
Cholesky Factorization on Batches of Matrices with Fixed and Variable Sizes
Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra

Innovative Computing Laboratory, University of Tennessee, USA

MOTIVATION
Many scientific applications require solving a number of
independent small-size problems, such as

– Astrophysics
– Quantum chemistry
– Metabolic networks
– Image and signal processing
– CFD and resulting PDEs through direct and multi-

frontal solvers

Such independent problems may have the same size
(batched routine) or different sizes (vbatched routine).
We address both situations.

INTRODUCTION
Taking Cholesky Factorization as a case study, we con-
sider problems of the form,

xPOTRF(A(1)
LDA1⇥N1

)! L1LT

1

xPOTRF(A(2)
LDA2⇥N2

)! L2LT

2

. . .

xPOTRF(A(k)
LDAk⇥Nk

)! L
k

LT

k

– Matrices A(1) through A(k) can have the same size
or different sizes.

– Design is based on BLAS routines, which can be
used for other factorizations (e.g. LU and QR)

ALGORITHMIC DESIGN
Factorization Loop: Blocked left-looking Cholesky
factorization with small blocking size nb.

Algorithm 1: The blocked Cholesky factorization.
for i 0 to m Step nb do

m̄ m� i;
if (i > 0) then

Panel Update Cm̄⇥nb = Cm̄⇥nb � Am̄⇥i ⇥ (BT)i⇥nb;
end
Tile Factorize (C1)nb⇥nb Cholesky(C1) (unblocked dpotf2);
Panel Factorize (C2)(m̄�nb)⇥nb C2(C

T
1)

�1 (dtrsm);
end

Two Kernel Design Approaches:
– Loop-inclusive: All factorization steps (iterations)

are executed in one kernel to maximize chances of
data reuse

– Loop-exclusive: Each iteration is executed in a sep-
arate kernel launch to optimize resource utilization

Design Methodology:
– Start with fixed size problems using loop-inclusive

and loop-exclusive kernels
– Performance tuning across different values of nb

– Use the best performing fixed-size kernel to support
variable size problems

Testing vbatched Routines
We use batches with size distributions that follow a uni-
form random distribution in the interval [1:N

max

], where
N

max

can be specified by the user.

OPTIMIZATION TECHNIQUES AND PERFORMANCE RESULTS
1. System Setup:
� 2 ⇥ 8-core Intel Sandy Bridge CPUs (Intel Xeon E5-2670, 2.6 GHz), 1 ⇥ Tesla K40c (745 MHz, ECC on) � CUDA Toolkit 7.0, Intel MKL 11.3.0
� Results are shown for single and double precisions on batches of 3000 matrices

2. Key Changes to Routine Interface (in C)
– Input batches are passed as double pointer arrays
– In case of vbatched routines, matrix sizes and leading dimensions are passed as integer arrays
– Additional parameters: Batch sizes, and maximum dimension(s) across all matrices (for vbatched routines only)

3. Symmetric Rank-k Updates
– The most dominating step (C = C - AT ⇥B)
– We use double buffers to hide memory latency
– We also take advantage of the overlap between A

and B to avoid redundant memory traffic
– Used in loop-inclusive and loop-exclusive kernels

nb

nb

A

B

C m

n

6. Final Fixed-size Performance
– Best competitor is a multicore CPU with dynamically

unrolled OpenMP loop (one core per matrix)
– Up to 3⇥/2⇥ speedups in SP/DP
– Improvement is more significant for smaller matrices

�����������	
 ����
����� ���������� ��������
 ������������	�
	
 ����������

�

��

���

���

���

���

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

������� ������ ���� �� ��� �����

�

��

���

���

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

������� ������ ���� �� ��� �����

9. Impact of ETM and Scheduling Types
– With greedy scheduling, ETM-agressive is up to

50%/45% faster than ETM-classic in SP/DP
– If lazy scheduling is utilized, it improves ETM-

classic by up to 87%/125% and ETM-agressive by up
to 35%/90% in SP/DP

�

��

���

���

���

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

������� ������ ���� �� ��� �����

���������� � ����
������� � ����
���������� � ������
������� � ������

�

��

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

������� ������ ���� �� ��� �����

���������� � ����
������� � ����
���������� � ������
������� � ������

4. Performance Tuning
– Loop inclusive(inc.)/exclusive(exc.) kernels are

tested against different values of nb

– Loop inclusive kernels do not utilize resources ef-
ficiently as the computation progresses, since more
threads become idle

�

���

���

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

������ ����

������
��� ���

������
��� ���

������
��� ���

�������
��� ����

�

��

���

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

������ ����

������
��� ���

������
��� ���

������
��� ���

�������
��� ����

7. Adding support for vbatched factorization
– Early Termination Scheme (ETM):

– A vbatched kernel is always considered accord-
ing to the largest matrix in the batch

– ETMs detect and terminate threads with no
work to do for smaller matrices in the batch

– ETM-classic: can only terminate full thread
blocks

– ETM-aggressive: can also terminate idle
threads in live thread blocks

10. Final vbatched Performance
– Similarly, more performance improvement is ob-

served in smaller matrices
– Up to 2.3⇥/1.88⇥ speedups in SP/DP against the

best competitor.

�����������	
� ���������� ��������� ������������� ��������	�
��
� ������	�����

�

��

���

���

���

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

������� ������ ���� �� ��� �����

�

��

���

���

���

� ��� ��� ��� ��� ���

�
��
��
�

������� ������ ���� �� ��� �����

5. Thread Block (TB) Level Concurrency
– If matrices are very small, we can assign multiple

matrices to a TB instead of one matrix
– Number of matrices per TB can be set dynamically

during run time based on the matrix size
– Up to 2.86⇥/1.34⇥ speedups in SP/DP

�

��

��

��

��

���

���

���

� �� �� �� �� �� ��

�
��
��
�

������ ����

��� � �
��� � �
��� � �
��� � �

�
��
��
��
��
��
��
��
��
��

� �� �� �� �� �� ��

�
��
��
�

������ ����

��� � �
��� � �
��� � �
��� � �

8. Adding support for vbatched factorization "cont."
– Greedy vs. Lazy Scheduling

– When should we start the factorization for
smaller matrices in the batch?

– Greedy scheduling: always start at the
0thiteration.

– Lazy scheduling: factorization of an arbitrary
N⇥N matrix starts at iteration

⌃
N

max

nb

⌥
�
⌃

N

nb

⌥
.

– Lazy scheduling tends to increase occupancy as
the computation progresses (i.e. as the matrices
gets smaller).

11. Future Directions
– Setting standard benchmarks for vbatched routines

based on distributions from real applications
– Setting a standard interface for vbatched routine (e.g.

like LAPACK)
– Error reporting to the user in batched routines (e.g.

if the factorization succeeds except for one matrix)

REFERENCES

[1] Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, and Jack Dongarra. Batched matrix Computations on Hardware
Accelerators based on GPUs. International Journal of High Performance Computing Applications, 2015.

[2] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. On the Development of Variable Size Batched Com-
putation for Heterogeneous Parallel Architectures. In 17th Workshop on Parallel and Distributed Scientific and Engineering Computing
(PDSEC), 2016. (submitted).

[3] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. Performance Tuning and Optimization of Fixed and
Variable Size Batched Cholesky Factorization on GPUs. In International Conference on Computational Science (ICCS), 2016. (submit-
ted).

ACKNOWLEDGEMENT
This material is based upon work supported by:

– The National Science Foundation under Grant No.
CSR 1514286

– NVIDIA
– The Department of Energy, and
– The Russian Scientific Foundation, Agreement N14-

11-00190

