level; the Point-to-Point
management layer (PML) below that; the BML management layer
(BML) below that; and the byte transfer layer (BTL) at the lowest
level. When a user calls an MPI communication function, Open MPI
transfers control to the PML. The PML uses the BML to determine
the appropriate BTL implementation for a particular transfer, and
then the BTL handles the hardware transfers of data between MPI
processes.

Our implementation of SPCs enables users to see useful per-
formance metrics that range from the number of times MPI_Send
was called to more detailed internal MPI metrics such as the num-
ber of messages that were unexpected. The driver code for our
SPCs was implemented in the Open Portable Access Layer (OPAL)
within Open MPI which acts as a utility and glue layer operating
at a low level in the Open MPI stack. The driver code consists of
data structures for storing the counter information and functions
for managing allocated memory and updating the counters. The
counter values are stored as long long integer values, so at this
time floating point counters are not supported. The instrumenta-
tion code for the various counters appears in both the MPI and
PML layers, depending on how low level the information is. Some
counters are only updated in one location, while others are updated
in multiple places to most accurately reflect the metric they rep-
resent. Each MPI process has its own SPC data structures, so the
counters are updated separately for each process. Since MPI allows
for multi-threading within a process, all updates to the SPC data
structures are performed using atomic operations.

The counter update functionality is implemented as a macro
that gets optimized out if Open MPI is built without SPCs. We also
took steps to minimize the impact that instrumentation has on the
performance of Open MPI with particular attention to the critical
fast path. The actual update consists of an if statement that checks
whether that particular counter is activated, and an atomic add
operation to update the counter. At this time, counters can only
be modified through addition. All of the currently implemented
counters monotonically increase over time, but there is support for
decreasing the counters through adding negative numbers to them.
Some counters require timing information, so they utilize Open
MPI’s low-level timing utilities.

4.1 Performance Metrics Exposed
We decided to implement a variety of counters that expose informa-
tion from two different levels within the Open MPI stack. The first
level we added counters to is the MPI layer. These counters can be
seen in Table 1. In this layer, the counter value simply denotes how
many times each of the user-level communication functions has
been called. This information is useful for showing an overview of
the types of communications that appear in an MPI application.

In order to expose more detailed information, we added several
counters to the PML level as well. The counters for this level are
shown in Table 1. We decided to split the counters for bytes received

Table 1: The names of our counters.

MPI Level PML Level

OMPI_SEND OMPI_BYTES_RECEIVED_USER
OMPI_RECV OMPI_BYTES_RECEIVED_MPI
OMPI_ISEND OMPI_BYTES_SENT_USER
OMPI_IRECV OMPI_BYTES_SENT_MPI
OMPI_BCAST OMPI_BYTES_PUT
OMPI_REDUCE OMPI_BYTES_GET

OMPI_ALLREDUCE OMPI_UNEXPECTED
OMPI_SCATTER OMPI_OUT_OF_SEQUENCE
OMPI_GATHER OMPI_MATCH_TIME
OMPI_ALLTOALL OMPI_OOS_MATCH_TIME
OMPI_ALLGATHER

and bytes sent into two subcategories: bytes sent/received by the
user and bytes sent/received by MPI. The distinction here is that
bytes sent/received by the user are from point to point messaging
functions like MPI_Send and MPI_Recv, and bytes sent/received by
MPI contains data sent by the MPI library. This includes additional
data transmitted for the process of data transfer management, data
transmitted for all MPI-internals such as particular implementa-
tions of collective messaging functions like MPI_Bcast, topology
information detection and exchange, and particular algorithms for
communicators, windows, and file creation. These counters are up-
dated at message fragment granularity in that as soon as a fragment
is given to or taken from the BTL level, the counters are updated.
The aforementioned methodology works well for smaller messages,
but the process becomes more complicated with larger messages.
Open MPI uses remote direct memory access (RDMA) operations
such as Put and Get operations for large memory transfers. These
Put and Get operations are handled by the BTL, so rather than add
detailed counters to all of the BTL implementations, we decided
to simply add Put and Get counters at the PML level and update
them when a Put or Get operation is initiated. It may be some time
between initiation and when the data is actually transferred, so
these counters are much more coarse-grained in their updates than
the bytes sent/received counters.

