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Abstract—This paper compares different Krylov methods
based on short recurrences with respect to their efficiency when
implemented on GPUs. The comparison includes BiCGSTAB,
CGS, QMR, and IDR using different shadow space dimen-
sions. These methods are known for their good convergence
characteristics. For a large set of test matrices taken from the
University of Florida Matrix Collection, we evaluate the meth-
ods’ performance against different target metrics: convergence,
number of sparse matrix-vector multiplications, and execution
time. We also analyze whether the methods are “orthogonal”
in terms of problem suitability. We propose best practices
for choosing methods in a “black box” scenario, where no
information about the optimal solver is available.

Keywords-Krylov solver, GPU, IDR(s), BiCGSTAB, CGS,
QMR, algorithmic bombardment

I. INTRODUCTION

Krylov methods are a popular choice for iteratively solv-
ing large, sparse linear systems. Their often superior con-
vergence properties compared to component-wise relaxation
methods, and their ability to benefit from preconditioning
make them attractive from the theoretical point of view. At
the same time, their generic construction as a combination of
sparse matrix vector products, vector operations, and reduc-
tions makes them attractive for parallel execution, e.g., on
manycore architectures like GPUs. Therefore, linear algebra
software libraries like cuSPARSE, MAGMA, Paralution, or
ViennaCL offer a large variety of Krylov solvers to users [1],
[2], [3], [4].

In recent decades, significant advances were made in de-
signing efficient Krylov methods. Some of these methods are
optimized for specific matrix properties, with the Conjugate
Gradient (CG [5]) algorithm suitable for symmetric, positive
definite problems being the most popular example. Other
Krylov solvers work well for a wide range of problems.
However, for a problem with unknown origin it is difficult to
identify the best method. One strategy to overcome this chal-
lenge is to run multiple Krylov methods simultaneously [6].
The advantage of this “algorithmic bombardment” is that
convergence is determined by the iteration count of the most
suitable solver included in the multi-iteration. Krylov meth-
ods sharing the same algorithmic structure can be combined
efficiently into a multi-iteration method. More precisely,
the individual sparse matrix vector products, generating the

Krylov spaces, can be combined into a sparse matrix times
block-vector product, and the reduction operations like dot
product can be interleaved for minimizing the number of
synchronization points.

This paper intends to explore, experimentally, the Krylov
solver landscape, and provide an overview of how well
the distinct Krylov methods work on GPUs. In particular,
we are interested in investigating the robustness, and in
identifying methods that can be considered “orthogonal”
in terms of suitability for different problem classes. The
software basis for this study is the MAGMA open source
software library [2] containing a large variety of Krylov
solvers implemented on GPUs. Test matrices are taken from
the University of Florida Matrix Collection [7]. Although
we focus exclusively on one single NVIDIA GPU, the
findings on convergence and stability carry beyond that
architecture. In terms of the solvers’ hardware efficiency,
similar results can be expected for all relevant modern
hardware architectures, with the performance scaled to the
respectively higher or lower memory bandwidth.

The rest of the paper is structured as follows. In Section II
we give an overview of related work and introduce the
Krylov methods we include in our evaluation. Section III
gives details about how we define our matrix test suite, the
libufget tool we use to access the matrices in the University
of Florida Matrix Collection, the MAGMA software package
we employ for our evaluation, and the hardware we target.
Section IV is the main contribution of this paper, presenting
the experimental results along with an analysis. We conclude
in Section V.

II. BACKGROUND

A. Related work

Designing Krylov methods that are efficient in solving
non-symmetric systems is an active field of research. A
comprehensive survey on Krylov solvers developed before
1991 can be found in [8]. Since then, a large number
of new methods has been developed, often with improved
convergence and stability properties for a certain problem
class. New methods often arise as a combination of already
existing algorithms. Unfortunately, however, it looks like no
overall best Krylov solver exists, as —for each method—



it is possible to find a problem class where a different
solver is superior [9]. And the growing variety of solvers
to choose from presents the challenge of selecting a suitable
method to the user. One possible workaround is to base the
selection on a theoretical analysis, matching the problem
characteristics to the algorithm properties. This, however,
requires thorough knowledge of the mathematical theory.
A very comprehensive overview of Krylov methods, their
algorithmic design, and mathematical properties is given
in [10]. For problems with an origin in partial differential
equations, Saad outlines in [5] the complete simulation path:
from the partial differential equations with their numerical
properties, via the discretization methods generating linear
systems of equations, to the efficiency of Krylov methods
when solving these. However, a deep theoretical analysis
may only be justified if a significant amount of work
is spent in the solution process, e.g., if an application
requires solving a sequence of linear systems with the same
characteristics. If the origin of the problem and some key
characteristics are known, a different approach is to base
the selection on empirical knowledge: There exist multiple
studies comparing the efficiency of different Krylov methods
for specific problems, see [11], [12], [13], [14].

