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a b s t r a c t 

In this paper, we study the effect of enhancing GPU-accelerated Krylov solvers with pre- 

conditioners. We consider the BiCGSTAB, CGS, QMR, and IDR( s ) Krylov solvers. For a large 

set of test matrices, we assess the impact of Jacobi and incomplete factorization precon- 

ditioning on the solvers’ numerical stability and time-to-solution performance. We also 

analyze how the use of a preconditioner impacts the choice of the fastest solver. 
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1. Introduction 

Krylov methods are a popular choice for iteratively solving large, sparse linear systems. Their convergence properties

are often superior compared to component-wise relaxation methods, and their ability to benefit from preconditioning make

them attractive from the theoretical point of view. Significant effort s are spent on deriving Krylov solvers optimized for

specific matrix properties, with the Conjugate Gradient (CG [1] ) algorithm, suitable for symmetric positive definite prob-

lems, being the most popular example. At the same time, their generic construction as a combination of sparse matrix

vector products, vector operations, and reductions makes Krylov methods attractive for implementation on parallel hard-

ware architectures such as graphics processing units (GPUs). As a result, linear algebra software libraries like cuSPARSE,

MAGMA-sparse, Paralution, or ViennaCL offer a large variety of Krylov solvers to users [2–5] . 

In a recent effort, we compared different Krylov methods with respect to numerical stability, convergence rate, and time-

to-solution performance [6] . The motivation for this comparison is when a problem has unknown characteristics, making an
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a priori choice of the optimal solver impossible. Although the study was exclusively based on the GPU implementations

of Krylov methods in the MAGMA-sparse software library, the convergence and performance results are expected to carry

beyond this specific choice of software library and manycore architecture. We define a method as robust , in terms of numer-

ical stability, if it converges to a small residual for a wide variety of problems. A key observation in [6] is that the Induced

Dimension Reduction (IDR [7] ) algorithm works very well for a large fraction of the problems: it combines a high degree of

robustness with respect to problem characteristics with a time-to-solution performance often surpassing the other Krylov

methods included in the study (CGS, BiCGSTAB, and QMR). 

In this paper we go beyond assessing the convergence and performance of unpreconditioned Krylov methods by enhanc-

ing a selection of Krylov methods with different preconditioning techniques, as reviewed in Section 2 . Our test framework,

described in Section 3 , uses a wide variety of matrices from the University of Florida Sparse Matrix Collection, along with

solvers in the MAGMA-sparse library. Our key contribution is the comprehensive analysis in Section 4 assessing the im-

pact of choosing a preconditioner on the metrics quantifying the suitability and superiority of the methods. Although in

this paper we target only a GPU hardware setting, the key findings summarized in Section 5 are meaningful also for other

manycore architectures. Similar to [6] , we assume no a priori knowledge about matrix characteristics, that is, we follow a

“black box” approach. This scenario reflects the situation where we look for a good method to solve a single and isolated

linear system without knowing about the system characteristics. 

2. Background 

2.1. Related work 

Designing Krylov methods that are efficient in solving non-symmetric systems is an active field of research. A survey on

Krylov solvers developed before 1991 can be found in [8] . Since then, a large number of new methods have been developed,

often arising as a combination of preexisting algorithms, with improved convergence and stability properties for certain

problem classes. A comprehensive overview of recent Krylov methods, their algorithmic design and mathematical properties

is given in [9] . For problems with an origin in partial differential equations, Saad [1] outlines the complete simulation

path: from the partial differential equations with their numerical properties, via the discretization methods generating linear

systems of equations, to the efficiency of Krylov methods when solving these. 

Unfortunately, however, there does not exist an overall best Krylov solver, as for each method, it is possible to find a

problem class where a different solver is superior [10] . The growing variety of solvers to choose from presents the challenge

of selecting a suitable method. One possible workaround is to base the selection on a theoretical analysis, matching prob-

lem characteristics to algorithm properties. This requires thorough knowledge of the mathematical theory. However, a deep

theoretical analysis may only be justified if a significant amount of work is spent in the solution process, e.g., if an applica-

tion requires solving a sequence of linear systems with the same characteristics. If the origin of the problem and some key

characteristics are known, a different approach is to base the selection on empirical knowledge. There exist multiple studies

comparing the performance of different Krylov methods for specific problems [11–14] . 

