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Abstract
This work focuses on dynamic DAG scheduling under memory constraints. We target a

shared-memory platform equipped with p parallel processors. The goal is to bound the maximum
amount of memory that may be needed by any schedule using p processors to execute the DAG.
We refine the classical model that computes maximum cuts by introducing two types of memory
edges in the DAG, black edges for regular precedence constraints and red edges for actual
memory consumption during execution. A valid edge cut cannot include more than p red edges.
This limitation had never been taken into account in previous works, and dramatically changes
the complexity of the problem, which was polynomial and becomes NP-hard. We introduce an
Integer Linear Program (ILP) to solve it, together with an efficient heuristic based on rounding
the rational solution of the ILP. In addition, we propose an exact polynomial algorithm for
series-parallel graphs. We further study the extension of the approach where the scheduler is
dynamically constrained to select tasks (among ready tasks) so that the total memory used does
not exceed some threshold. We provide an extensive set of experiments, both with randomly-
generated graphs and with graphs arising from practical applications, which demonstrate the
impact of resource constraints on peak memory usage.

Keywords: Workflow, task graph, dynamic scheduler, memory constraint, complexity.

1 Introduction
In the last decade, task systems have become ubiquitous to deploy scientific applications on large-
scale parallel platforms. In such systems, the application is represented by a Directed Acyclic Graph

1A short version of this work [5] has appeared in the proceedings of the APDCM’20 workshop (colocated with
IPDPS’20)
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(DAG) of tasks, where the nodes represent the tasks (a computational kernel composed of a sequential
set of operations to be applied to the input data), and the edges represent the dependencies between
the tasks. The set of dependencies defines a partial order of execution. The problem is to map
the tasks onto a set of p computing processors. In this paper, we target shared-memory platforms,
where available processors consist of dozens of cores that share a main memory. A traditional
objective is to determine a scheduling that minimizes the total execution time, or makespan. The
makespan minimization problem has received considerable attention in the scheduling literature. On
the theoretical side, many complexity results establish NP-hardness and inapproximability results.
On the more practical side, several list heuristics2 have been developed to achieve close-to-optimal
makespans. These heuristics typically aim at minimizing the critical path of the schedule, and
use estimations of task priorities such as bottom levels [16, 40]. However, all these heuristics are
designed statically, meaning that they assign tasks to processors in a pre-determined ordering, before
the beginning of the parallel execution. It turns out such static strategies are unlikely to reach their
expected performance, and this for many reasons: (i) task duration estimates are known to be
inaccurate and may be affected by unexpected preemptions by the system; (ii) data transfer costs
on the platform are hard to correctly model and significantly vary from one execution to another,
because they strongly depend upon link contention; and (iii) the resulting small estimation errors are
likely to accumulate and to cause large delays. Altogether, static heuristics end up making wrong
decisions!

This explains why most runtime systems [22, 4, 31, 8, 20, 33] rely on dynamic scheduling, where
task allocations and their execution ordering are decided at runtime, based on the system state and
unexpected events. These runtime systems dynamically maintain the list of tasks that are ready
for execution, and assign them on-the-fly to processors, thereby accurately balancing the workload.
However, not all dynamic schedules are equally good, because of memory constraints. Intuitively,
a dynamic scheduling can be seen as a parallel traversal of the task graph, with all processors
progressing simultaneously on different paths. At any time-step in the execution, the amount of
memory needed for the traversal depends upon the input and output data of the tasks that are active
at that step (see Section 3 for a detailed description), and this memory amount should never exceed
the maximum memory made available to the application. Otherwise, the traversal will require the
use of swap mechanisms or out-of-core execution, which will dramatically (and negatively) impact
the achieved makespan [34, 1].

Consider a task graph whose internal nodes require a large volume of temporary data, such
as graphs arising from multifrontal solvers [3]. Improper scheduling decisions may lead dynamic
schedules to hit a memory wall at some step while everything was going fine in the previous steps;
the dynamic schedule suddenly reaches a state where any further decision (any choice of the next task
to execute) will exceed the amount of available memory. This unfortunate scenario arises because
dynamic schedules usually consider only tasks that are ready for execution, and have thus a very
limited insight into the fraction of the task graph that is yet to be discovered and processed. To
avoid such a pitfall, some global information on the task graph is required to guide the dynamic
schedule and enforce safe execution paths.

In summary, dynamic scheduling is needed for performance, but one should ensure that any
dynamic schedule that can be produced by the runtime system will never exceed the total amount
of memory available to the application. There are few existing studies that take dynamic memory
footprint into account when scheduling task graphs, as detailed below in Section 2. In our previous
work [29, 30], we have proposed an approach to ensure that any dynamic schedule never exceeds the
available memory. In a nutshell, the idea is to introduce fictitious dependencies in the task graph
to cope with memory constraints: these additional edges restrict the set of valid schedules and,
in particular, forbid the concurrent execution of too many memory-intensive tasks. Formally, the
additional edges are introduced to decrease the value of the maximal directed cut of the task graph,

2A list heuristic is a greedy scheduling heuristic that never keeps processors idle voluntarily; at any time-step, if
there is a task ready to execute and an idle processor, then the task is assigned to that processor. In the general
case, there are more ready tasks than idle processors, and the heuristic has to make choices. Obviously, this greedy
approach is not always optimal, and there are cases where any list-scheduling heuristic achieves a makespan almost
as twice the optimal. See [10] for a survey.
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where the cut represents the total memory currently used after executing some tasks (those on one
side of the cut) and before executing the rest of the tasks (those on the other side of the cut). There
is a price to pay: each additional edge adds a fictitious dependence constraint, thereby limiting the
degree of parallelism in the execution. We provide a detailed overview of this approach in Section 3.

