Publications

Export 1280 results:
2022
Cao, Q., G. Bosilca, N. Losada, W. Wu, D. Zhong, and J. Dongarra, Evaluating Data Redistribution in PaRSEC,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 8, pp. 1856-1872, August 2022.  (3.19 MB)
Penchoff, D. A., C. C. Peterson, E. M. Wrancher, G. Bosilca, R. J. Harrison, E. F. Valeev, and P. D. Benny, Evaluations of molecular modeling and machine learning for predictive capabilities in binding of lanthanum and actinium with carboxylic acids,” Journal of Radioanalytical and Nuclear Chemistry, December 2022.
Dongarra, J., The evolution of mathematical software,” Communications of the ACM, vol. 65227, issue 12, pp. 66 - 72, December 2022.
Fortenberry, A., and S. Tomov, Extending MAGMA Portability with OneAPI,” The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC22), Ninth Workshop on Accelerator Programming Using Directives (WACCPD 2022), Dallas, TX, November 2022.  (999.19 KB)
Fortenberry, A., S. Tomov, and K. Wong, Extending MAGMA Portability with OneAPI , Dallas, TX, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC22), ACM Student Research Competition, November 2022.  (1.33 MB)
Ayala, A., S. Tomov, P. Luszczek, S. Cayrols, G. Ragghianti, and J. Dongarra, FFT Benchmark Performance Experiments on Systems Targeting Exascale,” ICL Technical Report, no. ICL-UT-22-02, March 2022.  (5.87 MB)
Cao, Q., R. Alomairy, Y. Pei, G. Bosilca, H. Ltaief, D. Keyes, and J. Dongarra, A Framework to Exploit Data Sparsity in Tile Low-Rank Cholesky Factorization,” IEEE International Parallel and Distributed Processing Symposium (IPDPS), July 2022.  (1.03 MB)
Schuchart, J., P. Nookala, M. Mahdi Javanmard, T. Herault, E. F. Valeev, G. Bosilca, and R. J. Harrison, Generalized Flow-Graph Programming Using Template Task-Graphs: Initial Implementation and Assessment,” 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Lyon, France, IEEE, July 2022.
Anzt, H., T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak, T. Ribizel, Y. Mike Tsai, and E. S. Quintana-Ortí, Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing,” ACM Transactions on Mathematical Software, vol. 48, issue 12, pp. 1 - 33, March 2022.  (4.2 MB)
Cojean, T., Y-H. Mike Tsai, and H. Anzt, Ginkgo—A math library designed for platform portability,” Parallel Computing, vol. 111, pp. 102902, February 2022.
Bouteiller, A., and G. Bosilca, Implicit Actions and Non-blocking Failure Recovery with MPI,” 2022 IEEE/ACM 12th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS), Dallas, TX, USA, IEEE, January 2023, 2022.
Whitlock, M., N. Morales, G. Bosilca, A. Bouteiller, B. Nicolae, K. Teranishi, E. Giem, and V. Sarkar, Integrating process, control-flow, and data resiliency layers using a hybrid Fenix/Kokkos approach,” 2022 IEEE International Conference on Cluster Computing (CLUSTER 2022), Heidelberg, Germany, September 2022.
Cayrols, S., J. Li, G. Bosilca, S. Tomov, A. Ayala, and J. Dongarra, Lossy all-to-all exchange for accelerating parallel 3-D FFTs on hybrid architectures with GPUs,” 2022 IEEE International Conference on Cluster Computing (CLUSTER), pp. 152-160, September 2022.
Cayrols, S., J. Li, G. Bosilca, S. Tomov, A. Ayala, and J. Dongarra, Mixed precision and approximate 3D FFTs: Speed for accuracy trade-off with GPU-aware MPI and run-time data compression,” ICL Technical Report, no. ICL-UT-22-04, May 2022.  (706.14 KB)
Bak, S., C. Bertoni, S. Boehm, R. Budiardja, B. M. Chapman, J. Doerfert, M. Eisenbach, H. Finkel, O. Hernandez, J. Huber, et al., OpenMP application experiences: Porting to accelerated nodes,” Parallel Computing, vol. 109, March 2022.
Du, Y., G. Pallez, L. Marchal, and Y. Robert, Optimal Checkpointing Strategies for Iterative Applications,” IEEE Transactions on Parallel Distributed Systems, vol. 33, issue 3, pp. 507-522, March 2022.  (1.47 MB)
Sid-Lakhdar, W. M., S. Cayrols, D. Bielich, A. Abdelfattah, P. Luszczek, M. Gates, S. Tomov, H. Johansen, D. Williams-Young, T. A. Davis, et al., PAQR: Pivoting Avoiding QR factorization,” ICL Technical Report, no. ICL-UT-22-06, June 2022.  (364.85 KB)
Ayala, A., S. Tomov, M. Stoyanov, A. Haidar, and J. Dongarra, Performance Analysis of Parallel FFT on Large Multi-GPU Systems,” 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lyon, France, IEEE, August 2022.
