
Threshold Pivoting for Dense LU Factorization
Neil Lindquist∗, Mark Gates∗, Piotr Luszczek∗, and Jack Dongarra∗

∗Innovative Computing Laboratory
University of Tennessee

Knoxville, TN, USA
{nlindqu1,mgates3,luszczek,dongarra}@icl.utk.edu

Abstract— LU factorization is a key approach for solving
large, dense systems of linear equations. Partial row pivoting
is commonly used to ensure numerical stability; however, the
data movement needed for the row interchanges can reduce
performance. To improve this, we propose using threshold piv-
oting to find pivots almost as good as those selected by partial
pivoting but that result in less data movement. Our theoretical
analysis bounds the element growth similarly to partial pivoting;
however, it also shows that the growth of threshold pivoting for a
given matrix cannot be bounded by that of partial pivoting and
vice versa. Additionally, we experimentally tested the approach
on the Summit supercomputer. Threshold pivoting improved
performance by up to 32% without a significant effect on
accuracy. For a more aggressive configuration with up to one
digit of accuracy lost, the improvement was as high as 44%.

I. INTRODUCTION

LU factorization is a key approach for solving large, dense,
non-symmetric or symmetric-indefinite systems of linear equa-
tions that arise in various scientific and engineering applica-
tions. In general, pivoting is necessary for numerical stability.
Usually, partial pivoting is used, whereby rows are swapped
at each step to ensure that the diagonal entry is at least as
large in magnitude as the entries below it. Unfortunately, arith-
metic is significantly cheaper than data movement in modern
supercomputers [1]. This makes exchanging rows relatively
expensive, especially in distributed settings. To address this,
we suggest a modification to partial pivoting that reduces the
associated data movement while using pivots almost as large.

Before factoring the ith column, partial pivoting ensures that

|A[i, i]| ≥ |A[j, i]| j = i, . . . , n (1)

by conditionally swapping the ith row with one below it.
Threshold pivoting relaxes this constraint to

|A[i, i]| ≥ τ |A[j, i]| j = i, . . . , n (2)

where 0 ≤ τ ≤ 1 is a fixed parameter. This relaxation allows
the selection of smaller pivot elements that are otherwise
preferable. When τ = 1, threshold pivoting is equivalent to
partial pivoting. On the other hand, when τ = 0, no numerical
pivoting is applied. Threshold pivoting is common in sparse
factorizations, primarily to avoid fill-in [2]. We propose using
it in dense factorizations to reduce data movement.

II. RELATED WORK

Using threshold pivoting in dense factorization has received
limited attention to date. The subject was primarily investi-
gated by Malard in 1991 [3], followed by Hoffman and Potma

a few years later [4]. Both works investigated the use of
threshold pivoting to reduce inter-process communication in
LU factorization on distributed systems and experimentally
demonstrated both limited loss of accuracy and significant
performance improvements. Unfortunately, both works were
limited to τ ≥ 0.1 and random matrices of size n ≤ 4096.
Malard also tested dynamic pivoting, which changes the matrix
distribution instead of exchanging rows between processes [5].
Dynamic pivoting still must exchange rows for load-balancing,
which Malard unsuccessfully tried to improve using threshold
pivoting. We extend these works in a few ways. First, we
expand the algorithm to also reduce intra-process communi-
cation. Second, we show that the element growth, and thus
backward error, of threshold pivoting cannot be predicted
by that of partial pivoting on the same matrix. Third, our
experiments for both performance and accuracy include a
wider variety of matrices of much larger size, with a broader
range of thresholds, on modern GPU-accelerated hardware.

The only other known uses of threshold pivoting for dense
matrices are brief tests of either element growth [6] or ac-
curacy [7]. Additionally, those experiments do not consider
performance or matrices larger than n = 2048.

In contrast to dense factorizations, threshold pivoting is
heavily used in sparse factorizations [2]. The cost of a sparse
factorization directly depends on the number of nonzero en-
tries. Thus, it can be beneficial to select pivots causing less
fill-in even if (1) is not satisfied. The literature for sparse
factorizations includes a wide range of threshold recommen-
dations from 4−1 to 10−8; however, a threshold of 10−1

or 10−2 is commonly recommended as a general-purpose
guideline [2], [8]. However, experiences from sparse solvers
are not guaranteed to carry over to dense solvers. First, in
sparse solvers, threshold pivoting is used almost entirely to
improve the management of the nonzero structure. In dense
solvers, on the other hand, the nonzero structure is always the
same, but reducing row-swap overheads becomes the priority.
Second, the solvers have significantly different performance
profiles, with dense solvers having high arithmetic intensity
for most of their kernels. Finally, sparse solvers are likely to
have fewer rows that satisfy (2) since most elements are 0.

Finally, other work has developed communication-avoiding
variants of LU factorization. Most notably, tournament piv-
oting computes an entire block of pivots in a single tree
reduction [9]. Interestingly, experimental results indicate that
for problems of size up to 8192, tournament pivoting sat-

×𝜏

×𝜏

Best
Pivot

Best
Pivot

Best
Pivot

Best
Pivot

×𝜏

Proc. 1

Proc. 2

Proc. 3

Fig. 1. Threshold pivoting for reducing inter-process data movement.

isfies (2) with τ ≈ 0.24 [9]. As mentioned before, data
movement can also be reduced by keeping rows on their
original processes [5]. These two strategies were recently
combined with a 2.5D matrix distribution in the COnfLUX
algorithm [10]. Alternatively, completely removing pivoting
and instead randomly preconditioning the matrix before factor-
ization has shown to be effective [11], [12]. Compared to these
approaches, threshold pivoting requires less programming ef-
fort and allows control over the deviation from partial pivoting.
However, it also retains some downsides of partial pivoting,
such as needing a distributed reduction for each column.