In a “black-box scenario,” there is no information about
the problem characteristics available, permitting the reuse of
a theoretical analysis. The only goal is to make a good guess
for this single run. For this black-box scenario, we compare
a set of Krylov solvers with respect to their convergence
properties, and their efficiency when implemented on GPU
hardware. In contrast to previous studies, we base the
analysis not on a specific problem class, but on a large set
of test matrices available in the University of Florida Matrix
Collection (UFMC, [7]). Our goal is to provide suggestions
for which method to choose if little or no information about
the linear system is available.

B. General Krylov solvers attractive for GPU implementa-
tion

Among the most popular Krylov solvers for general
systems are GMRES, BiCG, BiCGSTAB, CGS, QMR,
TFQMR, and IDR(s). Except for GMRES, all these are
based on short recurrence formulation [15]. This means that
in each iteration, only a few of the latest basis vectors are
required to generate the new basis vector. For GMRES, each
new basis vector is orthogonalized against all previous basis
vectors. Its computational cost is thus increasing with the
iteration count. Also, GMRES requires storing all previous
basis vectors. This can be unattractive for problems requiring
a high number of iterations. A workaround that avoids the
explosion in computational cost and memory footprint is the
restarted GMRES. It truncates the orthogonalization process
to a few, last basis vectors that are stored explicitly. The
restart parameter bounding the number of orthogonalizations
is a trade-off between the numerical properties and the com-

putational / storage cost. However, restart parameters larger
than 20 are often advisable for smooth convergence, and a
small variance in the restart parameter can have a significant
impact on the solver’s convergence. Hence, the restarted
GMRES usually has a memory footprint significantly larger
than the other methods listed. Given that the memory size
of GPUs is often much smaller than main memory of the
host system, GMRES is only attractive for GPU acceleration
if the restart parameter is matched to the characteristics
of the hardware and the linear system. This motivates one
to exclude GMRES in an analysis targeting a large set of
problems with different characteristics.

BiCG arises as a non-symmetric variant of the CG algo-
rithm, which is known to be very efficient for symmetric,
positive definite (spd) systems [5]. BiCG, however, carries
some unattractive properties: it requires multiplication with
the transpose of the system matrix, often has non-smooth
convergence, and does not implicitly compute an iterative
residual. In terms of stability, BiCG suffers from two poten-
tial breakdown scenarios: pivot breakdown and, in case of
a non-symmetric system matrix, Lanczos breakdown [16].
This has motivated efforts to modify the BiCG method
in favor of the desirable properties: avoiding breakdown;
avoiding use of the transpose; smooth convergence; and
an implicit residual. An effort to avoid pivot breakdown is
the “quasi-minimal residual” (QMR) method developed by
Freud et al. [17]. QMR does not resolve the Lanczos break-
down that can occur for non-symmetric systems. Avoiding
Lanczos breakdown is much more challenging, and although
numerous research efforts exist, see e.g. [18], [19], most of
the proposed ideas are not very popular in the scientific com-
puting community. Much more successful was the search
for a workaround avoiding the transposed system matrix.
Sonneveld developed the very efficient “conjugate gradient
square” algorithm (CGS, [20]). Squaring the BiCG polyno-
mial removes the need for the transposed system matrix,
and for linear systems where BiCG converges, CGS is often
an attractive, faster alternative. Unfortunately, CGS inherits
the non-smooth convergence properties, and the breakdown
conditions from BiCG [20]. For enhanced numerical stabil-
ity, and smoother convergence, Van der Vorst developed the
BiCGSTAB method [21]. This algorithm can be seen as a
combination of BiCG and GMRES using the restart param-
eter 1 [22]. BiCGSTAB offers an attractive balance between
numerical stability and fast convergence. There are also
efforts to combine QMR, CGS and BiCGSTAB to obtain
a method sharing multiple enhancements, see TFQMR as a
combination of QMR and CGS [23], and QMRBiCGSTAB
as a combination of QMR and BiCGSTAB [24]. The relation
between these solvers, all based on on a Bi-Lanczos process
generating the Krylov space, is visualized in Figure 1.

