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MOTIVATION
Many scientific applications require solving a number of
independent small-size problems, such as

– Astrophysics
– Quantum chemistry
– Metabolic networks
– Image and signal processing
– CFD and resulting PDEs through direct and multi-

frontal solvers

Such independent problems may have the same size
(batched routine) or different sizes (vbatched routine).
We address both situations.

INTRODUCTION
Taking Cholesky Factorization as a case study, we con-
sider problems of the form,
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– Matrices A(1) through A(k) can have the same size
or different sizes.

– Design is based on BLAS routines, which can be
used for other factorizations (e.g. LU and QR)

ALGORITHMIC DESIGN
Factorization Loop: Blocked left-looking Cholesky
factorization with small blocking size nb.

Algorithm 1: The blocked Cholesky factorization.
for i 0 to m Step nb do

m̄ m� i;
if (i > 0) then

Panel Update Cm̄⇥nb = Cm̄⇥nb � Am̄⇥i ⇥ (BT )i⇥nb;
end
Tile Factorize (C1)nb⇥nb  Cholesky(C1) (unblocked dpotf2);
Panel Factorize (C2)(m̄�nb)⇥nb  C2(C

T
1 )

�1 (dtrsm);
end

Two Kernel Design Approaches:
– Loop-inclusive: All factorization steps (iterations)

are executed in one kernel to maximize chances of
data reuse

– Loop-exclusive: Each iteration is executed in a sep-
arate kernel launch to optimize resource utilization

Design Methodology:
– Start with fixed size problems using loop-inclusive

and loop-exclusive kernels
– Performance tuning across different values of nb

– Use the best performing fixed-size kernel to support
variable size problems

Testing vbatched Routines
We use batches with size distributions that follow a uni-
form random distribution in the interval [1:N

max

], where
N

max

can be specified by the user.

OPTIMIZATION TECHNIQUES AND PERFORMANCE RESULTS
1. System Setup:
� 2 ⇥ 8-core Intel Sandy Bridge CPUs (Intel Xeon E5-2670, 2.6 GHz), 1 ⇥ Tesla K40c (745 MHz, ECC on) � CUDA Toolkit 7.0, Intel MKL 11.3.0
� Results are shown for single and double precisions on batches of 3000 matrices

2. Key Changes to Routine Interface (in C)
– Input batches are passed as double pointer arrays
– In case of vbatched routines, matrix sizes and leading dimensions are passed as integer arrays
– Additional parameters: Batch sizes, and maximum dimension(s) across all matrices (for vbatched routines only)

3. Symmetric Rank-k Updates
– The most dominating step (C = C - AT ⇥B)
– We use double buffers to hide memory latency
– We also take advantage of the overlap between A

and B to avoid redundant memory traffic
– Used in loop-inclusive and loop-exclusive kernels
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6. Final Fixed-size Performance
– Best competitor is a multicore CPU with dynamically

unrolled OpenMP loop (one core per matrix)
– Up to 3⇥/2⇥ speedups in SP/DP
– Improvement is more significant for smaller matrices
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9. Impact of ETM and Scheduling Types
– With greedy scheduling, ETM-agressive is up to

50%/45% faster than ETM-classic in SP/DP
– If lazy scheduling is utilized, it improves ETM-

classic by up to 87%/125% and ETM-agressive by up
to 35%/90% in SP/DP
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4. Performance Tuning
– Loop inclusive(inc.)/exclusive(exc.) kernels are

tested against different values of nb

– Loop inclusive kernels do not utilize resources ef-
ficiently as the computation progresses, since more
threads become idle
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7. Adding support for vbatched factorization
– Early Termination Scheme (ETM):

– A vbatched kernel is always considered accord-
ing to the largest matrix in the batch

– ETMs detect and terminate threads with no
work to do for smaller matrices in the batch

– ETM-classic: can only terminate full thread
blocks

– ETM-aggressive: can also terminate idle
threads in live thread blocks

10. Final vbatched Performance
– Similarly, more performance improvement is ob-

served in smaller matrices
– Up to 2.3⇥/1.88⇥ speedups in SP/DP against the

best competitor.
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5. Thread Block (TB) Level Concurrency
– If matrices are very small, we can assign multiple

matrices to a TB instead of one matrix
– Number of matrices per TB can be set dynamically

during run time based on the matrix size
– Up to 2.86⇥/1.34⇥ speedups in SP/DP
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8. Adding support for vbatched factorization "cont."
– Greedy vs. Lazy Scheduling

– When should we start the factorization for
smaller matrices in the batch?

– Greedy scheduling: always start at the
0thiteration.

– Lazy scheduling: factorization of an arbitrary
N⇥N matrix starts at iteration

⌃
N

max

nb

⌥
�
⌃

N

nb

⌥
.

– Lazy scheduling tends to increase occupancy as
the computation progresses (i.e. as the matrices
gets smaller).

11. Future Directions
– Setting standard benchmarks for vbatched routines

based on distributions from real applications
– Setting a standard interface for vbatched routine (e.g.

like LAPACK)
– Error reporting to the user in batched routines (e.g.

if the factorization succeeds except for one matrix)
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