Typically, MPI implementations handle unexpected messages
by pushing them into a queue that will be checked each time a
receive is posted. We decided to provide a counter that keeps track
of how many unexpected messages there were in an execution to
give users an idea of how often this is happening.

The MPI standard specifies that messages must be received in the
order that they are sent [3]. Open MPI enforces this ordering using
a sequence number for each message between two MPI processes in
the same communicator. In Open MPI, order is sometimes enforced
by the BTL implementation such as with the TCP BTL, but other
BTL implementations such as openib for InfiniBand do not neces-
sarily enforce ordering in every use case. The InfiniBand hardware
does enforce ordering of the messages, however the openib BTL
implementation in Open MPI allows for messages to be sent out of
sequence when there are messages that failed to send. Essentially,
when amessage fails to send it is put into a queue for resending later,
but the openib BTL allows for messages in the fast path to bypass

EuroMPI/USA ’17, September 25–28, 2017, Chicago, IL, USA D. Eberius et al.

Figure 1: The overhead of adding SPCs to the code while
leaving all of them turned off. Note: the error bars repre-
sent the standard deviation across the 10 test runs.

Figure 2: The overhead of adding SPCs to the code and
turning all of them on. Note: the error bars represent the
standard deviation across the 10 test runs.

checking the failed message queue, thus these fast path messages
are sent before the failed messages. At the receiver side, posted
receives can only be matched once all prior sequence numbered
requests have been received. Out of sequence messages can cause
a significant bottleneck due to increased memory management and
time spent searching through the queue of out of sequence mes-
sages. To identify this bottleneck, we increment a counter every
time a message is delivered out of sequence.

For both unexpected and out of sequence messages, Open MPI
needs to perform a matching process to pair a receive request with
its corresponding arrived data. The time it takes to perform this
matching process can have a big impact on latency, particularly
when there are a large number of messages in the queues. We used
a separate counter for matching time of out of sequence messages
because they can take particularly long to match and have much
more internal overhead associated with them. The number for these
matching time counters represents the number of microseconds
spent matching messages.

5 OVERHEAD
It is critical to ensure that the overhead imposed by any perfor-
mance gathering mechanism remains minimal, and its impact on
the performance of the underlying MPI functionality is unaffected.
To test how much overhead is introduced with these counters, we
use the NetPIPE benchmark [13]. This benchmark performs a ping-
pong throughput test and reports the bandwidth and latency for
a variety of message sizes and repetitions for each message size.
In this section we focus on the latency numbers from NetPIPE be-
cause they provide more insight into the overhead of the different
counters.

We tested our implementation on the Arc machine, the config-
uration for which can be found in Table 2. To test different usage
cases, we performed the NetPIPE benchmark with three different
configurations with varying degrees of expected impact. The first
configuration, Node, focuses on inter-node communication over

Table 2: Configuration of the testing system, Arc.

Property Arc Configuration

Processor Dual 10-core Intel Xeon E5-2650 v3 @2.3 Ghz
Interconnect InfiniBand EDR (100 Gb)
Compiler gcc 6.3.0
Open MPI optimized, dynamic build

InfiniBand using the openib BTL. Here, node refers to an individual
server within a distributed compute cluster. The next two configu-
rations, Socket and Core, deal with intra-node communication over
shared memory using SysV shared memory through the Open MPI
vader BTL. With the Socket test, the MPI processes were bound to
cores from different CPU sockets within the same node, and for the
Core test, the MPI processes were bound to cores within the same
socket. Here socket refers to a CPU slot within a compute server.

For the baseline test, we built Open MPI with the same set of
configuration parameters but without our counters enabled which
turns all of the code associated with SPCs into no-ops. We then
performed several tests with the SPCs compiled in. The first two
tests simply have all of the counters turned off or all of the counters
turned on. The overhead of all counters being off shows the impact
of the if statements added to the different paths in the code (includ-
ing in some cases to the critical path). Having all of the counters
turned on is the worst case for overhead, and the impact will be
from both the if statements and instructions added to handle the
counters (including in most cases atomic add operations). All of
our overhead data points are the average of ten runs of NetPIPE to
help account for noise in the network. We present also the standard
deviation of the non-curated data points, to highlight the worst and
best case scenario.