However, this previous work [29, 30] does not account for resource limitation: there are only p
processors, hence no more than p tasks can be processed concurrently. In terms of memory usage,
ignoring resource limitation translates into considering too many potential cuts, thereby requiring
too many fictitious edges, which unduly constraints the dynamic schedules. In this paper, we refine
the standard model for memory-aware scheduling and introduce the first mechanism to take resource
limitation into account. Our new model involves two types of memory edges in the DAG, black edges
for regular precedence constraints, and red edges for actual memory consumption during execution.
Then a valid edge cut cannot include more than p red edges. This limitation dramatically changes
the complexity of the problem, which is polynomial with a single edge type and becomes NP-hard
with two edge types. We provide an optimal solution for series-parallel graphs and an efficient
heuristic for arbitrary graphs. The main contributions of this paper are the following:

• We introduce a new model with colored edges to account for resource constraints when com-
puting peak memory;

• We show that the optimization problem becomes NP-complete, but we introduce an Integer
Linear Program (ILP) to solve it, together with an efficient heuristic based on rounding the
rational solution of the ILP. We also propose an exact polynomial algorithm for series-parallel
graphs (SPGs);

• We further study the extension for the approach where the scheduler is dynamically constrained
to select tasks (among ready tasks) such that the total memory used does not exceed some
memory amount ;

• We provide an extensive set of experiments, both with randomly-generated graphs and with
graphs arising from practical applications, that demonstrate the impact of resource constraints
on peak memory usage.

The rest of the paper is organized as follows. We first briefly review the existing work on memory-
aware task graph scheduling in Section 2. We provide background on memory-aware scheduling in
Section 3. Then, Section 4 is the core of the paper: we introduce the new model, assess its complexity,
provide an optimal algorithm for Series Parallel Graphs, and a heuristic for general graphs. Section 5
studies the complexity of the approach where the scheduler is dynamically constrained to select tasks
(among ready tasks) so that the total memory used does not exceed some threshold. Section 6 is
devoted to simulations both with randomly-generated graphs and with graphs arising from practical
applications; we compare the solution computed by an ILP solver together with the solution found
by an efficient polynomial-time heuristic. Finally, we conclude and give hints for future work in
Section 7.

2 Related Work

Memory and storage have always been limiting parameters for large computations, as outlined by the
pioneering work of Sethi and Ullman [38] on register allocation for task trees, modeled as a pebble
game. The problem of determining whether a directed acyclic graph can be pebbled with a given
number of pebbles (i.e., executed with a given number of registers) has been shown NP-complete by
Sethi [37] if no vertex is pebbled more than once (the general problem allowing recomputation, that
is, re-pebbling a vertex which have been pebbled before, has been proven Pspace complete [21]).

This model was later translated to the problem of scheduling a task graph under memory or
storage constraints for scientific workflows whose tasks require large I/O data. Such workflows arise
in many scientific fields, such as image processing, genomics, and geophysical simulations. In several
cases, the underlying task graph is a tree, with all dependencies oriented towards the root, which
notably simplifies the problem: this is the case for sparse direct solvers [28] but also in quantum
chemistry computations [27]. For such trees, memory-aware parallel schedulers have been proposed
in [17], and the impact of processor mapping on memory consumption has been studied in [1].
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The problem of general task graphs handling large data has been identified by Ramakrishnan
et al. [34] who introduced clean-up jobs to reduce the memory footprint and propose some simple
heuristics. Their work was continued by Bharathi et al. [6] who developed genetic algorithms to
schedule such workflows. More recently, runtime schedulers have also been confronted to the problem:
in the StarPU task-based runtime system, attempts have been made to reduce memory consumption
by throttling the task submission rate [36].

As explained in the introduction, we have previously proposed a way to restrict the potentially
large memory needed for the traversal of a task graph by adding edges that correspond to fictitious
dependencies [29, 30]. Our method consists in first computing the worst achievable memory of
any parallel traversal, using either a linear program or a min-flow algorithm. Then if the previ-
ous computation detects a potential situation when the memory exceeds what is available on the
platform, we add a fictitious edge in order to make this situation impossible to reach in the new
graph. This study is inspired by the work of Sbîrlea et al. [35]. In that study, the authors focus
on a different model, in which all data have the same size (as for register allocation). They target
smaller-grain tasks in the Concurrent Collections (CnC) programming model [9], a stream/dataflow
programming language. Their objective is, just as ours, to schedule a DAG of tasks using a limited
memory. To this purpose, they associate a color to each memory slot and then build a coloring
of the data, in which two data items with the same color cannot coexist. If the number of colors
is not sufficient, additional dependence edges are introduced to prevent too many data items to
coexist. These additional edges respect a pre-computed sequential schedule to ensure acyclicity. An
extension to support data of different sizes is proposed, which conceptually allocates several colors
to a single data, but is only suitable for a few distinct sizes.

While our previous study [29, 30] is a first step towards the design of efficient memory-bounded
dynamic schedulers, it suffers from major shortcomings that prevents its use in actual runtime
schedulers:

• First, the running time of the algorithm is too high: computing the worst possible memory,
while done in polynomial time, is expensive (O(n3) for a dense graph with n vertices), and it
has to be called after each edge insertion, so potentially O(n2) times.

• Second, the algorithm assumes an unlimited number of processors, and thus the simultaneous
execution of infinitely many tasks. Thus, it dramatically overestimates the amount of memory
that may actually be needed by a parallel processing of the DAG.

In the present work, we alleviate both problems, through a new model to finely take the number of
processors into account, and a new algorithm with much reduced complexity for a special case of
task graphs (series-parallel graphs).

Finally, a recent paper studies the problem of computing the maximum memory of a multi-
threaded computation [26]. Their model is more complex and dedicated to Cilk programs, with the
objective to derive low-complexity algorithms for this problem (typically linear-time algorithms).

3 Background

In Section 3.1, we introduce the SimpleDataFlowModel [29, 30] to study memory usage for
general DAGs. This model is a natural extension of the original pebble game [38], and of the model
introduced by Liu for tree graphs [28]. Then in Section 3.2, we discuss how to emulate more realistic
models, and outline the limitations of the current approach.