In a “black box scenario,” there is no information about the problem characteristics available to allow the use of a the-

oretical analysis. The only goal is to make a good guess for this single run. One approach to overcoming the challenge of

choosing the right solver is the Lighthouse framework [15] , which is an automated selection tool that uses a searchable tax-

onomy to match specific problems to algorithms. In [16] , the developers of Lighthouse study how the Lighthouse framework

succeeds in classifying the preconditioned iterative linear solvers in the Parallel Extensible Toolkit for Scientific Computation

(PETSc) [17] and Trilinos [18] libraries. 

A more conservative approach is to assess the performance of the solver candidates for a large set of test matrices. In [6] ,

we compared a set of GPU-accelerated Krylov solvers available in the MAGMA-sparse software module with respect to their

convergence and time-to-solution performance using matrices from the University of Florida Sparse Matrix Collection [19] .

In this paper, we extend the previous analysis by enhancing the solvers with preconditioners, and investigate how precon-

ditioning impacts the choice of a suitable Krylov solver. 

2.2. General Krylov solvers attractive for GPU implementation 

Among the most popular Krylov solvers for general systems are GMRES, BiCG, BiCGSTAB, CGS, QMR, TFQMR, and IDR( s ).

Except for GMRES, all these are based on a short recurrence formulation [20] . This means that in each iteration, only a few

of the latest basis vectors are required to generate the new basis vector. GMRES requires storing all previous basis vectors,

greatly increasing the computational cost and memory footprint. While restarted GMRES limits the number of basis vectors,

it still has higher costs than other solvers – especially problematic in the limited memory environment of GPUs – and

the restart parameter, defining the maximum size of the Krylov space before restarting, should be tuned for the individual

problem, since the convergence rate can be sensitive to the restart parameter. While a small matrix may allow GMRES to

run in a non-restarted fashion, restarting is inevitable when addressing large problems where the GPU memory limits the

number of search directions that can be stored. Given this background, we did not find GMRES suitable as a black box solver

for targeting a diverse set of problems, so we excluded it from our experiments. 
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Fig. 1. Outlining dependencies between some Krylov methods based on a Bi-Lanczos process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BiCG arises as a non-symmetric variant of the CG algorithm for symmetric positive definite (SPD) systems [1] . BiCG,

however, carries some unattractive properties: it requires multiplication with the transpose of the system matrix, often has

non-smooth convergence (local residual norm increase), and does not implicitly compute a residual norm estimate in the it-

erations that allows checking convergence. In terms of stability, BiCG suffers from two potential breakdown scenarios: pivot

breakdown and, in case of a non-symmetric system matrix, Lanczos breakdown [21] . This has motivated effort s to modify

the BiCG method in favor of desirable properties: avoiding breakdown, avoiding use of the transpose, smooth convergence,

and an implicit residual. An effort to avoid pivot breakdown is the “quasi-minimal residual” (QMR) method developed by

Freud et al. [22] . QMR does not resolve the Lanczos breakdown that can occur for non-symmetric systems. Avoiding Lanczos

breakdown is much more challenging, and although numerous research effort s exist [23,24] , most of the proposed ideas are

not very popular in the scientific computing community. Much more successful was the search for a workaround avoiding

the transposed system matrix. Sonneveld developed the very efficient “conjugate gradient square” algorithm (CGS, [25] ).

Squaring the BiCG polynomial removes the need for the transposed system matrix and, for linear systems where BiCG con-

verges, CGS is often an attractive, faster alternative. Unfortunately, CGS inherits the non-smooth convergence properties and

breakdown conditions from BiCG [25] . For enhanced numerical stability and smoother convergence, van der Vorst developed

the BiCGSTAB method [26] . This algorithm can be seen as a combination of BiCG and GMRES using the restart parameter

1 [27] . BiCGSTAB offers an attractive balance between numerical stability and fast convergence. There are also efforts to

combine QMR, CGS and BiCGSTAB to obtain a method sharing multiple enhancements; see TFQMR as a combination of QMR

and CGS [28] and QMRBiCGSTAB as a combination of QMR and BiCGSTAB [29] . The relation between these solvers, all based

on a Bi-Lanczos process generating the Krylov space, is diagrammed in Fig. 1 . 