III. REDUCING DATA MOVEMENT WITH THRESHOLD
PIVOTING

In a dense factorization, the matrix is usually distributed
using a 2D block-cyclic mapping. In such distributions, the
processes are organized into a p × q grid, and the matrix is
divided into contiguous blocks. These blocks are cyclically
assigned to processes, i.e., the (i, j) block is assigned to the
(i mod p, j mod q) process. In these mappings, the pivot
belongs to the same process as the diagonal element if and only
if the corresponding rows can be exchanged without commu-
nicating between processes. So, the amount of communication
can be fully determined with just the distribution of the pivot
column. This equivalency, and thus the following theory, also
holds for other distributions; however, this analysis may not
hold for certain unusual distributions.

Using threshold pivoting to reduce the inter-process com-
munication modifies only the pivot search of partial pivoting.
For clarity’s sake, we call the process that owns the current
diagonal element the root process. First, the entry with the
maximum magnitude is found for each process’s local portion
of the column, as in partial pivoting. Then, in the global
reduction, the candidates from non-root processes are reduced
by a factor of τ , as shown in Figure 1. Thus, the selected pivot
is the largest element from the root process if and only if that
element satisfies (2). And, if the selected pivot is not from the
root process, then it is the largest element globally.

Threshold pivoting can also reduce intra-process data move-
ment by preferring the diagonal row over other rows on the

Algorithm 1 Threshold Pivoting — Panel Search
1: procedure PANEL SEARCH(A, j, τ)
2: I ← local indices of A[j:n, j]
3: ℓ← first entry in I ; α← |A[ℓ, j]|
4: for i ∈ I do
5: if |A[i, j]| > α then ℓ← i; α← |A[ℓ, j]|
6: end for
7: ℓ1 ← ℓ; ℓ2 ← ℓ
8: if j ∈ I then ▷ If this is the root process
9: if |A[j, j]| ≥ τ |A[ℓ, j]| then ℓ1 ← j

10: α1 ← |A[ℓ1, j]|; α2 ← |A[ℓ2, j]|
11: else
12: α1 ← τ |A[ℓ1, j]|; α2 ← τ |A[ℓ2, j]|
13: end if
14: ℓ1 ← global argmax(ℓ1, α1)
15: ℓ2 ← global argmax(ℓ2, α2)
16: if ℓ1 = j then return ℓ1
17: else return ℓ2
18: end procedure

root process. This extends the above procedure by adding an-
other global reduction to check if the diagonal element already
satisfies (2). These reductions can be done simultaneously
in a single MPI_Allreduce, so the added overhead will
be small [13]. Algorithm 1 shows this approach. The local
panel search is unchanged from a regular code, as per Lines 3
through 6. The best local pivot candidate is recorded as ℓ, and
its value is recorded as α. The threshold logic begins at Line 7.
On most processes, ℓ will be the argument for both reductions.
However, if A[j, j] satisfies (2) for the elements of the root
process, j will be its argument for the first reduction. Both
reductions scale the non-root values by τ . If the first reduction
yields j, then row j is selected as the pivot. Otherwise, the
result of the second reduction is selected as the pivot.

In Algorithm 1, A[j, j] fulfills (2) if and only if it is
the result of the first reduction because of Lines 9 and 12,
respectively, for elements on the root process and on the non-
root processes. Similarly, the maximum element from the root
process satisfies (2) if and only if it is the result of the second
maximization. Therefore, the selected pivot satisfies (2) while
minimizing data movement. Even though the reductions differ
only if the condition in Line 9 is true, that value is known only
by the root process. So, we always compute both reductions.

Finally, this approach can be further extended to deeper
hierarchies, such as using the network topology or distribut-
ing a column across multiple accelerators within a process.
As before, each communication layer has a corresponding
maximization where the non-local entries are penalized by a
multiple of τ . Then, the reductions are considered in order
of cost. If any maximization gave a local entry, the smallest
such entry is taken. Otherwise, the result of the final reduction
is used. As before, this gives a pivot with minimal cost that
satisfies (2). Additionally, this can model the communication
for complex matrix distributions by grouping rows into layers
based on the amount of communication required.

IV. THEORETICAL BOUNDS FOR THRESHOLD PIVOTING

Gaussian elimination computes a solution, x̂, to the equation
Ax = b such that

(A+∆A)x̂ = b,

∥∆A∥∞ ≤ 3nu
1−3nu (1 + 2(n2 − n)ρ(A))∥A∥∞,

ρ(A) = max
i,j,k
|A(k)[i, j]|/max

i,j
|A[i, j]|

where A(k) is the matrix after factoring k columns, ρ(A) is
called the growth factor and u is the unit roundoff for the
floating-point format [14, Thm. 9.4, Lemma 9.6]. Because
the n3 factor is pessimistic in practice [15], we focus our
theoretical analysis on the growth factor.

The growth factor of threshold pivoting can be bounded in
a similar manner as the growth factor of partial pivoting. At
step k, let α = maxij |A(k)[i, j]|. Then, the values computed
in the kth Schur complement have a magnitude of at most
α+ τ−1α. Applying this recursively gives

ρ(A) ≤ (1 + τ−1)n−1. (3)

This bound is tight and can be achieved with the matrix
τ 0 . . . 0 1
−1 τ . . . 0 1

...
...

. . .
...

...
−1 −1 . . . τ 1
−1 −1 . . . −1 1

 ,

which is based on Wilkinson’s matrix with exponential growth
in partial pivoting [16]. For τ = 1, 0, (3) gives tight bounds
on growth for partial pivoting and not pivoting, respectively.