Figure 1 shows the overhead incurred when SPCs are built, but
all of them are turned off. This effectively shows the difference in
performance if SPCs were to be included in the Open MPI build

Software Performance Counters in Open MPI EuroMPI/USA ’17, September 25–28, 2017, Chicago, IL, USA

Table 3: Results of the pairwise benchmark with 2, 4, and 8 threads. A window size of 256, message size of 64 bytes, and
iteration count of 100. Note: The message rate and wall time do not include the warm-up phases, but the other values do.
Without warm-up messages there are 256 × 100 × Nt messages sent where Nt is the number of threads.

Threads Message Rate (msg/sec) Receives OOS Messages % OOS Wall Time (us) Match Time (us) OOS Match Time (us)

2 601, 773.54 56, 320 16, 633 29.53% 85, 598 9, 634 9, 875
4 476, 174.73 112, 640 47, 216 41.92% 218, 807 34, 312 51, 196
8 162, 458.93 225, 280 112, 813 50.08% 1, 260, 863 96, 465 729, 187

Table 4: Counters used in the NetPIPE benchmark.

Counter Name

OMPI_SEND
OMPI_RECV

OMPI_BYTES_RECEIVED_USER
OMPI_BYTES_SENT_USER

OMPI_BYTES_GET
OMPI_UNEXPECTED
OMPI_MATCH_TIME

by default. The overall trend is that the overhead decreases as the
message size increases. As we expected, the inter-node overhead is
the lowest with the overhead for most message sizes being around
1%. For messages between 3 and 8 bytes in length, we saw an in-
crease in latency on the Arc system. This spike in latency happened
infrequently, but was more likely to occur when the counters were
turned on resulting in over 4% overhead on average. The maximum
overhead for this test was ~14.5% for small messages sent between
cores in the same socket. In most cases the overhead was less than
5%, and for the intra-node tests the latency was actually shorter
on average for message sizes around 100 bytes when the counters
were built. We have not yet determined why the latency improves
on average for these messages when the counters are compiled.

In Figure 2, we see the maximum overhead of using SPCs with
NetPIPE since all of the counters are turned on. We see similar
patterns in the plots for the different test cases, simply with higher
magnitudes. Again, the Core test shows the highest overhead with
~40.0%. The inter-node overhead remains around or below 5% over-
head for most message sizes. This result shows that for the most
common case, adding SPCs does not add a large amount of over-
head.

To account for the sizable gap between the overheads of having
all counters turned on and off, we decided to perform tests with
selected counters turned on. For the NetPIPE benchmark, seven
different SPCs are encountered during the run. These counters are
shown in Table 4. After testing with different counters turned on,
we found that the OMPI_MATCH_TIME counter accounts for the
majority of the overhead.

Figure 5 provides a comparison between having the counters
turned on, turned off, only having OMPI_MATCH_TIME turned
on, and only having the six counters needed by NetPIPE minus
OMPI_MATCH_TIME, for the Core test. This figure shows that
nearly all of the overhead increase from all off to all on can be

attributed to the OMPI_MATCH_TIME counter. In order to up-
date this counter, we use a timer function to get the start and
end times of the matching process. Both starting and stopping the
timer require if statements to ensure the OMPI_MATCH_TIME
counter is turned on in addition to the if statement and atomic
add operation of the counter update. In total, there are three if
statements, two timer function calls, one subtraction operation (for
calculating elapsed time), and one atomic add operation needed
for each match. The other counters used in NetPIPE, by com-
parison, only require a single if statement and an atomic add.
The OMPI_MATCH_TIME counter can also happen more often
than many other counters because the matching process can hap-
pen multiple times for a single message if it is unsuccessful. The
OMPI_BYTES_RECEIVED/SENT_USER counters can also happen
multiple times per message if the message is broken into fragments,
yet these counters do not add a significant amount of additional
overhead. This suggests that the additional if statements and timer
function calls are the cause of this increased overhead.