A much more recent Krylov solver is the “induced dimension reduction” algorithm with a flexible shadow space dimen-

sion (IDR( s )) developed by Sonneveld et al. [30] . For different shadow space dimensions s , IDR( s ) is a robust and efficient

short recurrence Krylov subspace method. At the same time it can be seen as a generalization of different Krylov solvers, as

it can be shown that for the shadow space dimension s = 1 , IDR(1) becomes very similar to BiCGSTAB [31] . Precisely, the IDR

method finds residuals in a sequence of shrinking subspaces that are orthogonal to a sequence of growing Krylov subspaces,

the so-called “shadow spaces”. The shadow space dimension s defines the number of randomly-chosen orthogonal vectors

that are used as starting points for generating the shadow spaces [31] . To limit the storage and computational cost, we

limit the IDR( s ) analysis in this study to the shadow space dimensions s = 2 , s = 4 , and s = 8 (which were also proposed by

Sonneveld et al. [30] ). A variant of IDR( s ) that is not included in this study is the Ritz-IDR proposed by Simoncini et al. [32] .

Motivated by the possibility to regard IDR( s ) as a Petrov–Galerkin method, Ritz-IDR uses the poles of the rational function

as Ritz values [32] . The convergence of Ritz-IDR is competitive and, for small shadow space dimensions s , often superior to

the initial algorithm proposed in Sonneveld and van Gijzen [30] . 

All presented Krylov methods are composed of a combination of sparse matrix vector products, vector updates, and dot

products. The similarity in design implies that these methods are very similar in terms of parallel efficiency on GPU hard-

ware, and they can all be implemented by using central building blocks for sparse linear algebra. We provide in Section 3 de-

tails about the efficient GPU-implementation of the considered methods. 

2.3. Preconditioning Krylov methods 

As previously elaborated, Krylov solvers are among the most powerful methods for iteratively solving linear systems

of equations. In many cases Krylov solvers can benefit from combining with preconditioning techniques. The underlying

concept is to improve the conditioning of the target problem by transforming the original linear system Ax = b into the

system MAx = Mb [1] where the condition number cond 2 ( MA ) is much smaller than cond 2 ( A ). Addressing a problem with

better conditioning is typically easier for the iterative solver. As a result, a sophisticated preconditioner often improves both

the numerical stability and the convergence rate of the iterative solver. 

However, a preconditioner is only attractive if the provided convergence improvement compensates for the additional

work: the preconditioner generation and the preconditioner application in the solver iterations. 



H. Anzt et al. / Parallel Computing 68 (2017) 32–44 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the context of High Performance Computing (HPC), this is strongly related to the question of how efficient a pre-

conditioner can be computed and applied on a parallel architecture. A Jacobi preconditioner scales the linear system with

the inverse of the diagonal of the system matrix, and therefore allows for good parallelization [1] . At the same time, the

convergence benefit of Jacobi preconditioning is often limited, and typically much smaller than a more sophisticated pre-

conditioner like an incomplete LU factorization (ILU [1] ). These approximate the factorization of the system matrix on some

nonzero pattern, and use sparse triangular solves in the distinct iteration steps for transforming the original problem into the

preconditioned one. ILU preconditioners are robust and often succeed in significantly improving the convergence of an itera-

tive solver. Unfortunately, the convergence improvement of ILU preconditioning comes at the price of difficult-to-parallelize

sparse triangular solves that can become a bottleneck on parallel architectures. Level-scheduling [22,33] and multicolor-

ordering [34,35] techniques can be used to parallelize the sparse triangular solves. However, the potential of these paral-

lelization strategies typically decreases with the fill-in allowed in the incomplete factorization process. To balance between

convergence improvement and parallel execution efficiency, we focus in this paper on the ILU(0) incomplete factorization

preconditioner that ignores any fill-in [1] . Beside this configuration, we assess the performance of the unpreconditioned

Krylov solvers and the Jacobi preconditioned versions. 

3. Test framework 

3.1. Test matrices 

For this study, we use a large set of test matrices from the University of Florida Sparse Matrix Collection (UFMC [36] ).

Complementary to the results presented in [6] , the main focus of this paper is not on comparing the robustness of unprecon-

ditioned Krylov solvers, but rather on assessing the performance in the context of preconditioning. Given this background,

we choose a set of test matrices where a significant portion of the solver/preconditioner configurations succeed. The re-

sults presented in [6] indicate that the IDR( s ) algorithm is very robust with respect to problem suitability. Using an ILU(0)

preconditioner typically enhances robustness and convergence properties [37] . This motivates basing the test suite on the

successful convergence of an ILU(0) preconditioned IDR(4). Specifically, the test suite is composed of all matrices available at

UFMC for which an IDR(4) iterative solver preconditioned with ILU(0) converges to a relative residual norm ‖ r‖ ≤ 10 −10 ‖ b‖
within 10,0 0 0 iterations. However, problems smaller than 100 rows, and problems where the ILU(0) preconditioned IDR(4)

from MAGMA-sparse completes within 0.1 s, are considered “too easy” to require the use of a GPU solver, so are excluded.