3.1 The SimpleDataFlowModel

The target application is described by a workflow of tasks whose precedence constraints form a
DAG G = (V,E). Each node i ∈ V represents a task and each edge e ∈ E represents a precedence
constraint, expressed in the form of output and input data. The processing time necessary to
complete a task i ∈ V is denoted by wi. The memory usage of the computation is modeled only by
the size of the data produced by the tasks and represented by the edges. Specifically, for each edge
e = (i, j), we denote by me or mi,j the size of the data produced by task i for task j. We assume
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that G contains a single source node s and a single sink node t; otherwise, one can add such nodes
along with appropriate edges of weight zero. An example of such a graph is illustrated in Figure 1.
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Figure 1: Example of a workflow, (red) edge labels represent the size mi,j of associated data, while
(blue) node labels represent their computation weight wi.

Memory consumption rules are remarkably simple in the SimpleDataFlowModel. In the
model, at the beginning of the execution of a task i, all input data of i are immediately deleted
from the memory, while all its output data are allocated to the memory. We introduce the following
definitions for the total input and output size of a node i ∈ V :

Inputs (i) =
∑

j|(j,i)∈E

mj,i, Outputs (i) =
∑

j|(i,j)∈E

mi,j .

Now, the total amount of memoryMused needed to store all necessary data is transformed as follows
when task i is executed:

Mused ←Mused − Inputs (i) + Outputs (i) .

The SimpleDataFlowModel may seem unrealistic, because when we start executing a task, its
inputs are immediately deleted and we only allocate memory for its outputs. In many scientific
applications, it is required to store both the inputs and the outputs throughout the execution of
the task, and maybe to allocate space for some temporary data internal to the task. Fortunately,
many complex memory behaviors, including the latter one with input, output and temporary data
co-existing in memory, can be emulated in the SimpleDataFlowModel, via some elementary
transformations of the input DAG. Together with its simplicity, this versatility explains the appeal
of the SimpleDataFlowModel and its usage in the literature [28, 29, 30].

We detail elementary transformations to account for more complex memory consumption rules in
Section 3.2. Beforehand, we explain how to estimate peak memory usage in the SimpleDataFlow-
Model. A schedule or parallel execution of a DAG with p processors is defined by:

• An allocation µ of the tasks onto the processors (task i is computed on processor µ(i));
• The starting times σ of the tasks (task i starts at time σ(i)).

As usual, a valid schedule ensures that data dependencies are satisfied (σ(j) ≥ σ(i) + wi whenever
(i, j) ∈ E) and that processors compute a single task at each time step (if µ(i) = µ(j), then
σ(j) ≥ σ(i) + wi or σ(i) ≥ σ(j) + wj). When considering parallel executions, we assume that all
processors use the same shared memory, whose size is limited. We say that the data associated to
the edge (i, j) is active at a given time-step if the execution of i has started but not that of j. This
means that the (output) data of i is present in memory.

We now compare parallel and sequential schedules. A sequential schedule S of a DAG G is
defined by a total order σ of its tasks. Clearly, the memory used by a sequential schedule at a given
time-step is the sum of the sizes of the active data. The peak memory of such a schedule is the
maximum memory used during its execution, which is given by:

Mpeak(σ) = max
i

∑
j s.t. σ(j)≤σ(i)

Outputs (j)− Inputs (j) (1)

where the set {j s.t. σ(j) ≤ σ(i)} represents the set of tasks started before task i, including itself.
Equation (1) demonstrates the simplicity of the SimpleDataFlowModel, where input data are
replaced by output data as the execution progresses.
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Furthermore, Equation (1) allows us to state a prominent feature of the SimpleDataFlow-
Model: there is no difference between sequential schedules and parallel executions as far as memory
is concerned! More precisely, for each parallel execution (µ, σ), there exists a sequential schedule
with equal peak memory: simply consider a sequential schedule that starts tasks in the same order
as the parallel execution (see the detailed proof in [30]). A key consequence is that we can bound
the maximum memory of any parallel execution: it is equivalent to computing the peak memory
of a sequential schedule. Then, to compute the peak memory of a sequential schedule, we define a
topological cut C = (S, T ) of a DAG G as a partition of G in two sets of nodes S and T such that
either S or T is empty (degenerate case), or otherwise s ∈ S, t ∈ T , and no edge is directed from a
node of T to a node of S (regular case). An edge (i, j) belongs to the cut if i ∈ S and j ∈ T . The
weight M(C) of a topological cut C is the sum of the weights of the edges belonging to the cut.
For instance, in the graph of Figure 1, the cut ({s, a, b}, {c, d, t}) is a topological cut of weight 11.
Note that this cut would not be a topological cut if the edge (d, a) was present in the graph. In the
SimpleDataFlowModel, the memory used at a given time is equal to the sum of the sizes of the
active output data, which depends solely on the set of nodes that have been executed or initiated.
Therefore, the maximal peak memory of a DAG is equal to the maximum weight of a topological cut.
It turns out that there exists an algorithm to compute a maximal topological cut with polynomial
complexity O

(
|V ||E| log

(
|V |2/|E|

))
[30]. As stated in the introduction, if the maximal topological

cut exceeds the total memory available, we have proposed in our previous work to add fictitious
edges that will go backwards (from T to S) and will decrease the weight of the cut. Unfortunately,
the approach is very costly [29, 30]: we may need to insert O(|V |2) edges, each at a cost O(|V |3) if
the DAG is dense (with |E| = Θ(|V |2)).

3.2 Emulation of More Realistic Models

As explained above, the SimpleDataFlowModel does not account for the fact that inputs and
outputs of a given task often reside in memory simultaneously. However, this is a common behavior
for scientific applications, and some studies [25] further account for some temporary data mtemp

i

that has to be in memory when processing task i (in addition to task inputs and outputs). The
memory needed for processing task i becomes Inputs (i) +mtemp

i +Outputs (i). Such a behavior can
be emulated in the SimpleDataFlowModel, as illustrated on Figure 2. Each task i is split into
two nodes i1 and i2. We transform all edges (i, j) in edges (i2, j), and edges (k, i) in edges (k, i1).
We also add an edge (i1, i2) with an associated data of size Inputs (i) +mtemp

i +Outputs (i). Task i1
represents the allocation of the data needed for the computation, as well as the computation itself,
and its weight is thus wi1 = wi. Task i2 stands for the deallocation of the input and temporary data
and has weight wi2 = 0.

i

wi = 10, mtemp
i = 1

2 3
i1

10

i2

0
2 6 3

Figure 2: Transformation of a task as in [25] (left) to the SimpleDataFlowModel (right).