Ideally, for a given matrix, the growth with threshold piv-
oting is bounded in terms of the growth with partial pivoting.
Unfortunately, this bound is exponential in the matrix size and
thus not meaningfully better than (3). We demonstrate with
minor variations of Wilkinson’s matrix [16]. Let

Wαβ =

1 + α 0 . . . 0 1
−1 1 . . . 0 1

...
...

. . .
...

...
−1 −1 . . . 1 1
−1− β −1 . . . −1 1

 and

Ωαβ =

−1− β −1 . . . −1 1
−1 1 . . . 0 1

...
...

. . .
...

...
−1 −1 . . . 1 1

1 + α 0 . . . 0 1

 .

These matrices differ only in the exchange of the first and last
rows. Let 0 < τ < 1 and 0 < δ < max(τ−1 − 1, 1). Assume
the diagonal element is selected as the pivot if it satisfies (1) or
(2), as appropriate. Then, apply partial pivoting and threshold
pivoting to W0δ and Ωδ0. For both matrices, partial pivoting
will exchange the first and last rows at the first step (giving Ω0δ

and Wδ0), while threshold pivoting will not. We show below

that the growth is exponential for Wδ0 and W0δ but constant
for Ωδ0 and Ω0δ . Hence, the growth of threshold pivoting is
not meaningfully bounded by that of partial pivoting, and vice
versa. These drastic differences likely relate to Trefethen’s
conjecture that exponential growth is rare for partial pivoting
because such growth “correspond[s] to unstable ‘modes’ that
are themselves somehow unstable” [17].

A. Growth of Wδ0 and W0δ

First, consider Wδ0 and W0δ . Because the upper triangular
part is mostly 0 for both, δ appears only in the last column
after the first Schur complement. So, the factorization will not
pivot, as per Wilkinson’s matrix. Because the δ in W0δ occurs
in the last row, it increases only the (n, n) element by δ. Thus,
the growth of W0δ is

(1 + δ)−1(2n−1 + δ) ≈ 2n−1.

For Wδ0, all entries in the last column are (2 + δ)/(1 + δ)
after the first Schur complement. Then, the elements in the
last column double at each step, as per Wilkinson’s matrix.
Thus, the growth of Wδ0 is

(1 + δ)−2(2 + δ)2n−2 ≈ 2n−1.

B. Growth of Ωδ0

Next, consider Ωδ0. We define Ω
(k)
δ0 to be the matrix after

k steps of elimination on Ωδ0. For notational simplicity, the
indices are offset by k, i.e., the lower-right most element is
always Ω

(k)
δ0 [n, n]. The first row of U is trivially all −1, while

the first column of L is all 1 except for the last element, which
is −1− δ. Applying the first Schur complement gives

Ω
(1)
δ0 =

2 1 . . . 1 0
0 2 . . . 1 0
...

...
. . .

...
...

0 0 . . . 2 0
−1− δ −1− δ . . . −1− δ 2 + δ

 .

For 2 ≤ k < i, j ≤ n, if no further pivoting occurs,

Ω
(k)
δ0 [i, j] =

detΩ
(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}]
detΩ

(1)
δ0 [2:k, 2:k]

by Gantmacher’s determinant formula for Gaussian Elimina-
tion [18, p. 26]. Because Ω

(1)
δ0 [2:k, 2:k] is upper triangular, its

determinant is 2k−1. The bound for the numerator is separated
into six cases, depending on the position of A[i, j] in the
matrix. The first three cases correspond to on, below, and
above the diagonal in the upper triangular part. The latter three
cases correspond to on, below, and above the diagonal in the
last row/column.

Case 1: i = j < n. Since Ω
(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] equals

the k + 1 leading principal submatrix,

detΩ
(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] = detΩ

(1)
δ0 [2:k + 1, 2:k + 1]

= 2k.

Case 2: i < j < n. The last row is zero for all but the last
element, which is one. Expanding it gives

detΩ
(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] = 1 detΩ

(1)
δ0 [2:k, 2:k]

= 2k−1.

Case 3: j < i < n. The ith row is zero. So,

detΩ
(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] = 0.

Case 4: i = j = n. The last column is zero except for the last
element, which is 2 + δ. Expanding it gives

detΩ
(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] = (2 + δ) detΩ

(1)
δ0 [2:k, 2:k]

= (2 + δ)2k−1.

Case 5: i < j = n. The last column is zero. So,

detΩ
(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] = 0.

Case 6: j < i = n. Adding (1 + δ)−1 times the last row
to the first leaves the determinant unchanged but makes the
first row equal to eT1 . Expanding this row gives 1 times the
determinant of a matrix with the same structure less the first
row and column. Recursively applying this procedure gives

detΩ
(1)
δ0 [2:k ∪ {i}, 2:k ∪ {j}] = 1 · det[−1− δ] = −1− δ.

Thus, diagonal elements are either 2 or 2+ δ and off-diagonal
elements are either 0, −2−k+1(1 + δ), or ±1, so no pivoting
will occur during the factorization. Hence, the maximum
element during the process is 2 + δ and

ρ(Ωδ0) =
2 + δ

1 + δ
≤ 2.

C. Growth of Ω0δ

Finally, consider Ω0δ . Again, let Ω(k)
0δ be the matrix after k

steps of elimination on Ω0δ , and assume its indices are offset
by k. Applying the first Schur complement gives

Ω
(1)
0δ = (1 + δ)−1

2 + δ 1 . . . 1 δ
−δ 2 + δ . . . 1 δ

...
...

. . .
...

...
−δ −δ . . . 2 + δ δ
−1 −1 . . . −1 2 + δ

 .