Applying these filters, we obtain a test suite containing 456 “reasonably difficult” problems. Some of these systems are sym-

metric positive definite (SPD). Although we recognize that for these systems, the Conjugate Gradient method is well-known

to be a very efficient alternative [1] , we ignore this information and handle all systems as general. This is motivated by

the goal of increasing the size of the test suite. In our previous study we excluded SPD systems even though they fulfilled

the convergence criteria, and allowed for higher iteration counts for large systems [6] . Hence, the test suite we use in this

paper adds more “easy” problems, where the Krylov solvers converge within a few iterations, and excludes a few very long

running problems. 

All experiments use a right-hand side b ≡ 1, are started with an initial guess x ≡ 0, and convergence is defined as

the residual fulfills ‖ r‖ ≤ 10 −10 ‖ b‖ . The Krylov methods we consider differ with respect to how many basis vectors are

generated in each iteration: BiCGSTAB, CGS, and QMR all have 2 sparse matrix-vector multiplications ( SpMV s) per iteration;

IDR( s ) has 2 s + 1 SpMV s in every outer iteration. For a fair comparison, we set the upper iteration bound for the distinct

solvers with respect to the SpMV count. The upper bound for the SpMV count is set to 1,0 0 0,0 0 0 for the unpreconditioned

solvers and the Jacobi preconditioner, and to 50 0,0 0 0 for the ILU(0) preconditioner. The lower iteration limit for the ILU-

preconditioned methods is motivated by the cost of applying an ILU(0) preconditioner typically being larger than creating

an additional Krylov search direction via a sparse matrix vector multiplication: both operations are memory bound, have

to access every matrix entry at least once, while the parallelism level in the preconditioner application is limited by the

dependency graph specific to the matrix nonzero pattern. Although an upper iteration limit is questionable in general, there

exists no practical workaround. Also, choosing these very generous upper bounds makes the limits mostly irrelevant, as

almost all converging test cases require significant less iterations. All timing results include the preconditioner setup time. 

3.2. The libufget library 

The UFMC, where we source our test matrices, is normally interfaced by a MATLAB interface or a Java application. Both

interfaces allow one to search and download matrices by their name or ID. Additionally, the Java interface has the ability

to search for matrices using metadata information, but once identified each matrix has to be downloaded manually. Having

our conditions from the problem setup in mind, this is cumbersome for a large matrix set. In the case of the MATLAB

interface we have an even worse situation because we have to check each matrix for fulfilling the required properties after

downloading it. Furthermore, both interfaces cannot be easily used from C or integrated into standalone programs. 

We solved this issue by developing a C library named libufget which allows us to access the UFMC directly from a C

program. The library downloads the metadata from the UFMC and converts it into an SQLite database. In contrast to the

array of structures used by the MATLAB interface or the CSV-file (comma-separated-values) used by the Java interface, the

SQLite database allows fine-grained searches for selecting matrices. Beside selecting matrices by their names, we can easily
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Table 1 

Efficiency of the Krylov solvers included in the MAGMA-sparse software distribution: memory transfers, achieved 

bandwidth, and efficiency. All Krylov solvers are enhanced with a Jacobi preconditioning (diagonal scaling), and 

use double precision in all computations. The column-indexes and the row-pointer are stored as 32-bit integers. 

The analysis is based on one iteration (BiCGSTAB, CGS, QMR) or one shadow space loop (IDR(2), IDR(4), IDR(8)). 

Krylov solver Memory transfers [Byte] Bandwidth [GB/s] Efficiency 

Jacobi-BiCGSTAB 8 · (37 n + 3 nnz) 112.47 59% 

Jacobi-CGS 8 · (36 n + 3 nnz) 113.82 59% 

Jacobi-QMR 8 · (50 n + 3 nnz) 123.49 64% 

Jacobi-IDR(2) 8 · (8 ∗ ((22 + 9 · 2 + 55 · 1) n + 7 . 5 n + 4 . 5 nnz + 15 n ) 130.83 68% 

Jacobi-IDR(4) 8 · (8 ∗ ((22 + 9 · 8 + 55 · 2) n + 12 . 5 n + 7 . 5 nnz + 25 n ) 135.58 71% 

Jacobi-IDR(8) 8 · (8 ∗ ((22 + 9 · 32 + 55 · 4) n + 22 . 5 n + 13 . 5 nnz + 45 n ) 142.64 74% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

take the dimension, number of nonzero elements, symmetry, and other meta information into account. For a list of all

searchable meta information, see [36] . The search result is obtained as an iterator over all matrices matched by the query.