After this transformation, the graph includes two types of edges. The edges that were originally
present in the graph and stand for regular dependencies between tasks are called the black edges.
The edges that have been added to represent computations are called the red edges. Both edge types
have different roles. In particular, there cannot be more than p red edges in a cut representing an
actual state of a parallel computation of the graph with p processors. We now understand another
limitation of the SimpleDataFlowModel: while it can emulate parallel executions with realistic
memory rules, computing the maximum cut of the transformed graph will only provide a loose
upper bound of the maximum memory needed by any dynamic schedule. In other words, we can
still compute the maximum cut of the transformed graph, but it will overestimate the amount of
memory that may actually be needed during a parallel execution of the DAG. One major contribution
of this paper is to introduce a new framework which distinguishes between black and red edges to
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account for resource constraints.

4 Resource Constraints
We formally state the optimization problem in Section 4.1 and assess its complexity in Section 4.2
for general graphs. We also formulate the problem as the solution of an Integer Linear Program
(ILP) in Section 4.3, and we introduce an efficient heuristic. Finally, we give an efficient algorithm
to solve the problem for series-parallel graphs, or SPGs, in Section 4.4.

4.1 Optimization Problem
As outlined in Section 3.2, when we transform an edge-weighted DAG G to the SimpleDataFlow-
Model, the resulting graph contains two different types of edges: black edges, that correspond to
precedence constraints (edges of G), and red edges, that represent computations (vertices of G).
Recall that the memory weight of computation edges is the sum of the memory used by the input,
the output and temporary data of the computation. Therefore, the weight of red edges will likely
be larger than that of black edges, which only carry the weight of input or output data.

The max-cut of the graph may well go through an arbitrary number of red edges. However,
the program is scheduled on a platform with p processors, hence at most p computations can be
executed in parallel. Therefore, the max-cut is an overestimation of maximum memory usage of the
program, and the difference may be quite large especially because red edges have larger weights.
Figure 3 illustrates this scenario.
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Figure 3: Example of DAG for which the maxcut is an overestimation of the maximum memory
used. The weight of the maxcut (shown in blue) is 14. For p = 1, the max cut with at most 1 red
edge (shown in green) has weight 10.

The natural question that arises is how to compute the maximum topological cut of a DAG
cutting at most p computation edges. We state this question formally:

Problem 1. p-MaxTopCut (optimization)
Input: a DAG G = (V,E), a weight function m : E → N, a coloring of the edges c : E →

{red, black}, a number of processors p ∈ N∗.
Output: A topological cut C = (S, T ) of G, with maximum weight M∗(C) =

∑
e∈(S×T )∩Em(e),

crossing at most p red edges, i.e.
∑
e∈(S×T )∩E 1c(e)=red ≤ p.

and the corresponding decision problem:
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Problem 2. p-MaxTopCut
Input: a DAG G = (V,E), a weight function m : E → N, a coloring of the edges c : E →

{red, black}, a number of processors p ∈ N∗, a memory bound W ∈ N.
Question: Is there a topological cut C = (S, T ) in G, with weight at least W , crossing at most p

red edges?

In what follows, we will use the term “p-cut” to refer to a topological cut crossing at most p red
edges, and “p-maxcut” for a topological cut with maximum weight among those crossing at most p
red edges.

4.2 Complexity

As discussed in Section 3.1, computing the maximum-weight topological cut (without colored edges)
of a graph can be done in polynomial time. We show that adding the constraint on colors of edges
makes the problem computationally hard:

Theorem 1. p-MaxTopCut is NP-Complete

Proof. The p-MaxTopCut problem is in NP: the set S of the cut (S, T ) is a polynomial cer-
tificate. One can check in polynomial time that the cut is topological, has weight at least W
and includes at most p red edges. In order to prove hardness, we do a reduction from the Max-
k-SubsetIntersection (MSI) problem, which is NP-Complete [42]. The MSI problem is the
following:

Definition 1. Given a set X, C = {Si}i∈[1,...,l] a set of l subsets of X, two integers k ≤ l and q,

find a subset I ⊆ [1, . . . , l] such that |I| = k and
∣∣∣∣ ⋂
i∈I

Si

∣∣∣∣ ≥ q. In other words, find k subsets Si such

that the cardinality of their intersection is greater than or equal to q.

Consider an instance I1 of MSI: a set X, C a collection of l subsets of X, two integers k and
q. Let n = |X| and x1, . . . xn denote the elements of X. We build the following instance I2 of
p-MaxTopCut: G = (V,E), where

V = {s, t} ∪ {ui|i = 1, . . . , l} ∪ {vj |j = 1, . . . , n}
E = {(s, ui)|i = 1, . . . , l} ∪ {(vj , t)|j = 1, . . . , n}
∪ {(ui, vj)|xj /∈ Si}

where the edges from s to the ui are red and have weight n+ 1, and the other edges are black. The
edges from the vj to t have weight 1, and the edges from the ui to the vj have weight 0. Finally, let
p = k and W = (n+ 1)p+ q. See Figure 4. If a node vj has no predecessor (respectively a node ui
has no successor), we can add a black edge (s, vj) (respectively (ui, t)) with weight 0. This allows
us to consider the case with only one source and target, but does not change the rest of the proof,
hence we will omit these edges in the rest of the proof.

Now, assume that I1 has a solution, i.e. there are p subsets (Si)i∈I of X whose intersection has
cardinality at least q. Then consider the cut (S, T ) where

S0= {s} ∪ {ui|i /∈ I}
S= S0 ∪ {vj | every predecessor of vj is in S0}

and T = V \S: it goes through the edges (s, ui) for i ∈ I and through the edges (vj , t) for xj ∈
⋂
i∈I

Si.

It is a topological cut, has exactly p red edges and by construction of G, all the vj corresponding to
the xj that are in the intersection of the Si are not linked to the corresponding ui. Therefore, we
can put at least q of them in S, and the cut crosses at least q edges (vj , t) of weight 1. Hence, the
cut has weight at least p · (n+ 1) + q ·1 (the first term counts the weight of the red edges, the second
term counts the weight of the (vj , t) edges), and therefore it is a solution to I2.
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Figure 4: DAG for the reduction: (ui, vj) ∈ E ⇔ xj /∈ Si.