A much more recent Krylov solver is the “induced di-
mension reduction” algorithm with a flexible shadow space
dimension (IDR(s)) developed by Sonneveld et al. [25]. For
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Figure 1: Outlining dependencies between some Krylov
methods based on a Bi-Lanczos process.

different shadow space dimensions s, IDR(s) is a robust
and efficient short recurrence Krylov subspace method. At
the same time it can be seen as generalization of different
Krylov solvers, as it can be shown that for the shadow
space dimension s = 1, IDR(1) becomes very similar to
BiCGSTAB [26]. Unfortunately, for shadow space dimen-
sions s > 1, the structure of a single IDR(s) iteration is very
different from the other Krylov solvers based on short recur-
rences. Each iteration then consists of a two-way loop nest.
This complicates, and practically prevents, the integration of
IDR(s) for s > 1 into an algorithmic bombardment scheme.
Hence, for s > 1, IDR(s) can merely be applied as a stand-
alone method. Similar to the previous discussion on the
storage cost of the GMRES algorithm, we limit the IDR(s)
analysis in this study to the shadow space dimensions s = 2,
s = 4, and s = 8 (which was also proposed by Sonneveld
et al. [25]). A variant of the IDR(s) that is not included
in this study is the Ritz-IDR proposed by Simoncini et
al. [27]. Motivated by the possibility to regard the IDR(s) as
a Petrov-Galerkin method, the poles of the rational function
are chosen as Ritz values [27]. The convergence of Ritz-
IDR is competitive, and for small shadow space dimensions
s often superior, to the initial algorithm proposed in [25].

III. TEST FRAMEWORK

A. Test matrices

We evaluate the efficiency of the Krylov solvers’ GPU
implementations using a subset of the non-symmetric matri-
ces available in the University of Florida Matrix Collection
(UFMC, [7]). More precisely, we include all matrices in the
test suite that fulfill the following conditions:
• The matrix is square.
• The matrix is non-symmetric.
• The matrix has more than 1,000 rows.
• The matrix has less than 5,000,000 rows and less than

100,000,000 nonzeros.
• At least one of the Krylov solvers included in the study

converges.

This scenario reflects the situation where no information
about the linear system is known, except for being struc-
turally or numerically non-symmetric. We consider this a
realistic “black-box” scenario where no information about
the system characteristics – except the non-symmetry –
is provided. We handle the symmetry differently as this
information is usually available, and for symmetric, positive
definite (spd) systems, the Conjugate Gradient is well-known
to be a very efficient alternative [5]. In Figure 2, we visualize
the size distribution (left) and the nonzero distribution (right)
of the 94 matrices included in the test suite. In the Appendix
we give a list of the matrix IDs that allows for identifying
the matrices in the UFMC.

B. The libufget library

The UFMC, where we source our example matrices, is
normally interfaced by a MATLAB interface or a Java
application. Both interfaces allow one to search and down-
load matrices by their name or their ID. Additionally, the
Java interface has the ability to search for matrices using
meta data information, but once identified each matrix has
to be downloaded manually. Having our conditions from
the previous subsection in mind, this is not applicable for
large matrix sets. In the case of the MATLAB interface
we we have an even worse situation because we have
to check each matrix for fulfilling the required properties
after downloading it. Furthermore, both interfaces cannot be
easily used from C or integrated into standalone programs.