Let Ω(1∗)
0δ = (1 + δ)Ω

(1)
0δ . For 2 ≤ k < i, j ≤ n, if no further

pivoting occurs,

Ω
(k)
0δ [i, j] =

detΩ
(1)
0δ [2:k ∪ {i}, 2:k ∪ {j}]
detΩ

(1)
0δ [2:k, 2:k]

[18, p. 26]

=
detΩ

(1∗)
0δ [2:k ∪ {i}, 2:k ∪ {j}]

(1 + δ) detΩ
(1∗)
0δ [2:k, 2:k]

.

Unlike Ωδ0, there are no zeros in Ω
(1∗)
0δ that can be used to

simplify the determinants. However, we can introduce zeros,
without changing the determinant, by adding a scalar multiple
of one row to another. The numerator is again divided into six
cases, with the first case addressing the denominator.

Case 1: i = j < n. The sub-diagonal elements in the first
column can be eliminated by adding the first row times
χ1 = δ/(2 + δ) to the subsequent rows, giving

2 + δ 1 1 . . . 1
0 2 + δ + γ1 1 + γ1 . . . 1 + γ1
0 −δ + γ1 2 + δ + γ1 . . . 1 + γ1
...

...
...

. . .
...

0 −δ + γ1 −δ + γ1 . . . 2 + δ + γ1

where γ1 = χ1. Then, the sub-diagonal elements in the second
column can be eliminated by adding the second row times
χ2 = (δ − γ1)/(2 + δ + γ1) to the subsequent rows, giving

2 + δ 1 1 . . . 1
0 2 + δ + γ1 1 + γ1 . . . 1 + γ1
0 0 2 + δ + γ2 . . . 1 + γ2
...

...
...

. . .
...

0 0 −δ + γ2 . . . 2 + δ + γ2

where γ2 = γ1 + χ2(1 + γ1). Continuing the procedure gives
multiples defined recursively by

χℓ =
δ − γℓ−1

2 + δ + γℓ−1
, and γℓ = γℓ−1 + χℓ(1 + γℓ−1)

with χ0 = 0 and γ0 = 0. Note that

γℓ =
γℓ−1(2 + δ + γℓ−1) + (δ − γℓ−1)(1 + γℓ−1)

2 + δ + γℓ−1

=
δ + γℓ−1 + 2δγℓ−1

2 + δ + γℓ−1
.

If γℓ−1 = 0, then γℓ = δ/(2 + δ). And if γℓ−1 = δ, then
γℓ = δ. Furthermore, it is straightforward to show that the
partial derivative of γℓ with respect to γℓ−1 is positive. Thus,
if γℓ−1 ∈ [0, δ], then γℓ ∈ [0, δ]. Hence, γℓ ∈ [0, δ] for all ℓ.

Thus,

detΩ
(1∗)
0δ [2:k ∪ {i}, 2:k ∪ {j}] =

k−1∏
ℓ=0

(2 + δ + γℓ) and

detΩ
(1∗)
0δ [2:k, 2:k] =

k−2∏
ℓ=0

(2 + δ + γℓ).

Hence,

Ω
(k)
0δ [i, j] =

∏k−1
ℓ=0 (2 + δ + γℓ)

(1 + δ)
∏k−2

ℓ=0 (2 + δ + γℓ)
=

2 + δ + γk+1

1 + δ
,

and
2 + δ

1 + δ
≤ Ω

(k)
0δ [i, j] ≤ 2.

Case 2: i < j < n. The second case is similar to the first,
except the lower-right element starts as 1 and becomes 1 +
γk−2 after eliminating the sub-diagonal elements. So,

Ω
(k)
0δ [i, j] =

(1 + γk−2)
∏k−2

ℓ=0 (2 + δ + γℓ)

(1 + δ)
∏k−2

ℓ=0 (2 + δ + γℓ)
=

1 + γk−2

1 + δ
,

and
1

1 + δ
≤ Ω

(k)
0δ [i, j] ≤ 1.

Case 3: j < i < n. The third case is like the first two, except
the lower-right element starts as −δ and becomes −δ + γk−2

after eliminating the sub-diagonal elements. So,

Ω
(k)
0δ [i, j] =

(−δ + γk−2)
∏k−2

ℓ=0 (2 + δ + γℓ)

(1 + δ)
∏k−2

ℓ=0 (2 + δ + γℓ)
=
−δ + γk−2

1 + δ
,

and
−δ
1 + δ

≤ Ω
(k)
0δ [i, j] ≤ 0.

Case 4: i = j = n. The same process can be applied, except
with the multiples for the last row being scaled by δ−1. Hence,

Ω
(k)
0δ [i, j] =

(2 + δ + δ−1γk−1)
∏k−2

ℓ=0 (2 + δ + γℓ)

(1 + δ)
∏k−2

ℓ=0 (2 + δ + γℓ)

=
2 + δ + δ−1γk−1

1 + δ
,

and
2 + δ

1 + δ
≤ Ω

(k)
0δ [i, j] ≤ 3 + δ

1 + δ

Case 5: i < j = n. The fifth case is almost identical to the
second, except the last column, and thus the numerator, is
scaled by δ. So,

δ

1 + δ
≤ Ω

(k)
0δ [i, j] ≤ δ.

Case 6: j < i < n. Sub-diagonal elements in all but the
last row can be eliminated without changing the determinant
similar to before. Because the final row is all −1, multiplying
it by 1 + γℓ and adding it to the ℓth row zeros out the upper
triangular part, but leaves 1 + δ on the diagonal. So,

Ω
(k)
0δ [i, j] =

(1 + δ)k−2(−1)
(1 + δ)

∏k−2
ℓ=0 (2 + δ + γℓ)

=
−(1 + δ)k−3∏k−2
ℓ=0 (2 + δ + γℓ)

,

and
−(1 + δ)k−3

(2 + δ)k−1
≤ Ω

(k)
0δ [i, j] ≤ −1

(2 + 2δ)k−1
.