Conversely, assume that I2 has a solution, i.e. there exists a topological cut (S, T ) with at most
p red edges and weight greater than (n+ 1)p+ q. It goes through exactly p red edges, otherwise if it
goes through less that p red edges, it can have weight at most (p−1)(n+1)+n ·1 as the other edges
carrying weight are the edges of weight 1, and there are only n of them. As the weight is greater
than (n+ 1)p+ q, we get that the cut crosses at least q edges (vj , t) of weight 1.

Let I = {i|ui ∈ T}, the set of the indices of the subsets corresponding to the (s, ui) edges crossed
by the cut. As remarked above, |I| = p = k, therefore we have selected exactly k subsets. To show

that I is a solution to I1, we need to show that
∣∣∣∣ ⋂
i∈I

Si

∣∣∣∣ ≥ q.
Let Y = {xj |vj ∈ S} be the set of elements xj such that the edge (vj , t) is crossed by the cut. As

mentioned above, the cut crosses at least q such edges, therefore |Y | ≥ q. For all y ∈ Y , as the cut
is topological, we have that they are not linked to any of the Ci, i ∈ I. Therefore, by construction
of G, we have y ∈ Ci for all i, which implies that y ∈

⋂
i∈I

Ci, hence Y ⊆
⋂
i∈I

Ci. This implies in turn

that
∣∣∣∣ ⋂
i∈I

Ci

∣∣∣∣ ≥ q, therefore I1 has a solution.

Last, we show that this reduction is polynomial. The graph G = (V,E) of I2 has |V | = n+ l+ 2
nodes and |E| ≤ n+ l+nl edges, and can be constructed in polynomial time by a simple inspection
of the sets Si, i ∈ [1, . . . , l]. Furthermore, W = np + q can also be computed in polynomial time
from n, k and q. Therefore, the size of I2 is polynomial in the size of I1. This concludes the proof
that p-MaxTopCut is NP-complete.

4.3 Integer Linear Program and Heuristic
The following Integer Linear Program (ILP) can be used to compute the p-maxcut:

max
∑

(i,j)∈E

mi,jdi,j (2)

∀(i, j) ∈ E, di,j = pi − pj (3)
∀(i, j) ∈ E, di,j ≥ 0 (4)

ps = 1 (5)
pt = 0 (6)∑

(i,j)∈E

isred i,jdi,j ≤ p (7)

∀i, pi ∈ {0, 1} (8)

The p variables are used to assign vertices to either S (pi = 1) or T (pi = 0). We consider that
isred i,j = 1 if c(i, j) = red and isred i,j = 0 otherwise. This ILP is adapted from the one from [30]
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which computes the maximum topological cut ofG. A single constraint has been added: Equation (7)
limits the number of red edges from S to T to at most p.

In the case of the maximum topological cut without resource constraints, there is a simple way
to solve this ILP by solving it over the rational numbers and rounding to integers. Unfortunately,
due to the additional constraint (Equation (7)), the rounding procedure does not always give a
valid optimal value in the case of p-MaxTopCut. However, this gives the intuition for a heuristic.
Starting from a fractional solution of the above linear program and a threshold value w ∈ [0, 1], we
can derive an integer solution as follows: we take the pis returned by the rational solution, and set
pi to 0 in the integer solution if and only if we had pi ≤ w in the rational solution (and we let p1 = 1
otherwise). This describes a topological cut, which might use more than p red edges. We propose
to apply this rounding procedure to all possible values of w. In practice, we only have to consider
all pi rational values for i = 1, . . . , |V | as well as w = 1. Among these |V | + 1 values of w, we
return the topological cut with at most p red edges with maximum weight (if any). Note that this
procedure may fail if no rounding produces a cut with less that p red edges. However, considering
all the |V |+ 1 rounding values makes this very unlikely. In particular, it never happened in all the
simulations reported in Section 6: the heuristic always found a solution; furthermore, that solution
was close to the optimal value in most cases (see Section 6 for details).

4.4 Series-Parallel Graphs

Series-Parallel Graphs, or SPGs, are widely used in the literature because they nicely model fork-join
types of computations such as BSP (Bulk Synchronous Parallel model) [11, 18]. SPGs are defined
inductively as follows:

Definition 2. A series-parallel graph (SPG) is either:
• the “Edge” graph E(m, r) = ({s, t}, {(s, t)}): two nodes, the source and the target, linked by an
edge. m is the weight of that edge, r ∈ {true, false} is true if and only if c(s, t) = red,

• the series composition of two SPGs G1 = (V1, E1) and G2 = (V2, E2) (with respective sources
and targets (s1, t1) and (s2, t2):

Series(G1, G2) = (V1 ∪ V2, E1 ∪ E2)

with source s = s1, target t = t2, with t1 = s2 in the resulting graph,
• the parallel composition of two SPGs G1 = (V1, E1) and G2 = (V2, E2):

Par(G1, G2) = (V1 ∪ V2, E1 ∪ E2)

with source s = s1 = s2 and target t = t1 = t2.
Series and parallel composition are illustrated on Figure 5.

Theorem 2. The p-MaxTopCut problem can be solved in time O(|E|p2) for a SPG with |E| edges
on a platform with p processors.

Proof. A SPG is a binary tree of its constructors, called its decomposition tree (see Figure 6): leaves
of the tree are the edges of the SPG, internal nodes are the series and parallel constructors. Note
that every internal node has exactly two children, thus the tree is a full binary tree. Furthermore,
given a series-parallel graph, its decomposition tree can be built in linear time [41, 7].