We solved this issue by developing a C-library named
libufget which allows us to access the UFMC directly from a
C program. The library downloads the MATLAB file which
contains the meta-data from the UFMC and converts it into
an SQLite database. Like the MATLAB interface the library
provides a by-name and a by-id interface to download
matrices. Furthermore, the SQLite database allows us to
search for matrices using SQL queries on their meta-data.
The search result is obtained as an iterator over all matrices
matched by the query. This iterator is used to execute a piece
of code for each matrix returned by the query. By translating
our conditions from Subsection III-A into the following
SQL query: SELECT * FROM matrices WHERE
rows==cols && numerical_symmetry!=1.0 &&
rows > 1000 && rows < 5000000 && nnz <
100000000, we perform all benchmarks automatically
without any interruption or manual downloading of the
test matrices. The libufget library enables us to check the
influence of different matrix properties like symmetry,
positive-definiteness, or bandwidth on the algorithms by
only changing the SQL query. This allows for rapid and
easy-to-use penetration testing of matrix related algorithms.

C. MAGMA software package

MAGMA [2] is an accelerator-focused linear algebra
library developed at the University of Tennessee. It provides
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Figure 2: Histograms reflecting the size distribution (left) and the nonzero distribution (right) of the test matrices contained
in the test suite.

back-ends for NVIDIA GPUs, Intel’s Xeon Phi manycore
accelerators (MIC), and any OpenCL-compatible system
such as AMD GPUs. Originally focused on dense lin-
ear algebra routines, MAGMA now also contains a large
variety of solvers, preconditioners, and eigensolvers for
sparse linear systems. Comprehensive support for NVIDIA
GPUs is provided, some basic routines and functionalities
are also available in OpenCL and for the Xeon Phi. The
performance of the Krylov solvers available in MAGMA is
highly competitive to other GPU-accelerated packages [4].
The subset of Krylov methods we choose from the solvers
available in MAGMA are expected to work well for a large
range of problems, and have proven to efficiently exploit the
compute power of modern GPUs [28], [29].

D. GPU hardware setup

The GPU target architecture is a NVIDIA Tesla K40
GPU (Kepler microarchitecture) with a theoretical peak
performance of 1,682 GFlop/s (double precision). The 12
GB of GPU main memory can be accessed at a theoretical
bandwidth of 288 GB/s. In a bandwidth analysis using
large data-streams, we achieved values around 193 GB/s.
The Krylov solvers we use keep all matrix and vector
data and most of the scalar values in the GPU memory.
Given this background, all vector operations are handled by
the accelerator. For completeness, we nevertheless want to
mention the host being an Intel Xeon E5 processor (Sandy
Bridge). The MAGMA implementation is using CUDA and
cuSPARSE in version version 7.5 [30].

E. Solver parameters

The individual linear systems Ax = b used for the experi-
mental solver analysis are all composed of the different test

matrices from the University of Florida Matrix Collection,
and a right-hand side b ≡ 1. All Krylov solvers are started
with an initial guess x ≡ 0. Convergence in iteration k is
defined as the residual norm ‖b− Axk‖ for the iteration
vector xk being at least 10 orders of magnitude smaller than
the norm of the right-hand side:

‖b−Axk‖< 10−10‖b‖.

We impose an additional stopping criterion to avoid unbound
execution times. Theoretically, any Krylov solver is con-
verged once the Krylov subspace spans the the complete
system space, and no early breakdown due to numerical
issues has occurred [5]. For a linear system of size n, this
is fulfilled once n Krylov basis vectors are generated, i.e.,
after n sparse matrix vector products. The Krylov methods
we consider differ with respect to how many basis vectors
are generated in each iteration: BiCGSTAB, CGS, and QMR
all have 2 sparse matrix-vector multiplications (SpMVs) per
iteration; IDR(s) has 2s+1 SpMVs in every outer iteration,
respectively. For a fair comparison, we set the upper iteration
bound for the distinct solvers with respect to the SpMV count
and the matrix dimension. To account for numerical effects
related to the finite precision of floating point numbers, we
allow the methods to execute up to 2n SpMVs.

IV. EXPERIMENTAL RESULTS

In a first experiment we analyze the robustness and
efficiency for the distinct solvers. The height of the bars
in Figure 3 reflects for how many linear systems the distinct
methods achieved convergence. Additionally, we color a
part of the bars in yellow. This part corresponds to the
matrix count where a certain solver is the overall winner
with respect to the runtime metric. Finally, a small grey bar
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Figure 3: Successful convergence and fastest solver analysis.
The grey bars indicate problems that did not converge within
the iteration limit, but did not experience an early breakdown
either.

indicates the number of problems where convergence was
not achieved within the iteration limit, but no breakdown has
occurred to this point. The methods may be unable converge
with the demanded accuracy, converge for a larger iteration
limit, or fail.