This enables us to execute an algorithm, in our case the preconditioned iterative solver, for each matrix matched by query. In

terms of SQL, we can preselect all matrices that might fulfill our conditions from Section 3.1 using the following statement:

SELECT ∗ FROM matrices WHERE rows == cols && \ 
rows > = 100 && isReal == 1 

and automatically check if these matrices will satisfy the desired conditions mentioned in the previous section. This

avoids the manual selection of the 456 matrices out of the more than 20 0 0 matrices in the UFMC. 

In future versions of libufget we will integrate additional metadata, like the convergence information, in order simplify

the realization of linear system related benchmark tasks. 

3.3. MAGMA-sparse 

MAGMA-sparse is a software module in the accelerator-focused linear algebra software library MAGMA, developed at the

University of Tennessee. At this point, MAGMA-sparse does not support data-parallel heterogeneous computing, but executes

all matrix and vector operations on the hardware accelerator. Comprehensive support for NVIDIA GPUs is provided, while

some basic routines and functionalities are also available for OpenCL and the Xeon Phi. MAGMA-sparse contains a large vari-

ety of solvers, preconditioners, and eigensolvers for sparse linear systems. MAGMA-sparse implements the presented Krylov

solvers by interfacing to the CSR-based sparse matrix vector product available in NVIDIA’s cuSPARSE library [2] . For the vec-

tor updates and the dot products, algorithm-specific routines are used that merge multiple vector operations into a single

kernel [38] . This strategy is well known to reduce the main memory access compared to composing algorithms out of the

standard linear algebra building blocks [39] . To test the efficiency of our implementation, we examine the achieved memory

bandwidth performance for a 5-point stencil matrix with n = 9,0 0 0,0 0 0. In Table 1 we list the memory transfers needed by

the distinct implementations. Similar to the analysis conducted in [40] , it can be stated that all involved compute kernels

are memory bound. Precisely, the Roofline performance model [40] states that the performance of these kernels is limited

by the product of the computational intensity and the maximum attainable peak memory bandwidth. In terms of runtime,

this limit defines a lower bound equal to the ratio between the main memory transfer volume ( V ) and the attainable peak

transfer rate ( bw max ). For BiCGSTAB, CGS, and QMR, we count the memory transfers in a single iteration, generating always

two Krylov search direction. For the different shadow space dimensions s of IDR, we count the memory transfers needed in

one shadow space loop, generating s + 1 Krylov search directions. We use double precision in all computations, and store

the column-indexes and row-pointers needed for the SpMV using 32-bit integers. We enhance all methods with a scalar

Jacobi preconditioner (diagonal scaling). Although it is possible to merge the preconditioner application or the SpMV with

vector operations [41] , we refrain from this optimization step to maintain the flexibility of using a different preconditioner

or SpMV kernel. For this setting, the main memory transfers for one shadow space loop of IDR( s ) derive as [42] : 

V IDR (s ) = 8 ·

⎛ 

⎜ ⎜ ⎜ ⎝ 

(
9 

s 2 

2 

+ 55 

s 

2 

+ 22 

)
n 

︸ ︷︷ ︸ 
vector updates 

+ (1 . 5 nnz + 2 . 5 n ) · (s + 1) ︸ ︷︷ ︸ 
SpMV 

+ 5 n · (s + 1) ︸ ︷︷ ︸ 
Jacobi preconditioner 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. 

Similarly, the memory transfers in one iteration of BiCGSTAB, CGS, and QMR can be derived; see Table 1 . We notice that as-

sessing the efficiency of the Krylov methods using a main memory bandwidth analysis does not account for non-coalescent

memory access (e.g. in the SpMV kernel) or reduction operations like in the dot product. This favors algorithms where vec-

tor updates allowing for purely coalescent reads (axpy-like operations) have a more significant share of the computational

cost, see e.g. bandwidth results for QMR, and IDR( s ) using larger shadow space dimensions. Using a peak bandwidth of

bw max = 192 GB/s, which is what we achieved in bandwidth benchmarks on this architecture [42] , we obtain efficiency lev-

els around 60%–70% for all Krylov solver implementations. We did not include the incomplete factorization preconditioner
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Fig. 2. Statistics on how many of the 456 problems can be solved with the different solver/preconditioner configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ILU(0)) in this analysis, as the performance of sparse triangular solves is limited by the dependency graph of the spe-

cific sparsity structure. Typically, the performance of sparse triangular solves is much lower than the memory bandwidth.