The timer function used for these test cases simply calculates
the time in microseconds by dividing the monotonic number of
cycles returned from the RDTSC instruction by the clock frequency
in MHz. This division operation can add a large percentage of time
when the latency is already low. For example, in the case where
the overhead is 40%, the latency without the SPCs built is ~200
nanoseconds and the latency with the SPCs built and turned on
is ~280 nanoseconds. This additional overhead of 80 nanoseconds
equates to 184 cycles on the Arc machine. On this machine, the
estimated length of a 32-bit division operation is 35-47 cycles ac-
cording to the Intel manual, and we need two of them for each time
the matching process happens so for each match these division
operations add 70-94 cycles of overhead [7]. To verify that remov-
ing the OMPI_MATCH_TIME counter reduces the overhead for all
cases, we decided to redo the Core, Socket, and Node tests with this
counter turned off. Figure 4 shows the overhead of the three tests
if the OMPI_MATCH_TIME counter is turned off. For all of the use
cases, the performance is nearly the same as having none of the
counters turned on.

5.1 mpiP Overhead
To compare with a similar tool, we look at the overhead of using
the mpiP tool which uses the PMPI interface to instrument the
code. mpiP adds timing information and counters to user-level
MPI functions like MPI_Send and MPI_Recv and associates each
function call to its calling location in the user code. The idea is
to assess the number of times and length of time spent in each
function from each location. This tool is similar to our SPCs in that

EuroMPI/USA ’17, September 25–28, 2017, Chicago, IL, USA D. Eberius et al.

Figure 3: The overhead of usingmpiPwithNetPIPE.Note:
the error bars represent the standard deviation across the
10 runs, however the deviation was extremely small so
they appear nonexistent.

Figure 4: The overhead of adding SPCs to the code
and turning on only the counters from Table 4 minus
OMPI_MATCH_TIME. Note: the error bars represent the
standard deviation across the 10 runs.

Figure 5: Comparing the intra-node overhead within a
single socket with the counters all on, all off, only
OMPI_MATCH_TIME turned on, or only the counters from
Table 4 minus OMPI_MATCH_TIME. Note: the error bars
represent the standard deviation across the 10 runs.

it keeps track of the number of times that MPI functions are called,
however it provides additional information in the form of timing
information for the function calls. Figure 3 shows the overhead of
running NetPIPE with mpiP, using the default settings for mpiP.
For the Node test, mpiP performed similarly to our baseline Open
MPI test, but the shared memory tests tell a much different story.
For the Socket test, the overhead of using mpiP was up to ~245.6%
and for the Core test, the overhead was up to ~465%.

Our mpiP build used PMPI_Wtime for its timing measurements,
which redirects to the same low level timer that we used for our

OMPI_MATCH_TIME counter. Some of the additional overhead
comes from determining the call sites of MPI functions from the
call stack and from calling mpiP functions. This overhead is par-
ticularly apparent for the intra-node tests because the latency for
these tests is already as low as hundreds of nanoseconds and simply
adding timer functions can have a large impact as seen with the
OMPI_MATCH_TIME counter. For the inter-node test, this over-
head is largely hidden by the network latency since the baseline
latency in these tests are in microseconds.

6 APPLICATION PERFORMANCE
MEASUREMENT

In this section, we will be applying our using our SPCs to analyze
the performance of two sample applications. The first application,
pairwise, is a synthetic benchmark to measure message injection
rate in a multi-threaded MPI environment. Our second application
is a quantum chemistry application calledmoldft implemented with
the Multiresolution, Adaptive Numerical Environment for Scientific
Simulation (MADNESS) [6]. This application also runs in a multi-
threaded MPI environment. Our analysis will focus on the effect of
out of sequence (OOS) messages on MPI application performance.

6.1 Pairwise Benchmark
The pairwise benchmark runs with two MPI processes and creates
T threads per process and connects these threads pairwise within
a single communicator. This means that the first thread from the
first process is paired with the first thread from the second process
and so on. Only paired threads communicate with each other. The
benchmark performs a warm-up phase, and then calculates injec-
tion rate by posting a window ofW asynchronous sends of size S
from process 0 to process 1 for each thread and repeats this I times.
We decided to use a relatively small message size of 64 bytes, a win-
dow size of 256 messages, and an iteration count of 100 for our tests.

Software Performance Counters in Open MPI EuroMPI/USA ’17, September 25–28, 2017, Chicago, IL, USA

We also used the vader BTL for shared memory communication
and placed the threads from each process in different sockets.