We observe that for the general test suite, QMR and
IDR(s) are the most robust solvers. Also, the number of
problems that can be solved with IDR(s) increases with the
shadow space dimension. CGS fails for almost 60% of the
test cases, but if it converges, it is very fast.

Next we investigate whether it is possible to identify
methods that are “orthogonal” in the sense of problem
suitability. Motivation is the strategy presented in [6], where
a set of methods is interleaved, resulting in a poly-iterative
solver. The key idea of this “algorithmic bombardment” is to
successively drop the methods that break down, and benefit
from the fast convergence of the most suitable method
included in the set. Although the poly-iterative approach has
some overhead compared to running a single method, it can
be implemented very efficiently for a set of Krylov-based
methods having a similar algorithm structure. The central,
and often computationally most expensive, building block
of all Krylov methods is a sparse matrix vector product
needed to generate the Krylov subspace. Aside from that,
the algorithms are usually composed of inherently parallel
vector updates, global reduction operations that require
synchronization, and some scalar computations. The most
attractive feature of the poly-iterative approach is to block
the sparse matrix vector products generating the distinct
subspaces into one blocked sparse matrix vector product
that reads the sparse matrix only once, independent of

the number of generated Krylov subspaces. Also, merg-
ing the reduction phases helps maintain a low number of
synchronization points. As a consequence, interleaving a
set of algorithmically similar Krylov methods often results
in small runtime overhead compared to running only one
iterative solver. The relative overhead decreases with an
increasing number of non-zero elements per matrix row.
Choosing only one Krylov solver, the successful outcome
and the time-to-solution performance is unknown. Opposed
to that, the poly-iterative approach not only increases the
chance of successful completion, but also provides the best
convergence rate among the methods included in the set.
Algorithmic bombardment is particularly attractive if the
methods included are “orthogonal” in the sense of problem
suitability.

In Figure 4 we show a “head-to-head” comparison of the
distinct solvers we evaluate in this paper. For each solver
combination, there is a figure showing how many systems
can be solved with both methods (green bar), which method
is superior (location of green bar), and how many systems
can be solved by one but not the other solver (red and blue
bar, respectively). As previously observed, IDR(s) converges
for all shadow space dimensions for a larger set of problems
than any of the other methods. Comparing the different
shadow space dimensions for IDR(s), a smaller shadow
space dimension s may offer faster convergence for some
of the problems, but robustness increases with the shadow
space dimension. More precisely, we did not find a single
problem where choosing a larger shadow space dimension
destroys convergence of IDR(s). We note again that the
upper iteration limit is adapted to the number of SpMVs,
i.e., a larger shadow space dimension has a lower iteration
limit.

When combined with BiCGSTAB, CGS, or QMR, IDR(s)
is usually slower for the systems where both methods
converge. In terms of robustness, the combination IDR(8)
and QMR is the overall winner, converging for all 94 test
cases. However, the structural difference between IDR(s)
and the other Krylov solvers, makes it hard to combine
them efficiently in poly-iteration fashion. Ignoring IDR(s),
QMR works best in combination with BiCGSTAB. For the
systems where both, BiCGSTAB and CGS converge, CGS
is usually faster. BiCGSTAB is more robust than CGS, but
not as fast, and therefore a less attractive counterpart to
QMR. Although impossible to visualize in this fashion, we
want to mention that the combination BiCGSTAB, CGS,
and QMR, as proposed in [6], converges for 63 of the 94
test cases (67%). This is a lower success rate than the 96%
convergence of IDR(8).
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Figure 4: Krylov solver comparison: The green bar reflects the linear systems that can be solved by both methods, the location indicates which method
converges faster. The red and blue bars reflect test systems that can be handled by only one of the methods. An interactive visualization of the data can be
found at http://www.icl.utk.edu/˜hanzt/solver_ortho/.
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Execution time is the metric of interest when using the
plain Krylov solvers. A popular strategy for improved con-
vergence properties is to enhance the Krylov methods with a
preconditioner. The efficiency analysis focusing exclusively
on execution time is then no longer valid, as each basis
vector is then generated for the preconditioned system.
Depending on the problem and the preconditioner proper-
ties, the preconditioner application can be very expensive
compared to the rest of the Krylov solver.