Furthermore, if G is the series composition of G1 and G2, then a topological cut of G is either
a topological cut of G1 or of G2: the topological constraints forbid a cut that goes through both.
Similarly, if G = Par(G1, G2), then any cut of G that goes through G1 goes through G2 as well.
Therefore, a topological cut of G with p red edges will cross k red edges in G1 and p− k red edges
in G2, for some k, 0 ≤ k ≤ p. Finally, if G is a red edge (s, t), it has no topological cut with zero
red edges, and one nonempty topological cut: ({s}, {t}). If G is a black edge, then its maxcut is
({s}, {t}).
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Let M(G, k) denote the weight of the k-maxcut of a SPG G. The previous remarks lead to the
following formulas:

M(E(m, r), k) = m,∀k ≥ 1,∀r ∈ {True, False} (9)
M(E(m,True), 0) = −∞ (10)
M(E(m,False), 0) = m (11)

M(Series(G1, G2), k) = max {M(G1, k),M(G2, k)} (12)
M(Par(G1, G2), k) = max

j=0...k
{M(G1, j) +M(G2, k − j)} (13)

Using these formulas, one can compute M(G, k) using the values of M(G1, i), i = 1 . . . p and
M(G2, j), j = 1 . . . p in time O(p) for each k = 1. . . p, hence in total time O(p2). Using dynamic
programming and storing the values of M(G′, i), i = 1 . . . p for all G′ in the decomposition tree of
G, one can compute the p-maxcut of G in time O(p2 · N), where N is the number of nodes in the
decomposition tree of G. To conclude on the complexity, we need to show that N = O(|E|). It is
well-known that for any l ≥ 1, a full binary tree (i.e. each node is either a leaf or has two children)
with l leaves has exactly 2l − 1 nodes3. Using the fact that the leaves of the decomposition tree of
G are exactly the edges of G, we obtain that N = 2|E|− 1, and therefore the algorithm runs in time
O(|E|p2).

5 Scheduling with Runtime Constraints
In this section, we discuss extensions that go beyond bounding the maximum memory peak of a
dynamic schedule by computing the p-maxcut of the colored DAG. Indeed, this approach aims at
guaranteeing that any graph traversal by the scheduler would not require more than some memory
amount. But in practice, a dynamic scheduler that schedules tasks on the fly could be programmed
to avoid deliberately scheduling tasks which would make the memory used by the parallel execution
larger than the memory of the machine. Therefore, even if the p-MaxTopCut is larger than the
memory of the machine, the scheduler might still be able to find a scheduling of the graph that does
not exceed the available memory. We point out that the scheduling remains completely dynamic in
this extension, but the idea is to guide it on the fly, according to the memory requests of the tasks
that are discovered ready for execution.

In this context, we would like to know whether the scheduler will always be able to keep the
memory of the computation under some thresholdM , using the new rule of avoiding any task whose
execution would exceed the memory currently available. A sufficient condition is that, for any stage
of the computation that uses memory not greater than M , we can schedule another task such that
the memory usage stays below M . If the opposite happens, then there exists a scheduling that
reaches a situation where any choice leads the computation to use an amount of memory larger than
M , which would cause the computation to stall. We state the problem formally as follows:

Definition 3. Successor of a topological cut
Let G be a DAG, C = (S, T ) a topological cut of G. A topological cut C′ = (S′, T ′) of G is a

successor of C if S ⊂ S′ and |S′ \ S| = 1, i.e. S′ is equal to S with an additional vertex.

Problem 3. TopologicalTraversability
Input: a DAG G = (V,E), an integer M ∈ N
Question: Does every topological cut C of G of weight M(C) ≤ M have a successor C′ of weight at
most M?

The TopologicalTraversability belongs to Co −NP , hence we consider its negation:

Problem 4. BlockingTopologicalCut
Input: a DAG G = (V,E), an integer M ∈ N

3See https://en.wikipedia.org/wiki/Binary_tree.
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Question: Does there exist a topological cut C of G of weight M(C) ≤ M such that every successor
C′ has weight larger than M?

Unfortunately, this latter problem is computationally hard:

Theorem 3. BlockingTopologicalCut is NP-Complete.

Proof. We first prove that the problem is in NP. The certificate is simply the list of all the vertices
in one set of the cut C. One can check in time O(|E|) that the cut is topological and that its weight
is smaller than M . Furthermore, the cut has at most |V | − 1 successors, as any successor has one
vertex more than C. Hence, computing the values of all the successors can be done in O(|E| · |V |),
which is polynomial in the size of G. Therefore, BlockingTopCut ∈ NP.

To prove the hardness of BlockingTopCut, we use a reduction from the NP-complete problem
2-Partition [19]: Given a family of n ≥ 2 positive integers (ai)i=1,...,n,∀i, ai > 0, is there a subset
I ⊆ {1, . . . , n} such that

∑
i∈I ai = S

2 ? Let I1 be an instance of 2-Partition. Consider the DAG
G = (V,E), where

V = {1, . . . , n} ∪ {s, a, b, t}

and
E = {(s, i), (i, t), i = 1, . . . , n} ∪ {(s, a), (a, b), (b, t)}

Let S =
∑n
i=1 ai, and set the weight of the edges as follows:

w(s, i) = 0,∀i ∈ {1, . . . , n}
w(i, t) = ai,∀i ∈ {1, . . . , n}

w(s, a) =
S

2

w(a, b) =
S

2
+ 1

w(b, t) = 0

The resulting graph is shown in Figure 7.

s t

a b

1

i

nS
2

0

0

0

S
2 + 1

0

a1

ai

an

...

...

Figure 7: DAG for the reduction.

The instance I2 of BlockingTopCut is G with boundM = S. The size of the graph G = (V,E)
created in I2 is polynomial in n: |V | = n+4 and |E| = 2n+3. M = S =

∑n
i=1 ai has size polynomial

in those of the ai. Therefore, the construction of I2 can be done in time polynomial in the size of
I1, and the reduction is polynomial.