Hence, the off-diagonal elements are always strictly less
than the diagonal elements, ensuring that no pivoting occurs
after the first step. Therefore,

ρ(Ω0δ) =
(3 + δ)/(1 + δ)

1 + δ
=

3 + δ

(1 + δ)2
≤ 3.

V. EXPERIMENTAL RESULTS

We tested threshold pivoting using the SLATE (Software for
Linear Algebra Targeting Exascale) library, a dense linear alge-
bra library targeting distributed, heterogeneous systems [19].
We implemented both strategies proposed in Section III as
modifications of SLATE’s existing LU factorization with par-
tial pivoting [20]. The threshold is controlled through the
options argument, demonstrating a backward-compatible
addition of threshold pivoting to an existing LU factorization
code.

Ten matrices were tested, five random and five structured,
all of order 225 000. The random matrices were: (1) rand
(entries uniformly distributed on [0, 1]), (2) rands (entries
uniformly distributed on [−1, 1]), (3) randn (entries nor-
mally distributed), (4) randb (entries randomly selected from
{0, 1}), and (5) rand+nI which is rand plus n times
the identity (making it diagonally dominant). The structured
matrices came from the MATLAB gallery: (6) circul, (7)
fiedler, (8) orthog, (9) riemann, and (10) ris.

A. Experimental Setup

We tested our approach on eight nodes of the Summit
supercomputer at Oak Ridge National Laboratory. Each node
contains two 22-core IBM POWER9 CPUs, with one core
per CPU reserved for the OS, and six NVIDIA Volta V100
GPUs. Most of the computational power comes from the
GPUs, each providing 7.8TFLOP/s, 16GiB High Bandwidth
Memory (HBM2), and 900GB/s memory bandwidth. Each
CPU provides 540GFLOP/s, 256GiB DDR4 memory, and
170GB/s memory bandwidth. NVIDIA NVLink provides a
bidirectional 50GB/s between components in a socket. A
dual-rail EDR InfiniBand network connect the nodes.

Our code has been released in SLATE, with this specific ver-
sion available at https://zenodo.org/record/6972268. Our soft-
ware stack included GCC 9.1.0, CUDA 11.0.3, IBM Spectrum
MPI 10.4.0.3-20210112, IBM ESSL 6.1.0-2, Netlib LAPACK
3.8.0, Netlib ScaLAPACK 2.1.0, and PAPI 6.0.0.1 [21].

Because MPI and BLAS libraries often do initialization
that is reused in subsequent calls, warm-up tests of size
5000 were run before the reported tests. Hyperthreading
was disabled with the smt1 mode. The tests were run with
jsrun -n 16 -a 1 -c 21 -g 3 -b packed:21
-d packed, which runs 16 MPI ranks over 8 nodes,
with 21 cores and 3 GPUs per MPI rank. We measured
performance and accuracy with SLATE’s test code; however,
we scaled the accuracy in the output by n to compensate for
a division by n in SLATE’s test code. The flags --origin
h --target d --seed 42 --seedB 24 --ref n
--check y --nb 896 --ib 32 --panel-threads
18 --lookahead 3 --grid 4x4 --dim
5000,225000 were always used; the --matrix and
--piv-thresh flags were set as appropriate. The
ibmpowernv-isa-0000.System.energy11_input
event was used to measure a node’s cumulative energy usage.

B. Effects on Performance and Accuracy

First, we reduced just the inter-process exchanges with
the approach from Figure 1. Various thresholds were tested
on rand+nI, rand, and orthog. We ran each test three
times, measuring the time to solve a double-precision system
of equations with ten right-hand sides, and summarized the
result with the mean and 95% confidence interval shown in
Figure 2. First, the relative times for τ = 1 of rand and
orthog compared to rand+nI (which doesn’t pivot) imply
that slightly over half the time is spent exchanging rows.
This supports our motivation to avoid data movement. Next,

10−15 10−12 10−9 10−6 10−3 100
0

50

100

150

200

250

(1)

(5)

(8)

Backward error
(

∥b−Ax∥1

∥A∥1∥x∥1

)

Ti
m

e
(s

)

rand (1)
rand+nI (5)
orthog (8)

Fig. 2. Tradeoff between performance and accuracy when avoiding just inter-
process row swaps. Along each line are points for thresholds of 1 (slowest),
2−1, 10−1, 10−2, 10−4, 10−8, and 0 (fastest) for that matrix. For rand,
all but the first point overlap.

consider how changing τ affected the performance for each
matrix. The rand+nI matrix was unaffected by the threshold;
this is expected since partial pivoting selects diagonal pivots
for diagonally dominant matrices. The rand matrix received a
46% speedup and a negligible effect on accuracy going from
τ = 1 to τ = 2−1, but further reductions in the threshold
had little effect on either performance or accuracy. Even with
τ = 0, the time for the random matrix was 47% larger than for
the diagonally dominant matrix; this indicates that intra-node
row swaps contribute a significant overhead. The orthog
matrix had significant reductions in accuracy as τ decreased
and, for τ ≥ 10−4, minimal increase in performance. However,
the accuracy for τ = 2−1 was almost that of τ = 1. So, for
these matrices, τ = 2−1 does not degrade accuracy while
sometimes improving performance.