The results of the pairwise tests are shown in Table 3. These
results show a clear trend that increasing the number of threads
decreases the message rate, which is the opposite of what one would
expect. The SPC values give us some insight into what is causing
this decreasing message rate. We can see that the number of OOS
messages is a large percentage of the total number of messages
received. For 2 threads, the percentage of OOS messages is 29.53%,
and when the thread count gets up to 8, over 50% of the messages
were received out of sequence. As the number of OOS messages
increase, so does the time spent matching OOS messages. This OOS
matching time has become a huge bottleneck for injection rate with
the time spent matching reaching over 50% of the total wall time.

We know that OOS messages reduce the performance, but why
are these messages arriving out of sequence in the first place? The
answer lies in the fact the pairwise benchmark was configured to
perform all the sends and receives between threads within a single
communicator. With all of the threads in one communicator, they
compete for acquiring sequence numbers and memory locations to
perform the data transfers since both of these operations are atomic.
When multiple threads attempt these operations at the same time,
the order in which they get what they need is nondeterministic. The
OS can also deschedule the threads at any time which can influence
the order in which they transfer the data. Effectively, when multiple
threads attempt to send data at the same time, their sequence and
the order in which they actually acquire a memory location to write
to are not necessarily in the same order. The more threads there
are, the more likely it is for these collisions to occur, which then
increases the number of OOS messages.

6.2 MADNESS Benchmark
MADNESS comes packaged with several test benchmarks, one of
which is called moldft. This benchmark takes a set of molecular
geometry as input and performs a molecular dynamics simulation
based on density-function theory. MADNESS operates in a multi-
threaded MPI environment in which any thread can communicate
with any other thread directly. As we have seen with the pairwise
benchmark, using multi-threaded MPI can potentially cause a large
number of OOS messages when the thread counts are high.

To test the impact of OOS messages on simulation performance,
we decided to use three different BTLs to run the simulation: vader,
openib, and TCP over InfiniBand. The vader shared memory BTL
and the openib InfiniBand BTL can both potentially allow messages
to be sent out of sequence, while the TCP BTL does not allow OOS
messages. To provide a fair comparison between the different BTLs,
we held the number of threads constant at 18 with 9 on each node
for openib and TCP. We decided to use a moderate sized problem
withinmoldft that performs the simulation on five water molecules.

Table 5 shows the results of the MADNESS experiments. Under
normal circumstances, one would expect that using InfiniBand
would outperform TCP, but this is not the case for these tests. The
TCP over InfiniBand test ran ~20.8% faster than the pure InfiniBand
test on average. As we expected, OOS messages have a huge effect
on performance here with ~37% of the messages in the openib tests
being delivered out of sequence. With this many OOS messages,

Table 5: The results of the MADNESSmoldft tests using five
water molecules. The counter values are the average of 10
runs with 18 threads per run of the simulation for each con-
figuration. Note: the total time is the wall time reported by
moldft.

Counter openib vader tcp

Total Time (sec) 626.41 440.95 518.54
OMPI_RECV 12, 995.6 13, 024.7 12, 710.6
OMPI_ISEND 3, 252, 957.0 3, 253, 238.0 3, 143, 029.9
OMPI_IRECV 3, 291, 284.3 3, 291, 596.8 3, 180, 212.8
OMPI_BCAST 4.0 4.0 4.0

OMPI_BYTES_RECEIVED_USER 1, 898, 491, 237.9 879, 724, 185.9 23, 428, 171, 947.7
OMPI_BYTES_RECEIVED_MPI 168.0 168.0 168.0
OMPI_BYTES_SENT_USER 1, 980, 636, 856.5 968, 525, 668.5 23, 675, 080, 020.9
OMPI_BYTES_SENT_MPI 168.0 168.0 280.0

OMPI_BYTES_PUT 0.0 0.0 129, 295, 502.3
OMPI_BYTES_GET 23, 032, 934, 218.0 24, 056, 241, 711.4 0.0

OMPI_UNEXPECTED 126, 339.4 21, 654.5 14, 868.5
OMPI_OUT_OF_SEQUENCE 1, 222, 397.6 134, 631.0 0.0

OMPI_MATCH_TIME 282, 910.2 369, 343.7 251, 844.7
OMPI_OOS_MATCH_TIME 317, 157.8 32, 742.9 0.0

the time spent managing the OOS data structures and matching
messages also increases. The shared memory test ran ~17.6% faster
than TCP, and ~42% faster than openib and had much fewer out
of sequence messages than openib with only ~4% of the messages
arriving out out sequence.