We now show that I1 has a solution if and only if I2 does. First, if I1 has a solution I ⊆ {1, . . . , n}
such that

∑
i∈I ai = S

2 , then we define K = I ∪ {s}, and C = (K,V \K). It is a topological cut:
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it contains vertices from 1, . . . , n and s, and the only edges entering these vertices are from s. We
then have

M(C) =
∑
u∈K

∑
v/∈K

w(u, v)

=

(∑
i∈I

∑
v/∈K

w(i, v)

)
+
∑
v/∈K

w(s, v)

=

(∑
i∈I

w(i, t)

)
+
∑
v/∈K

w(s, v)

=

(∑
i∈I

ai

)
+ w(s, a)

=

(∑
i∈I

ai

)
+
S

2

=
S

2
+
S

2
= S ≤M

Successors of C contain one additional vertex, either a or a vertex from {1, . . . , n}. Adding any
j ∈ {1, . . . , n} increases the value of the cut by aj > 0, it would then be strictly larger than S and
therefore, strictly larger than M . Adding a increases the weight by 1, and the resulting cut has
weight S + 1 > M . Hence, C is a solution to I2, the instance of BlockingTopCut.

Conversely, if I2 has a solution, it is a cut C = (K,V \ K) with M(C) ≤ M , such that any
successor C ′ has weight M(C ′) > M . We can then remark that the edge (a, b) cannot be in the cut
(i.e. we cannot have a ∈ K and b /∈ K). Otherwise, such a cut C̃ would have a successor K ∪ {b}
with value M(C̃)− S

2 −1 ≤M(C̃) ≤M , which would contradict the hypothesis that every successor
must have value strictly greater than M .

Similarly, the edge (b, t) cannot be in the cut. Otherwise, either the cut contains all the vertices
i ∈ {1, . . . , n}, or it doesn’t have all of them. If it has all of them, then the cut is (V \ {t}), and
it has a successor with value 0 ≤ M , the cut (V, ∅), which contradicts the hypothesis. On the
other hand, if K contains only a set I ( {1, . . . , n} of the ai, then let j ∈ {1, . . . , n} \ I. The
value of the cut is

∑
i∈I ai. The cut then has a successor where we add the vertex j, with value∑

i∈I ai + aj ≤
∑n
i=1 ai = S = M . This means that the cut K ∪ {j} (successor of K) has value

lower than M , which contradicts the hypothesis.
Hence, if I2 has a solution, K contains s but not a. It also contains some vertices i of {1, . . . , n}:

let I = {1, . . . , n} ∩K. By hypothesis, we know that M(K) ≤ M = S, and M(K) =
∑
i∈I ai + S

2 .
Hence,

∑
i∈I ai + S

2 ≤ S ⇔
∑
i∈I ai ≤

S
2 . K has a successor K ′ = K ∪ {a}. By hypothesis,

M(K ′) > M = S, and M(K ′) =
∑
i∈I ai + S

2 + 1. Therefore, we have∑
i∈I

ai +
S

2
+ 1 > S

⇔
∑
i∈I

ai + 1 >
S

2

⇔
∑
i∈I

ai ≥
S

2
as the values are integers

Combining the last inequality with inequality above, we get that
∑
i∈I ai = S

2 . Hence, I1 has a
solution, namely I. This concludes the proof.

Because of this NP-hardness result, solving efficiently the BlockingTopologicalCut problem
seems out of reach. The optimization problem associated with the BlockingTopologicalCut
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and TopologicalTraversability problems is that of finding the smallest value k ≤M such that
there is no topological cut of weight lower than or equal to k that only has successors with weight
greater than k. By using such a k to restrict the scheduler (i.e., the rule is that it cannot schedule
tasks that would make the total amount of memory used to exceed k), it would be guaranteed that
the computation would never use more than memory k , independently of the max cut of the task
graph.

Unfortunately, it turns out that an approximate value that is within a constant factor of the
optimal value still might not be an acceptable solution. Figure 8 shows a task graph whose max
cut is M = 2v (the graph can be traversed with maximum memory 2v). Values k = 2v and k = v
are acceptable solutions (the graph can be traversed with maximum memory 2v or v), but 3

2v is
not a solution (there exists a cut with value 3

2v, and all of its successors have value larger than
3
2v). In other words, the set of acceptable k values is not connected! The example given in Figure 8
illustrates the difficulty of the optimization problem.

s t

a b c d

e f g h

0

0

0
3
4v v

0

3
4v v v

0

Figure 8: Example of DAG for which the set of admissible solutions is not connected: both v and
2v are solutions, but not 3

2v.

6 Simulation Results

In this section, we perform simulations to assess the impact of resource constraints on the memory
peak for dynamic schedulers. We also study whether the rounding heuristic described in Section 4.3
succeeds to compute a p-maxcut close to the optimal one.

6.1 Datasets

We used both synthetic task graphs and graphs from classical HPC applications. Specifically, we
report experiments for five datasets. The first dataset is generated using the DAGGEN software [39].
We use the same parameters that were used to produce a dataset widely used in the scheduling
literature [24, 15, 30]. These graphs count between 10 and 100 tasks. Five parameters influence
the generation of these DAGs. The number of nodes belongs to {10, 25, 50, 100}. The width, which
controls how many tasks may run in parallel, belongs to {0.2, 0.5, 0.8}. The regularity, which controls
the distribution of the tasks between the levels, belongs to {0.2, 0.8}. The density, which controls
how many edges connect two consecutive levels, belongs to {0.2, 0.8}. The jump, which controls
how many levels an edge may span, belongs to {1, 2, 4}. Combining all these parameters, we get a
dataset of 144 DAGs.

The next three datasets represent actual workflow applications and have been generated with the
Pegasus Workflow Generator [12]. We consider three different applications, named Ligo, Montage,
and Genome, each containing 20 graphs of 50 nodes and 20 graphs of 100 nodes. We assumed that
the memory needed during the execution of a node is negligible compared to the size of the input
and output data, which must be kept in memory during this process.

The last dataset consists in the task graphs of the qr_mumps [2] application, when applied on
matrices from the University of Florida Sparse Matrix Collection [14]. These matrices were ordered
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using either the colamd [13] or scotch[32] ordering. The 24 resulting task graphs are indeed trees
of tasks whose size varies from 39 to 5900 nodes.

For all these graphs, we computed both the maximum topological cut (maxcut), the maximum
topological cut with at most p red edges (p-maxcut) using the ILP Gurobi solver [23], and the
solution returned by the heuristic described in Section 4.3. The C++ code used for the simulation is
publicly available online at https://github.com/GBathie/PMaxcut.