Because the best performances achieved for rand and
orthog were significantly below that of rand+nI, we re-
peated the previous experiment except avoiding both inter- and
intra-process row swaps using Algorithm 1. Figure 3 shows
the results. Avoiding both types of data movement allows
the best-case performance to match that of the diagonally
dominant case. However, the error increased as the tolerance
was reduced. For rand, τ = 2−1 provided equal accuracy
and a 31% reduction in runtime compared to partial pivoting,
while τ = 10−2 provided equal performance and a 4-digit
improvement in error compared to never exchanging rows.
This provides a useful selection of τ , depending on the
relative importance of performance and accuracy. On the other
hand, orthog saw only a 6% improvement in performance
compared to partial pivoting for τ = 2−1, although the effect
on accuracy was still negligible. Even when the tolerance was

10−15 10−12 10−9 10−6 10−3 100
0

50

100

150

200

250

(1)

(5)

(8)

Backward error
(

∥b−Ax∥1

∥A∥1∥x∥1

)

Ti
m

e
(s

)

rand (1)
rand+nI (5)
orthog (8)

Fig. 3. Tradeoff between performance and accuracy when avoiding inter-
and intra-process row swaps. Along each line are points for thresholds of 1
(slowest), 2−1, 10−1, 10−2, 10−4, 10−8, and 0 (fastest) for that matrix.
For rand, the last two points overlapped.

as low as τ = 10−4, the improvement was merely 12%, but the
error increased to 1.6 · 10−9. This demonstrates that threshold
pivoting will not consistently improve performance, although
high accuracy was still obtained with large tolerance values.
Compared to Figure 2, the results for τ = 1 had a slight
reduction in performance. However, because the corresponding
confidence intervals overlap, this may stem from system noise.
Furthermore, the difference was only a few percent, so even
if the difference is entirely due to the increased complexity of
pivot selection, the overhead is insignificant.

With the successes of τ = 2−1 and τ = 10−1 in the previous
experiment, we compared the performance and accuracy of the
remaining matrices for those thresholds and τ = 1 (i.e., partial
pivoting). For reference, we also factored rand+nI with an
LU factorization optimized with the assumption that it will
not pivot (SLATE’s gesv_nopiv); this routine has increased
parallelism and better GPU utilization but risks catastrophic
numerical failure if the matrix is not diagonally dominant.
Figure 4 shows the results. The added random matrices behave
similarly to rand. However, three of the added structured
matrices saw significant performance improvements with min-
imal reduction in accuracy, unlike orthog. Furthermore, two
of the three (circul and fiedler) achieved performance
equivalent to the diagonally dominant matrix for the smallest
threshold. The last structured matrix (ris) was unaffected by
the tested tolerance values; this likely stems from the entries
being very small except along the anti-diagonal, which limits
the available pivots for the moderate thresholds we tested.
Interestingly, one matrix (circul) had higher accuracy for
τ = 2−1 than for τ = 1; this reflects the observation in
Section IV that the accuracy of threshold pivoting can, on

10−18 10−17 10−16 10−15 10−14 10−13 10−12
0

50

100

150

200

250

(1)(2)(3)(4)
(5)(6)(7)

(8)

(9)
(10)

Backward error
(

∥b−Ax∥1

∥A∥1∥x∥1

)

Ti
m

e
(s

)

Random (1-4)
Dominant (5)
Structured (6-10)
Never pivot

Fig. 4. Trade-off between performance and accuracy when avoiding inter-
and intra-process row swaps for a variety of matrices. Along each line are
points for thresholds of 1 (slowest), 2−1, and 10−1 (fastest) for that matrix.

occasion, be better than that of partial pivoting.
These results indicate that a threshold of 2−1 or 10−1 is a

reasonable, general-purpose default that consistently achieves
an accuracy close to partial pivoting. This corresponds to the
conservative recommendations from the sparse-factorization
literature. However, a threshold of 10−2 is also commonly
recommended for the general case, and recommendations for
specific applications can be much smaller, e.g., 10−8 [8]. This
reflects a lower cost to pivot in dense factorizations due to the
full nonzero structure.

C. Effects on Energy Consumption

In light of the performance improvements, we tested the
effect of this strategy on energy consumption. Because the
runtime overhead of the intra-process exchanges was signifi-
cant, only the two-layer formulation was considered for the
energy consumption. We provide the results as the energy
consumed to solve the system in Joules. Another metric is
the “flops per watt”, which is used by benchmarks such as the
TOP500 [22], [23], Green500 [24], and SPEC Power [25] lists,
as well as supercomputing power consumption research [26],
[27]. This metric divides the performance in GFLOP/s by the
average power usage in Watts, resulting in an efficiency metric
measured in (GFLOP/s)/W. However, this is inversely pro-
portional to the total energy for a fixed n, so we provide only
the latter. For the tested size, n = 225 000, using 1MJ to solve
a system is equivalent to achieving 7.59 (GFLOP/s)/W.

Figure 5 shows the effect of varying τ on energy usage for
the rand+nI, rand, and orthog matrices (cf. Figure 3),
while Figure 6 shows the effect of threshold pivoting on energy
for all ten matrices (cf. Figure 4). The effect on energy
consumption shows similar trends as runtime for both exper-
iments, albeit with less relative improvement. This smaller

10−15 10−12 10−9 10−6 10−3 100
0

0.5

1

1.5

2

2.5

3

(1)

(5)

(8)

Backward error
(

∥b−Ax∥1

∥A∥1∥x∥1

)

E
ne

rg
y

(M
J

)

rand (1)
rand+nI (5)
orthog (8)

Fig. 5. Tradeoff between energy consumption and accuracy when avoiding
inter- and intra-process row swaps. Along each line are points for thresholds
of 1 (slowest), 2−1, 10−1, 10−2, 10−4, 10−8, and 0 (fastest) for that matrix.
For rand, the last two points overlap.