MAGMA-sparse interfaces to the incomplete factorization routines available in NVIDIA’s cuSPARSE library [2] . These exploit

parallelism by using level-scheduling strategies, and achieve good performance for a large range of problems [43] . 

3.4. GPU hardware setup 

The GPU target architecture is an NVIDIA Tesla K40 GPU (Kepler microarchitecture) with a theoretical peak performance

of 1682 Gflop/s (double precision). The 12 GiB of GPU main memory can be accessed at a theoretical bandwidth of 288GB/s.

Transfer rates around 193GB/s were reported for bandwidth experiments [42] . The Krylov solvers we use keep all matrix and

vector data and most of the scalar values in the GPU memory. All vector operations are handled by the accelerator. For com-

pleteness, we nevertheless mention the host being an Intel Xeon E5 processor (Sandy Bridge). The MAGMA implementation

uses CUDA and cuSPARSE version 7.5 [2] . All reported data is the mean of three experiment runs. 

4. Experimental results 

4.1. Enhancing GPU-accelerated Krylov solvers with preconditioning 

In a first experiment, we consider the Krylov solvers separately, and assess the effect of preconditioning on the solvers’

numerical stability and time-to-solution performance. Fig. 2 visualizes for how many problems each Krylov method con-

verges, and how this number changes when enhancing the solver with a Jacobi preconditioner (diagonal scaling) or an

ILU(0) preconditioner. As expected from the results in [6] , the IDR(8) solver is the most robust method (in terms of numer-

ical stability) with respect to problem characteristics, when used without a preconditioner. Using a Jacobi preconditioner

significantly enhances the robustness of the CGS method. Compared to the unpreconditioned CGS, the Jacobi preconditioned

CGS converges for more than twice as many problems. A Jacobi preconditioner also improves the robustness for IDR( s ) and

QMR, but by a smaller margin. The Jacobi preconditioned BiCGSTAB solver does not converge for more problems than the

plain BiCGSTAB method. 

All solvers benefit from ILU preconditioning. Equipped with the ILU(0), the IDR(4) and IDR(8) solvers converge for all

problems, while IDR(2) converges for 430 of the 456 test cases. BiCGSTAB, CGS, and QMR are less robust to problem charac-

teristics, but they also benefit from ILU preconditioning and increase their success rate by about 30%. Specifically, in combi-

nation with an ILU(0) preconditioner, BiCGSTAB, CGS, and QMR converge for 407, 372, and 395 test problems, respectively.

A central observation of this data is that a Jacobi preconditioner has typically minor impact on robustness, while ILU(0)

preconditioning can significantly enhance the robustness of the Krylov methods. An exception is the CGS case, where the

Jacobi preconditioner also significantly improved the solver’s success rate. 

Although a Jacobi preconditioner fails to significantly improve the robustness of the Krylov solver, its usage can still be

beneficial due to performance aspects: the diagonal scaling is embarrassingly parallel, and the potentially faster convergence

can easily succeed in reducing the time-to-solution. This aspect is analyzed in Figs. 3 and 4 . For the test cases where both

the unpreconditioned and preconditioned solver converge, the speedup obtained from using the preconditioner is computed,

and the test cases are ordered by increasing speedup. This results in two characteristic graphs, the left side comparing

unpreconditioned with Jacobi preconditioning, the right side comparing unpreconditioned with ILU(0) preconditioning. The



38 H. Anzt et al. / Parallel Computing 68 (2017) 32–44 

)0(ULIibocaJ

BiCGSTAB

0 50 100 150 200
Test matrices

10-4

10-2

100

102

104

S
pe

ed
up

 fr
om

 P
re

co
nd

iti
on

in
g

0 50 100 150 200 250
Test matrices

10-4

10-2

100

102

104

S
pe

ed
up

 fr
om

 P
re

co
nd

iti
on

in
g

CGS

0 20 40 60 80 100 120
Test matrices

10-4

10-2

100

102

104

S
pe

ed
up

 fr
om

 P
re

co
nd

iti
on

in
g

0 20 40 60 80 100 120
Test matrices

10-4

10-2

100

102

104

S
pe

ed
up

 fr
om

 P
re

co
nd

iti
on

in
g

QMR

0 50 100 150 200 250
Test matrices

10-4

10-2

100

102

104

S
pe

ed
up

 fr
om

 P
re

co
nd

iti
on

in
g

0 50 100 150 200 250
Test matrices

10-4

10-2

100

102

104

S
pe

ed
up

 fr
om

 P
re

co
nd

iti
on

in
g

Fig. 3. Speedup obtained from using a Jacobi preconditioner (left side) or an ILU(0) preconditioner over the execution time of the unpreconditioned Krylov 