6.2 Results

6.2.1 Comparing the Maxcut and the p-Maxcut

The first set of simulations studies the impact of the number of processors (the value of p) when
computing the p-maxcut, comparing it with the maximum topological cut without any bound on
resources (p = ∞). We plot in Figure 9 the ratios maxcut/p-maxcut obtained in all cases, using
Tukey boxplots. The box presents the median, the first and third quartiles. The whiskers extend
to up to 1.5 times the box height (interquartile range). While the results largely depend on the
target, we observe globally that taking p into account when computing the maximum topological
cut dramatically reduces its value in most cases. Note that, for better readability, we remove outliers
from the plots, as they only concern special cases where the gain of using the p-maxcut instead of
the maxcut was even higher (see below and Figure 10 for the outliers). For the Pegasus datasets,
the value of the cut is reduced by a factor up to 24 (Genome with p = 1). For QR-Mumps, the value
of the cut is reduced by a factor at most 1.7 (p = 1). For the DAGGEN datasets, this ratio goes
up to 14. On most datasets, for low values of p, the p-maxcut yields an estimation of the maximum
memory needed to schedule the task graphs that is much tighter than the maximum topological cut.
However, in most cases, the ratio maxcut/p-maxcut decreases when the number of processors grows
from 1 to 10, except for the MONTAGE graphs which exhibit a very large degree of parallelism.

Figure 10 complements the results of Figure 9 by showing outliers for the LIGO and QR-Mumps
datasets. There are few of them, contrarily to the case of MONTAGE and GENOME where there are
none. These results show that the approach is globally stable, but still can exhibit some unexpected
behavior for some workflows.

6.2.2 Accuracy of the Heuristic

The heuristic presented in Section 4.3 is not guaranteed to give the optimal p-maxcut, and may
output a cut with smaller value than the optimal one. Figure 11 presents the peak memory computed
by the heuristic on all datasets, normalized to the optimal p-maxcut computed with the ILP. Thus,
this value shows the ratio by which the p-maxcut is underestimated by the heuristic. We would like
this ratio to be as close to 1 as possible. We use the same boxplots, except that outliers are drawn
and appear separately as empty circles. For LIGO and MONTAGE, we observe that the heuristic
is able to find a cut with a weight very close to optimal only for small values of p. For all the other
datasets, the heuristic finds a p-maxcut which is at most 2% smaller than the optimal one in 99%
of the cases. For the GENOME dataset, the heuristic always finds the optimal p-maxcut.

Table 1 provides a synthetic view of the results of the heuristic. The first two columns indicate
the name of the dataset and number of processors p. The third column reports the average value
of the ratio p-maxcut/p-maxcut∗, where p-maxcut∗ is the estimation of the peak memory computed
by the heuristic. In most cases, we observe that the heuristic always finds a value very close to
the optimal value. On a global average, the difference is around 1%. The fourth and last column
contains the number of simulations for which the heuristic failed to find the optimal result, over
the size of the dataset. Overall, the heuristic failed to return the optimal value on less than 5% of
the instances. Besides, even on datasets where the heuristic fails almost all the time to provide the
optimal results, we notice that the average ratio between the result of the heuristic and the optimal
p-maxcut is very small. Hence, we claim that in a large majority of cases, our heuristic is able to
provide an accurate estimate of the p-maxcut with a very reasonable complexity.
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Figure 9: Influence of p when computing the p-maxcut for all datasets.
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Figure 10: Complete results (with outliers) for LIGO and QR-Mumps.

Dataset p average value of fraction of cases with
p-maxcut/p-maxcut∗ p-maxcut∗ 6= p-maxcut

1 1.000 0/40
Genome 3 1.000 0/40

5 1.000 0/40
10 1.000 0/40
1 1.306 4/40

Ligo 3 1.836 13/40
5 2.329 17/40
10 4.001 29/40
1 1.001 40/40

Montage 3 1.011 40/40
5 1.038 40/40
10 1.148 39/40
1 1.000 0/29

qr_mumps 3 1.006 3/29
5 1.000 0/29
10 1.003 2/29
1 1.000 0/144

DAGGEN-1 3 1.031 8/144
5 1.001 4/144
10 1.001 3/144
1 1.210 1/144

DAGGEN-2 3 1.023 6/144
5 1.005 3/144
10 1.001 2/144

Table 1: Summary of simulation results.
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Figure 11: Complete results of the heuristic (with outliers) for all datasets. p-maxcut∗ is the
estimation of the peak memory computed by the heuristic.
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7 Conclusion and Future Work
In this paper, we have revisited dynamic DAG scheduling under memory constraints. We have intro-
duced a new model that takes resource limitation into account when computing peak memory needs.
By coloring those edges that represent temporary memory requirements during task execution, we
bound the memory actually needed during an execution with p processors as a function of p, while
previous work assumed unlimited resources. The additional constraints due to resource limitation
turn an otherwise polynomial problem into an NP-hard problem. We have introduced an Integer
Linear Program (ILP) to solve it, together with a heuristic based on rounding the rational solu-
tion of the ILP. Furthermore, we provide an exact polynomial algorithm for the particular case of
series-parallel graphs. With an experimental study conducted over randomly-generated graphs and
task graphs from actual applications, we show that our refined approach can significantly reduce the
weight of the maximum topological cut. Finally, we have discussed an extended approach where the
scheduler is dynamically constrained to select tasks (among ready tasks) so that the total memory
used does not exceed some threshold. We have shown that this extension is not easier to deal with
than the original problem.

Future work includes several promising directions. The first direction is to compare the ILP and
the heuristic on task graphs of very large size, because we expect the ILP to fail providing a solution
beyond a certain number of nodes. The second direction is to design efficient strategies to reduce
peak memory in the refined model with colored edges, thereby extending previous approaches to the
new model. Finally, the third direction would be to develop scheduling strategies that rely upon a
coarse representation of the task graph instead of the complete graph, thereby allowing to deal with
very large graphs while (hopefully) keeping a tight estimation of the total memory requirement. This
would allow for an effective implementation of scientific applications at scale within a task-based
runtime system.
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