If we assume that an expensive preconditioner provides
the same convergence improvement to each of the consid-
ered methods, we should focus the analysis on the number
of generated basis vectors. The latter corresponds to the
number of executed sparse matrix vector products. This
motivates the extension of the survey by a second target
metric: number of executed SpMVs. Figure 5 compares the
solver’s superiority with respect to both metrics. Considering
the runtime metric, IDR(8) was primarily attractive due to
its robustness. Looking at SpMV count, the more expensive
orthogonalization in IDR(8) is not reflected, and IDR(8)
wins in most cases. Consequently, for an expensive pre-
conditioner providing the same convergence improvement
to all methods, IDR(8) would also win most problems in
the runtime metric.

Turning back to the basic Krylov solvers, we are interested
in the cost we have to pay for the higher robustness of
IDR(8). For each matrix, there is a fastest solver, but which
one depends on test matrix. We normalize for each matrix
the solver runtimes to the runtime of the fastest solver for
this particular problem. In Figure 6, we visualize this metric
we call “normalized runtime” for a subset containing the first
30 test matrices listed in the Appendix. For each solver, we
then compute the average of the normalized runtimes over all
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Figure 6: Normalized runtimes: for each matrix, the fastest
solver is identified, and all solver execution times are nor-
malized by the runtime of the fastest solver. Test problems
are the first 30 matrices listed in the Appendix.

matrices, however, only consider converging combinations.
If a solver did not converge for a certain test matrix, its
average runtime is not affected. This quantity is visualized in
Figure 7, taking all 94 test cases into account. For the robust
IDR(8), the average runtime is around 1.9 times longer
than when choosing the fastest solver for every problem.
BiCGSTAB, CGS, and QMR have lower values, but again,
this metric does not reflect the fact that those methods fail for
a significant portion of the test matrices. The combination
of converging for 96% of the problems and an average
runtime less than twice slower than the fastest method makes
IDR(8) attractive for a black-box scenario. Although not
scientifically relevant, we want to mention that it takes
IDR(8) about 1 hour and 15 minutes to solve 91 of the
considered 94 problems.

V. SUMMARY

In this paper, we evaluate the efficiency of different
Krylov solvers based on short recurrences when being
implemented on GPUs. For BiCGSTAB, CGS, QMR, and
IDR(s) we take the respective implementations from the
MAGMA software library and compare their efficiency for
different target metrics. The study is based on a large set of
test matrices available in the University of Florida Matrix
Collection.

The analysis reveals the superiority of IDR(s) in terms
of robustness, in particular when using large shadow
space dimensions. In terms of time-to-solution performance,
BiCGSTAB, CGS, and QMR are often faster for converging
cases. Interleaving these solvers in terms of a poly-iterative
algorithm results in a fast solver for many problems. In terms
of robustness, IDR(8) is still superior, converging for about
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Figure 7: Runtime normalized to the fastest method. The
average is computed considering only convergent problems.

96% of the test cases. Compared to the respectively fastest
solver, IDR(8) is on average less than twice slower. This
good balance between robustness and performance makes
IDR(8) an attractive choice in a black-box scenario where
no information about the optimal solver is available.

Future work will address the benefits coming from precon-
ditioning, and try to correlate the solvers’ superiority with
the problems’ origins.

APPENDIX

The matrices included in this study can be accessed in the
University of Florida Matrix Collection under the following
IDs: 227, 235, 237, 245, 246, 287, 288, 289, 290, 291, 370,
371, 377, 396, 467, 468, 540, 542, 543, 814, 815, 820, 823,
825, 826, 828, 829, 833, 834, 835, 864, 895, 897, 898, 909,
910, 911, 912, 913, 914, 915, 925, 927, 928, 930, 931, 932,
934, 982, 984, 1053, 1054, 1106, 1107, 1108, 1109, 1170,
1187, 1188, 1196, 1197, 1319, 1320, 1321, 1322, 1323,
1324, 1416, 1790, 1854, 1858, 1859, 1868, 1869, 1898,
1941, 2233, 2234, 2240, 2241, 2242, 2245, 2274, 2278,
2279, 2562, 2563, 2564, 2565, 2566, 2647, 2648, 2649,
2655.
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