10−18 10−17 10−16 10−15 10−14 10−13 10−12
0

0.5

1

1.5

2

2.5

3

(1)(2)(3)(4)
(5)(6)(7)

(8)

(9)
(10)

Backward error
(

∥b−Ax∥1

∥A∥1∥x∥1

)

E
ne

rg
y

(M
J

)

Random (1-4)
Dominant (5)
Structured (6-10)
Never pivot

Fig. 6. Trade-off between energy and accuracy of when avoiding inter- and
intra-process row swaps for a variety of matrices. Along each line are points
for thresholds of 1 (slowest), 2−1, and 10−1 (fastest) for that matrix.

improvement likely stems from the inability to remove the
energy usage of tasks by parallelizing them, unlike runtime.

VI. CONCLUSIONS AND FUTURE WORK

Our results demonstrate that threshold pivoting can signifi-
cantly improve the performance of LU factorization without a
noticeable loss of accuracy. This improvement can be realized
with only minor modifications to existing partial pivoting
codes, making it a worthwhile addition to libraries. Because

τ = 1 gives partial pivoting, threshold pivoting with a user-
controlled threshold can replace a separate partial pivoting
code. This can even be done in a backward-compatible manner,
as is demonstrated in our implementation. Like previous
works, our results indicate τ = 2−1 is a reasonable starting
recommendation which can be improved for specific classes
of matrices and applications through experiment.

This work can be extended in multiple ways. First, as
discussed in Section III, the idea could be applied to deeper
communication hierarchies. Next, we used a single threshold,
but interchanging local rows is cheaper than interchanging
remote rows. So, using different thresholds at different lev-
els could expose better tradeoffs between performance and
accuracy. Because the results varied with the matrix, it would
be valuable to test the approach on linear systems from real
applications as well. In light of our results reducing intra-node
pivoting and previous work on the cost of row exchanges
on single node systems [28], this approach may prove to
be beneficial in non-distributed settings as well. Finally, this
approach may also be beneficial in other dense factorizations.
Symmetric pivoting is complicated in a tiled layout [29].
But, pivots within the diagonal tile do not involve inter-tile
exchanges, so preferring those entries could reduce the cost.

ACKNOWLEDGMENTS

This research was supported by the National Science Foun-
dation Office of Advanced Cyberinfrastructure (OAC) CSE
Dir. for Comp. & Info Sci. & Eng. under Grant No. 2004541,
and by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration.
Finally, this research used resources of the Oak Ridge Leader-
ship Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S.
Department of Energy under Contract DE-AC05-00OR22725.

REFERENCES

[1] A. Khan, H. Sim, S. S. Vazhkudai et al., “An analysis of system
balance and architectural trends based on Top500 supercomputers,” in
The International Conference on High Performance Computing in Asia-
Pacific Region, ser. HPC Asia 2021. New York, NY, USA: Association
for Computing Machinery, Jan. 2021, pp. 11–22.

[2] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse
Matrices, 2nd ed. Oxford, UK: Oxford University Press, Mar. 2017.

[3] J. Malard, “Threshold pivoting for dense LU factorization on distributed
memory multiprocessors,” in Proceedings of the 1991 ACM/IEEE Con-
ference on Supercomputing. Albuquerque, NM, USA: Association for
Computing Machinery, Nov. 1991, pp. 600–607.

[4] W. Hoffmann and K. Potma, “Threshold-pivoting in parallel Gaussian
elimination for improved efficiency,” in Proceedings of the First Annual
Conference of the Advanced School for Computing and Imaging. Delft:
Technical University Delft, 1995, pp. 63–68.

[5] G. A. Geist and C. H. Romine, “LU factorization algorithms on
distributed-memory multiprocessor architectures,” SIAM Journal on Sci-
entific and Statistical Computing, vol. 9, no. 4, pp. 639–649, Jul. 1988.

[6] L. N. Trefethen and R. S. Schreiber, “Average-case stability of Gaus-
sian elimination,” SIAM Journal on Matrix Analysis and Applications,
vol. 11, no. 3, pp. 335–360, Jul. 1990.

[7] T. Endo and K. Taura, “Highly latency tolerant Gaussian elimination,” in
The 6th IEEE/ACM International Workshop on Grid Computing, 2005.
Seattle, WA, USA: IEEE Press, Nov. 2005, p. 8 pp.

[8] J. D. Hogg and J. A. Scott, “Pivoting strategies for tough sparse indef-
inite systems,” ACM Transactions on Mathematical Software, vol. 40,
no. 1, pp. 4:1–4:19, Oct. 2013.

[9] L. Grigori, J. W. Demmel, and H. Xiang, “CALU: A communication
optimal LU factorization algorithm,” SIAM Journal on Matrix Analysis
and Applications, vol. 32, no. 4, pp. 1317–1350, Oct. 2011.

[10] G. Kwasniewski, M. Kabic, T. Ben-Nun et al., “On the parallel I/O
optimality of linear algebra kernels: Near-optimal matrix factorizations,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’21. New York,
NY, USA: Association for Computing Machinery, Nov. 2021, pp. 1–15.

[11] N. Lindquist, P. Luszczek, and J. Dongarra, “Replacing pivoting in
distributed Gaussian elimination with randomized techniques,” in 2020
IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems (ScalA). Atlanta, GA, USA: IEEE Press, Nov.
2020, pp. 35–43.

[12] V. Y. Pan and L. Zhao, “Numerically safe Gaussian elimination with no
pivoting,” Linear Algebra and its Applications, vol. 527, pp. 349–383,
Aug. 2017.

[13] A. Bienz, L. Olson, and W. Gropp, “Node-aware improvements to
Allreduce,” in 2019 IEEE/ACM Workshop on Exascale MPI (ExaMPI).
Denver, CO, USA: IEEE Press, Nov. 2019, pp. 19–28.