solver. Values smaller 1 indicate test cases where the preconditioner increased the solver execution time. 

 

 

 

 

data visualized on the left side in Figs. 3 and 4 show that Jacobi preconditioning is rarely harmful to the time-to-solution

performance, but can reduce the time-to-solution by up to two orders of magnitude. 

The situation is very different when enhancing BiCGSTAB, CGS, or QMR with an ILU(0) preconditioner. For those test ma-

trices where the unpreconditioned method converges, adding ILU(0) preconditioning typically increases the runtime, shown 

by speedups smaller than 1 on the right-hand side of Fig. 3 . This comes from the fact that the ILU(0) preconditioner im-

proves the convergence rate, but not enough to compensate for the difficult-to-parallelize sparse triangular solves in every
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Fig. 4. Speedup obtained from using a Jacobi preconditioner (left side) or an ILU(0) preconditioner over the execution time of the unpreconditioned Krylov 

solver. Values smaller 1 indicate test cases where the preconditioner increased the solver execution time. 

 

 

 

 

 

solver iteration. The iterations of the IDR( s ) solver are more expensive, accumulating multiple SpMV s with the system ma-

trix. Therefore, the impact of the expensive sparse triangular solves is damped, and more test cases benefit from ILU(0)

preconditioning, as shown in right-hand side of Fig. 4 . Nevertheless, when unpreconditioned IDR( s ) converges, it is not clear

whether ILU(0) preconditioning adds any performance benefits. Complementary to the results shown in Fig. 2 , we conclude

that Jacobi preconditioning typically improves performance of a GPU-accelerated Krylov method, while the performance

benefits of an ILU(0) preconditioner strongly depend on the characteristics of the test case. 
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Fig. 5. Number of problems where a certain solver is the fastest vs. the runtime of the fastest solver: for each problem, the fastest time to solution 

determines the location on the x-axis; the color code indicates which solver is the fastest. The solvers do not use any preconditioner. 
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Fig. 6. Number of problems where a certain solver is the fastest vs. the runtime of the fastest solver. The solvers use a Jacobi preconditioner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Krylov solver performance comparison 

Next, we compare the different Krylov methods among themselves. We map the number of test problems that a certain

solver is the performance winner to the runtime of the fastest solver in the set. In Fig. 5 we visualize the analysis for the un-

preconditioned Krylov methods. The light-weight CGS solver wins “easy” test cases that have a short runtime. The BiCGSTAB

solver is more robust, and suitable for “moderately difficult” problems. QMR increases the robustness further, however at

the cost of more expensive iterations. The performance winner for the difficult-to-solve problems are the IDR( s ) methods.

As expected from the results in [6] , increasing shadow space dimensions s come with increased robustness. Although the

test suite was based on the successful convergence of ILU(0) preconditioned IDR(4), IDR(8) is the performance winner for

the most difficult problems considered. 

The Jacobi preconditioner makes the CGS method very attractive for a large number of problems, shown by Fig. 6 . It

combines enhanced robustness with the benefits of light-weight iterations. BiCGSTAB and QMR are still suitable for more

difficult problems, while IDR(8) remains the method of choice for the hard problems. Fig. 7 visualizes how the distinct test

cases migrate from the fastest unpreconditioned solvers (left-hand side) to the fastest Jacobi preconditioned solvers (right-

hand side). Although the IDR( s ) solver is the most robust among the methods, for most problems there exists another solver

with a better time-to-solution performance. In the unpreconditioned scenario, the BiCGSTAB solver is the fastest method for

many test cases. Adding a Jacobi preconditioner, many of the test cases migrate to the CGS method. Similarly, some test cases
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Fig. 7. Choosing the runtime-optimal solver: the height of the bars indicates for how many of the 456 test matrices a certain configuration is the fastest. 

The solvers on the left do not use any preconditioner; the results on the right use a Jacobi preconditioner. 