Danalis, A., and H. Jagode, Performance Application Programming Interface,” Accelerated Computing with HIP: Sun, Baruah and Kaeli, December 2022.
Tsai, Y. M., T. Cojean, and H. Anzt, Porting Sparse Linear Algebra to Intel GPUs,” Euro-Par 2021: Parallel Processing Workshops, vol. 13098, Lisbon, Portugal, Springer International Publishing, pp. 57 - 68, June 2022.
Funk, Y., M. Götz, and H. Anzt, Prediction of Optimal Solvers for Sparse Linear Systems Using Deep Learning,” 2022 SIAM Conference on Parallel Processing for Scientific Computing (PP), Philadelphia, PA, Society for Industrial and Applied Mathematics, pp. 14 - 24.
Tsai, Y-H. M., T. Cojean, and H. Anzt, Providing performance portable numerics for Intel GPUs,” Concurrency and Computation: Practice and Experience, vol. 17, October 2022.  (3.16 MB)
Schuchart, J., P. Nookala, T. Herault, E. F. Valeev, and G. Bosilca, Pushing the Boundaries of Small Tasks: Scalable Low-Overhead Data-Flow Programming in TTG,” 2022 IEEE International Conference on Cluster Computing (CLUSTER), Heidelberg, Germany, IEEE, September 2022.
Nance, D., S. Tomov, and K. Wong, A Python Library for Matrix Algebra on GPU and Multicore Architectures,” 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, IEEE, December 2022.  (414.36 KB)
Murray, R., J. Demmel, M. W. Mahoney, B. N. Erichson, M. Melnichenko, O. Asif Malik, L. Grigori, P. Luszczek, M. Dereziński, M. E. Lopes, et al., Randomized Numerical Linear Algebra: A Perspective on the Field with an Eye to Software,” University of California, Berkeley EECS Technical Report, no. UCB/EECS-2022-258: University of California, Berkeley, November 2022.  (1.05 MB) (1.54 MB)
Reed, D., D. Gannon, and J. Dongarra, Reinventing High Performance Computing: Challenges and Opportunities,” ICL Technical Report, no. ICL-UT-22-03, March 2022.  (1.36 MB)
Dongarra, J., and A. Geist, Report on the Oak Ridge National Laboratory's Frontier System,” ICL Technical Report, no. ICL-UT-22-05, May 2022.  (16.87 MB)
Cao, Q., S. Abdulah, R. Alomairy, Y. Pei, P. Nag, G. Bosilca, J. Dongarra, M. G. Genton, D. Keyes, H. Ltaief, et al., Reshaping Geostatistical Modeling and Prediction for Extreme-Scale Environmental Applications,” 2022 International Conference for High Performance Computing, Networking, Storage and Analysis (SC22), Dallas, TX, IEEE Press, November 2022.
Agullo, E., M. Altenbernd, H. Anzt, L. Bautista-Gomez, T. Benacchio, L. Bonaventura, H-J. Bungartz, S. Chatterjee, F. M. Ciorba, N. DeBardeleben, et al., Resiliency in numerical algorithm design for extreme scale simulations,” The International Journal of High Performance Computing Applications, vol. 36371337212766180823, issue 2, pp. 251 - 285, March 2022.
Luszczek, P., and C. Brown, Surrogate ML/AI Model Benchmarking for FAIR Principles' Conformance,” 2022 IEEE High Performance Extreme Computing Conference (HPEC): IEEE, September 2022.
Lindquist, N., M. Gates, P. Luszczek, and J. Dongarra, Threshold Pivoting for Dense LU Factorization,” ScalAH22: 13th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Heterogeneous Systems , Dallas, Texas, IEEE, November 2022.  (721.77 KB)
Zhong, D., Q. Cao, G. Bosilca, and J. Dongarra, Using long vector extensions for MPI reductions,” Parallel Computing, vol. 109, pp. 102871, March 2022.
2021
Kovalchuk, S. V., V. V. Krzhizhanovskaya, PMA. Sloot, G. Závodszky, M. H. Lees, M. Paszyński, and J. Dongarra, 20 years of computational science: Selected papers from 2020 International Conference on Computational Science,” Journal of Computational Science, vol. 53, pp. 101395–101395, 2021.