7 CONCLUSIONS
In this paper we have described our implementation of software-
based performance counters into the Open MPI library. Incorporat-
ing SPCs into OpenMPI was a simple process, though the placement
of the instrumentation required knowledge of Open MPI’s internal
code. Adding SPCs into another MPI implementation would not
take much effort for a developer familiar with the implementation.

Using these simple performance counters can provide insight
into an MPI program’s performance characteristics, particularly in
a multi-threaded approach. We have introduced several detailed
internal counters that provide access to information such as fine-
grained bytes sent/received information for non-RDMA transfers,
the number of out of sequence messages, and matching time which
can provide metrics for how well the MPI implementation is per-
forming and provide context to an MPI application’s performance.

With the exception of the matching time counters, using our
SPCs introduces less than 5% latency overhead when communicat-
ing between server nodes and around 15% for small messages up to
8 bytes in size for shared memory transfers within one CPU socket.
When the matching time counters are added, the latency overhead
is significantly higher with up to 40% latency overhead in the worst
case. It should however be noted that these numbers quickly drop
to below 1% as the message size increases, leading to no impact
on most types of applications (with the exceptions of applications
driven by injection rate of small messages).

In the future, we would like to add additional counters to keep
track of more MPI metrics at various levels of the Open MPI stack
such as the time spent waiting in MPI_Wait or MPI_Barrier. Of po-
tential interest would also be to allow for counters to be communicator-
specific, through incorporating our counters into the MPI Tools
Information Interface (MPI_T). Merging our counters into theMPI_T

EuroMPI/USA ’17, September 25–28, 2017, Chicago, IL, USA D. Eberius et al.

interface would add a more robust system for turning counters on
and off as well as providing information on each counter to the
user. Additionally, we would like to provide an interface for users
to be able to easily take snapshots of the counter values and use this
information as they see fit, possibly by showing the rate of change
of a particular counter or calculating instantaneous bandwidth. We
are actively working on having our SPCs added to the Open MPI
code base as an MCA parameter.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration,
and by NSF collaborative award (#1339820).

REFERENCES
[1] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur.

2008. Toward Efficient Support for Multithreaded MPI Communication. In Pro-
ceedings of the 15th European PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface. Springer-Verlag, Berlin,
Heidelberg, 120–129. https://doi.org/10.1007/978-3-540-87475-1_20

[2] Holger Brunst, Manuela Winkler, Wolfgang E. Nagel, and Hans-Christian Hoppe.
2001. Performance Optimization for Large Scale Computing: The Scalable VAMPIR
Approach. Springer Berlin Heidelberg, Berlin, Heidelberg, 751–760. https://doi.
org/10.1007/3-540-45718-6_80

[3] Message Passing Interface Forum. 2015. MPI: A Message-Passing Interface Stan-
dard Version 3.1. http://mpi-forum.org/.

[4] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall. 2004. Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation. Springer Berlin Heidelberg, Berlin, Heidelberg, 97–104.
https://doi.org/10.1007/978-3-540-30218-6_19

[5] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker,
and Bernd Mohr. 2010. The Scalasca Performance Toolset Architecture. Concurr.
Comput. : Pract. Exper. 22, 6 (April 2010), 702–719. https://doi.org/10.1002/cpe.v22:
6

[6] Robert J. Harrison, Gregory Beylkin, Florian A. Bischoff, Justus A. Calvin,
George I. Fann, Jacob Fosso-Tande, Diego Galindo, Jeff R. Hammond, Rebecca
Hartman-Baker, Judith C. Hill, Jun Jia, Jakob S. Kottmann, M-J. Yvonne Ou,
Junchen Pei, Laura E. Ratcliff, Matthew G. Reuter, Adam C. Richie-Halford,
Nichols A. Romero, Hideo Sekino, William A. Shelton, Bryan E. Sundahl, W. Scott
Thornton, Edward F. Valeev, ÃĄlvaro VÃązquez-Mayagoitia, Nicholas Vence,
Takeshi Yanai, and Yukina Yokoi. 2016. MADNESS: A Multiresolution, Adap-
tive Numerical Environment for Scientific Simulation. SIAM Journal on Scien-
tific Computing 38, 5 (2016), S123–S142. https://doi.org/10.1137/15M1026171
arXiv:http://dx.doi.org/10.1137/15M1026171

[7] Intel 2016. Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel.
[8] Gabriele Jost, Haoqiang Jin, Jesus Labarta, Judit Gimenez, and Jordi Caubet. 2003.