[14] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Society for Industrial and Applied Mathematics, 2002.

[15] N. J. Higham and D. J. Higham, “Large growth factors in Gaussian
elimination with pivoting,” SIAM Journal on Matrix Analysis and
Applications, vol. 10, no. 2, pp. 155–164, Apr. 1989.

[16] J. H. Wilkinson, The Algebraic Eigenvalue Problem. London, UK:
Oxford University Press, 1965.

[17] L. N. Trefethen, “Three mysteries of Gaussian elimination,” ACM
SIGNUM Newsletter, vol. 20, no. 4, pp. 2–5, Oct. 1985.

[18] F. R. Gantmacher, The Theory of Matrices. Providence, RI, USA:
American Mathematical Soc., 1959, vol. 1.

[19] M. Gates, J. Kurzak, A. Charara et al., “SLATE: Design of a modern
distributed and accelerated linear algebra library,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’19. Denver, CO, USA: Association for
Computing Machinery, Nov. 2019, pp. 1–18.

[20] J. Kurzak, M. Gates, A. Charara et al., “Linear systems solvers for
distributed-memory machines with GPU accelerators,” in Euro-Par
2019: Parallel Processing, ser. Lecture Notes in Computer Science,
R. Yahyapour, Ed. Göttingen, Germany: Springer, Cham, 2019, pp.
495–506.

[21] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with PAPI-C,” in Tools for High Performance Computing
2009, M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds.
Berlin, Heidelberg: Springer, 2010, pp. 157–173.

[22] H. W. Meuer, E. Strohmaier, J. J. Dongarra, and H. D. Simon, TOP500
Supercomputer Sites, 32nd ed., November 2008, the report can be
downloaded from http://www.netlib.org/benchmark/top500.html).

[23] H. W. Meuer, E. Strohmaier, J. J. Dongarra et al., “TOP500 Supercom-
puting Sites,” http://www.top500.org/, 2022.

[24] W.-C. Feng and K. W. Cameron, “The Green500 list: Encouraging
sustainable supercomputing,” IEEE Computer, vol. 40, no. 12, pp. 50–
55, Dec. 2007.

[25] SPEC, “The SPEC power benchmark,” 2008, see www.spec.org/power
ssj2008/.

[26] K. W. Cameron, R. Ge, and X. Feng, “High-performance, power-
aware, distributed computing for scientific applications,” IEEE Com-
puter, vol. 38, no. 11, pp. 40–47, Nov. 2005.

[27] W.-C. Feng, R. Ge, and K. W. Cameron, “Power and energy profiling
of scientific applications on distributed systems,” in 19th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS 05),
Denver, CO, USA, Apr. 2005.

[28] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, “Analysis and
design techniques towards high-performance and energy-efficient dense
linear solvers on GPUs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 12, pp. 2700–2712, Dec. 2018.

[29] G. Ballard, D. Becker, J. Demmel et al., “Implementing a blocked
Aasen’s algorithm with a dynamic scheduler on multicore architectures,”
in 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. Cambridge, MA, USA: IEEE Press, May 2013, pp. 895–
907.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Our experiments used modified versions of the SLATE linear alge-
bra library. Two versions were used, one that only reduces inter-
process communication and one that reduces both inter-process
and intra-process communication. In both cases, the tests were run
using SLATE’s test code which captures accuracy, and performance.
The test code was also modified to use PAPI to capture the events
specified by the PAPI_EVENTS environmental variable (which was
set to ibmpowernv-isa-0000.System.energy11_input in our ex-
periments).

We ran our experiments on eight nodes of the Summit super-
computer at Oak Ridge National Laboratory. This system has two
22-core IBM POWER9 CPUs and six NVIDIA Volta V100 GPUs per
node. Our software stack included GCC 9.1.0, CUDA 11.0.3, IBM
Spectrum MPI 10.4.0.3-20210112, IBM ESSL 6.1.0-2, Netlib LAPACK
3.8.0, Netlib ScaLAPACK 2.1.0, and PAPI 6.0.0.1.

Hyperthreading was disabled with Summit’s smt1 mode. The
tests were run with jsrun -n 16 -a 1 -c 21 -g 3 -b packed:21
-d packed, which runs 16 MPI ranks over 8 nodes, with 21 cores and
3 GPUs per MPI rank. Wemeasured performance and accuracy with
SLATE’s test code; the accuracy was scaled by 𝑛 to convert to the
desired error formula. The flags –origin h –target d –seed 42
–seedB 24 –ref n –check y –nb 896 –ib 32 –panel-threads
18 –lookahead 3 –grid 4x4 –dim 5000,225000 were always
used; the –matrix and –piv-thresh flags were set as appropriate.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://zenodo.org/record/6972268
Artifact name: Experiment sources and results.

Reproduction of the artifact without container: The following de-
pendencies should be installed and added to the compiler path:

(1) GCC 9.1.0
(2) CUDA 11.0.3
(3) IBM Spectrum MPI 10.4.0.3-20210112
(4) IBM ESSL 6.1.0-2
(5) Netlib LAPACK 3.8.0
(6) Netlib ScaLAPACK 2.1.0, and
(7) PAPI 6.0.0.1.

We obtained all but the last using Summit’s modules. We compiled
PAPI from source from tag papi-6-0-0-1-t. PAPI was configured
with the --with-component lmsensors flag to provide the afore-
mentioned energy event.

SLATE was then compiled using the make -j8 test command.
A submission script for Summit is provided; although, paths and
project accounts may need to be adjusted as appropriate. The script
should be easily convertible to other systems. The same script can
be used for both variants of SLATE. Note that, due to job length
limits, the experiments are broken into two groups: the one for the
3-matrix tests, and one for the many-matrix tests.