Fig. 8. Choosing the runtime-optimal solver: the height of the bars indicates for how many of the 456 test matrices a certain configuration is the fastest. 

The solvers on the left do not use any preconditioner; the results on the right use an ILU(0) preconditioner. “None” means that no solver converged within 

the iteration limit. 

 

 

 

 

 

 

 

 

 

 

 

where QMR is the fastest solver in a unpreconditioned setting are solved faster by CGS when using Jacobi preconditioning.

Relating this observation to the statistics in Fig. 2 , the Jacobi preconditioner succeeds in adding the robustness needed for

convergence to the inherently fast CGS solver. Adding a Jacobi preconditioner decreases the number of problems that cannot

be solved by any of the methods considered. Generally, the diagonal scaling of a Jacobi preconditioner should not destroy

convergence, the few exceptions represent rounding effects. 

Fig. 8 shows the migration graph for enhancing the unpreconditioned solvers with an ILU(0) preconditioner. The re-

sults on the left-hand side are identical to the left-hand side in Fig. 7 , while the right-hand side is radically different:

the hard-to-parallelize sparse triangular solves become the performance bottleneck and, in many cases, the computation-

ally most expensive part of the iterations. This makes methods requiring fewer iterations to converge more attractive. The

share of test problems the BiCGSTAB and the CGS method are the fastest solver are very small for ILU(0) preconditioning.

The share of the ILU(0) preconditioned QMR is almost negligible. This is partly related to the fact that preconditioning the

QMR method requires also generating the transpose preconditioner [1] , making the preconditioner setup more expensive.
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Fig. 10. Speedup obtained from using IDR(8) instead of the fastest converging solver. On the left side of the top row, the solvers do not use any precon- 

ditioner, on the right side the solvers are enhanced with a Jacobi preconditioner. The bottom row is the ILU(0) preconditioned setting. Values smaller 1 

indicate test cases where using IDR(8) increases the solver execution time. 

 

 

 

 

 

Overall, IDR( s ) is the fastest method when using an ILU(0) preconditioner. Fig. 9 shows that larger shadow space dimensions

s should be preferred for challenging problems: despite the fact we based the test matrix suite on the convergence of ILU(0)

preconditioned IDR(4), ILU(0) preconditioned IDR(8) is the fastest solver for the “difficult” problems. 

Having identified IDR(8) as typically being the fastest solver in an ILU preconditioned setting, Fig. 10 quantifies the

drawback of choosing IDR(8) in a setting where a different Krylov method converges faster. For each test case, the speedup

of IDR(8) over the fastest converging solver is computed, and the values are visualized in increasing order. A speedup of 1
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reflects the case for IDR(8) being the fastest solver, while a “speedup” less than 1 reflects IDR(8) being slower than the (a

priori unknown) fastest solver. In the graph on the left-hand side of Fig. 10 , the solvers are used without a preconditioner,

on the right-hand side a Jacobi preconditioner is used. In both cases, about 80% of the test problems benefit from using

a different solver. For some problems, IDR(8) is up to an order of magnitude slower than the fastest solver. However, on

average, the speedup is about 0.5, which is consistent with the observation in [6] of IDR(8) being on average about twice

slower than the fastest solver. 

5. Summary 

In this paper we have investigated the effect of preconditioning GPU-accelerated Krylov solvers. For a large set of test

matrices, we have analyzed the effect of Jacobi- and ILU preconditioning on robustness and time-to-solution performance

for the BiCGSTAB, CGS, QMR, and IDR( s ) Krylov solvers. We have demonstrated that regarding performance aspects, the

GPU-accelerated Krylov solvers typically benefit from using the Jacobi preconditioner (embarrassingly parallel diagonal scal-

ing). Incomplete factorization preconditioning improves the robustness of the solvers, but the difficult-to-parallelize sparse

triangular solves can become a bottleneck increasing the overall solver runtime. In ILU preconditioned settings, IDR( s ) is

attractive as the preconditioner applications have a smaller share in the total iteration cost. Using a Jacobi preconditioner,

there typically exists a faster solver, but IDR(8) is on average only twice slower than the (unknown) optimal choice. This

good balance between robustness and performance makes IDR(8) – especially when enhanced with Jacobi- or ILU precon-

ditioning – an attractive choice in a black box scenario where no information about the optimal solver is available. We

emphasize that these findings are expected to carry beyond the specific architecture we used, as the implementations of

the distinct methods share very similar memory performance. 
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