Performance Analysis of Multilevel Parallel Applications on Shared Memory
Architectures. In Proceedings of the 17th International Symposium on Parallel and
Distributed Processing (IPDPS ’03). IEEE Computer Society, Washington, DC, USA,
80.2–. http://dl.acm.org/citation.cfm?id=838237.838714

[9] Rainer Keller, George Bosilca, Graham Fagg, Michael Resch, and Jack J. Don-
garra. 2006. Implementation and Usage of the PERUSE-Interface in Open
MPI. In Proceedings of the 13th European PVM/MPI User’s Group Conference
on Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face (EuroPVM/MPI’06). Springer-Verlag, Berlin, Heidelberg, 347–355. https:
//doi.org/10.1007/11846802_48

[10] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and
Felix Wolf. 2012. Score-P: A Joint Performance Measurement Run-Time Infrastruc-
ture for Periscope,Scalasca, TAU, and Vampir. Springer Berlin Heidelberg, Berlin,
Heidelberg, 79–91. https://doi.org/10.1007/978-3-642-31476-6_7

[11] Philip J. Mucci, Shirley Browne, Christine Deane, and George Ho. 1999. PAPI: A
Portable Interface to Hardware Performance Counters. In In Proceedings of the
Department of Defense HPCMP Users Group Conference. 7–10.

[12] Sameer S. Shende and Allen D. Malony. 2006. The Tau Parallel Performance
System. Int. J. High Perform. Comput. Appl. 20, 2 (May 2006), 287–311. https:

//doi.org/10.1177/1094342006064482
[13] Quinn O. Snell, Armin R. Mikler, John L. Gustafson, and The Pennsylvania State

University CiteSeer Archives. 1996. NetPIPE: A Network Protocol Independent
Performance Evaluator. (1996). http://citeseer.ist.psu.edu/343003.html

[14] K. D. Underwood and R. Brightwell. 2004. The impact of MPI queue usage on
message latency. In International Conference on Parallel Processing, 2004. ICPP
2004. 152–160 vol.1. https://doi.org/10.1109/ICPP.2004.1327915

[15] T. S. Woodall, R. L. Graham, R. H. Castain, D. J. Daniel, M. W. Sukalski, G. E.
Fagg, E. Gabriel, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay,
P. Kambadur, B. Barrett, and A. Lumsdaine. 2004. Open MPI’s TEG Point-to-
Point Communications Methodology: Comparison to Existing Implementations.
Springer Berlin Heidelberg, Berlin, Heidelberg, 105–111. https://doi.org/10.1007/
978-3-540-30218-6_20

https://doi.org/10.1007/978-3-540-87475-1_20
https://doi.org/10.1007/3-540-45718-6_80
https://doi.org/10.1007/3-540-45718-6_80
http://mpi-forum.org/
https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1002/cpe.v22:6
https://doi.org/10.1002/cpe.v22:6
https://doi.org/10.1137/15M1026171
http://arxiv.org/abs/http://dx.doi.org/10.1137/15M1026171
http://dl.acm.org/citation.cfm?id=838237.838714
https://doi.org/10.1007/11846802_48
https://doi.org/10.1007/11846802_48
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
http://citeseer.ist.psu.edu/343003.html
https://doi.org/10.1109/ICPP.2004.1327915
https://doi.org/10.1007/978-3-540-30218-6_20
https://doi.org/10.1007/978-3-540-30218-6_20

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 Design and Implementation
	4.1 Performance Metrics Exposed

	5 Overhead
	5.1 mpiP Overhead

	6 Application Performance Measurement
	6.1 Pairwise Benchmark
	6.2 MADNESS Benchmark

	7 Conclusions
	Acknowledgments
	References