Ayala, A., S. Tomov, A. Haidar, M.. Stoyanov, S. Cayrols, J. Li, G. Bosilca, and J. Dongarra, Accelerating FFT towards Exascale Computing : NVIDIA GPU Technology Conference (GTC2021), 2021.  (27.23 MB)
Ayala, A., S. Tomov, M. Stoyanov, A. Haidar, and J. Dongarra, Accelerating Multi - Process Communication for Parallel 3-D FFT,” 2021 Workshop on Exascale MPI (ExaMPI), St. Louis, MO, USA, IEEE, December 2021.
Lindquist, N., P. Luszczek, and J. Dongarra, Accelerating Restarted GMRES with Mixed Precision Arithmetic,” IEEE Transactions on Parallel and Distributed Systems, June 2021.  (572.4 KB)
Caron, E., Y. Caniou, A K W. Chang, and Y. Robert, Budget-aware scheduling algorithms for scientific workflows with stochastic task weights on IaaS Cloud platforms,” Concurrency and Computation: Practice and Experience, vol. 33, no. 17, pp. e6065, 2021.  (1.99 MB)
Schuchart, J., P. Samfass, C. Niethammer, J. Gracia, and G. Bosilca, Callback-based completion notification using MPI Continuations,” Parallel Computing, vol. 21238566, issue 0225, pp. 102793, May Jan.
Herault, T., Y. Robert, G. Bosilca, R. Harrison, C. Lewis, E. Valeev, and J. Dongarra, Distributed-Memory Multi-GPU Block-Sparse Tensor Contraction for Electronic Structure,” 35th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2021), Portland, OR, IEEE, May 2021.
Bosilca, G., T. Herault, and J. Dongarra, DTE: PaRSEC Enabled Libraries and Applications : 2021 Exascale Computing Project Annual Meeting, April 2021.  (3.24 MB)
Bathie, G., L. Marchal, Y. Robert, and S. Thibault, Dynamic DAG scheduling under memory constraints for shared-memory platforms,” Int. J. of Networking and Computing, vol. 11, no. 1, pp. 27-49, 2021.  (574.64 KB)
Kolev, T., P. Fischer, M. Min, J. Dongarra, J. Brown, V. Dobrev, T. Warburton, S. Tomov, M. S. Shephard, A. Abdelfattah, et al., Efficient exascale discretizations: High-order finite element methods,” The International Journal of High Performance Computing Applications, pp. 10943420211020803, 2021.
Barry, D., A. Danalis, and H. Jagode, Effortless Monitoring of Arithmetic Intensity with PAPI’s Counter Analysis Toolkit,” Tools for High Performance Computing 2018/2019: Springer, pp. 195–218, 2021.
Gao, Y., G. Pallez, Y. Robert, and F. Vivien, Evaluating Task Dropping Strategies for Overloaded Real-Time Systems (Work-In-Progress),” 42nd Real Time Systems Symposium (RTSS): IEEE Computer Society Press, 2021.  (217.13 KB)
Iqbal, Z., S. Nooshabadi, I. Yamazaki, S. Tomov, and J. Dongarra, Exploiting Block Structures of KKT Matrices for Efficient Solution of Convex Optimization Problems,” IEEE Access, 2021.  (1.35 MB)
Anzt, H., N. Beams, T. Cojean, F. Göbel, T. Grützmacher, A. Kashi, P. Nayak, T. Ribizel, and Y. M. Tsai, Gingko: A Sparse Linear Algebrea Library for HPC : 2021 ECP Annual Meeting, April 2021.  (893.04 KB)
Abdelfattah, A., V. Barra, N. Beams, R. Bleile, J. Brown, J-S. Camier, R. Carson, N. Chalmers, V. Dobrev, Y. Dudouit, et al., GPU algorithms for Efficient Exascale Discretizations,” Parallel Computing, vol. 108, pp. 102841, 2021.
Ayala, A., S. Tomov, P. Luszczek, S. Cayrols, G. Ragghianti, and J. Dongarra, Interim Report on Benchmarking FFT Libraries on High Performance Systems,” Innovative Computing Laboratory Technical Report, no. ICL-UT-21-03: University of Tennessee, July 2021.  (2.68 MB)
Hori, A., E. Jeannot, G. Bosilca, T. Ogura, B. Gerofi, J. Yin, and Y. Ishikawa, An international survey on MPI users,” Parallel Computing, vol. 108, December 2021.  (1.49 MB)
Penchoff, D. A., E. Valeev, H. Jagode, P. Luszczek, A. Danalis, G. Bosilca, R. J. Harrison, J. Dongarra, and T. L. Windus, An Introduction to High Performance Computing and Its Intersection with Advances in Modeling Rare Earth Elements and Actinides,” Rare Earth Elements and Actinides: Progress in Computational Science Applications, vol. 1388, Washington, DC, American Chemical Society, pp. 3-53, October 2021.

Pages