
Extending MAGMA Portability with OneAPI
Anna Fortenberry

Department of Computer Science and Engineering
University of North Texas

Denton, USA
AnnaFortenberry@my.unt.edu

Stanimire Tomov
Department of Electrical Engineering and Computer Science

University of Tennessee
Knoxville, USA

tomov@icl.utk.edu

Abstract—As the architectures of super-computing systems
are continually changing, it is important to maintain efficient
code portability in order to continue to take advantage of the
computing capabilities of the diverse and evolving hardware in
these systems. Intel has adopted an open standard programming
interface for heterogeneous systems called oneAPI, designed to al-
low code portability across different processor architectures. This
paper evaluates Intel’s oneAPI by migrating a general matrix-
matrix multiplication (GEMM) CUDA algorithm from the dense
linear algebra library Matrix Algebra on GPU and Multicore
Architectures (MAGMA) to Data Parallel C++ (DPC++), the
direct programming language of oneAPI. The DPC++ Compat-
ibility Tool (DPCT) in Intel’s oneAPI was used successfully for
an initial port of MAGMA to DPC++. The performance of the
migrated code is evaluated and compared to OpenMP GEMMs
and state-of-the-art Intel MKL implementations on AMD EPYC
7742 multicore CPUs and Intel Xeon CPU E5-2698 V4 multicore
CPUs, to the original native-CUDA code in MAGMA on NVIDIA
GeForce RTX 3060 discrete GPUs, and to oneMKL on Intel UHD
Graphics P630 [0x3e96] integrated GPUs. The initial migrated
code demonstrates impressive performance on multicore CPUs as
it significantly outperforms reference OpenMP implementations,
and even MKL on AMD CPUs. Performance on Nvidia GPUs is
also very surprising as the DPC++ code matches in performance
the native CUDA code. The initial migrated code performed
poorly on the Intel GPU, as expected, because the Intel GPU
architecture used is quite different than the Nvidia GPU architec-
ture for which the original code was designed. However, using the
MAGMA’s parameterized implementations to tune the GEMM
algorithm to better match the Intel GPU architecture, improved
the performance significantly. Intel’s oneAPI allowed for a
successful extension of MAGMA’s functional and performance
portability to multicore CPUs and Intel GPUs.

Index Terms—oneAPI, DPC++, portability, MAGMA

I. INTRODUCTION

Supercomputers are used to solve today’s most challenging
problems. Data science, applied mathematics, high perfor-
mance computing, and quantum information science are all
examples of domains in which supercomputers play a critical
role [1], [2]. Researchers are able to analyze complex systems
that would otherwise be impossible [3]. The architectures of
supercomputing systems are becoming increasingly diverse in
heterogeneous architectures. This started with the invention of
the NVIDIA GPU in 1999 [4]. In 2012, a supercomputer called
Titan was the first successful heterogeneous system, designed
by combining AMD Opteron 6274 16-core Central Processing

Research funded by NSF through RECSEM REU program at UTK 2022

Units (CPUs) and NVIDIA Tesla K20X Graphics Processing
Units (GPUs) [5]. NVIDIA GPUs progressed to become
integral to several of the top supercomputers. Recently, new
vendors have entered the supercomputing GPU domain. The
TOP500 list shows that in June 2019, five of the top ten
supercomputers used GPUs, all from NVIDIA [6]. As of
June 2022, eight of the top ten use accelerators, including
four from NVIDIA, three from AMD, and one from NUDT
[7]. Further, with the announcement of Aurora, Intel plans
to join as a supercomputer GPU vendor [8]. This illustrates
how supercomputers are becoming increasingly diverse in
both heterogeneous architecture types and designs. The effect
of this is a decrease in interoperability between code and
hardware. To take advantage of heterogeneous architectures
without requiring significant code modifications, architecture-
independent programming models are needed. Intel adopts
such a programming model interface called oneAPI [22] with
the claim that it is the solution to this problem. Intel states
that applications which adopt this model gain portability to all
supported hardware, including scalar, vector, spatial, and ma-
trix architectures such as CPUs, GPUs, Field-Programmable
Gate Arrays (FPGAs), and other accelerators. To encourage the
use of oneAPI, Intel developed tools to aid in the migration
of CUDA, the language for porting to NVIDIA GPUs, to
Data Parallel C++ (DPC++), the direct programming language
of oneAPI [16]. Specifically, the DPC++ Compatibility Tool
(DPCT) [19] claims to migrate CUDA to DPC++ very effec-
tively. This paper describes the efforts on testing the oneAPI
model by porting the dense linear algebra library called Matrix
Algebra on GPU and Multicore Architectures (MAGMA) [11]
to Sycl/DPC++. The capability of the DPCT tool to migrate
code successfully is tested first. It is then evaluated whether
the process of using DPCT is more efficient than manual
translation. This is followed by testing the value of the trans-
lated code. Performance is analyzed using MAGMA’s single-
precision general matrix-matrix multiplication (SGEMM) al-
gorithms, translated to DPC++. Hardware tested includes two
CPUs, the AMD EPYC 7742 64-Core Processor @ 2.25GHz
and the Intel® Xeon® CPU E5-2698 V4 20-Core Processor @
2.20GHZ, and two GPUs, the NVIDIA GeForce RTX 3060,
which is a discrete GPU, and the Intel UHD Graphics P630
[0x3e96], which is integrated.

The rest of this paper is as follows. A related works
section details recent evaluations of various heterogeneous

https://www.acm.org/publications/policies/artifact-review-and-badging-current/

programming models and a benchmark evaluation of oneAPI.
A background section explains the structure of CUDA in
MAGMA, overviews the design of oneAPI, and lists the spec-
ifications of the hardware mentioned above. A methodology
overviews the approach to extending support to oneAPI in
MAGMA. The next section discusses the GEMM algorithm
design and parameters for testing performance. In the section
that follows, performance results are provided; required test
parameters are listed first, followed by hardware usage results
and performance comparisons between original and migrated
code. Lastly, a conclusion and future directions section sum-
marizes the contributions of this paper and explains the areas
where further work is required.

II. RELATED WORKS

Intel’s oneAPI is relatively new, so few substantial papers
related to migration of applications to oneAPI have been pub-
lished. One case study [12] tests several portable programming
models, including Kokkos and SYCL, with the latter related
to oneAPI. The main component of oneAPI is the DPC++
language, which is an implementation of SYCL [23]. These
models were tested with a parallel Milc-Dslash implemen-
tation, which is a benchmark involving millions of matrix-
vector multiplications of the complex-double type. Hardware
tested included the NVIDIA A100 GPU, AMD MI100 GPU,
and Intel Gen9 GPU. Their results demonstrate satisfactory
performance portability across all GPUs when compared to
CUDA and HIP.

An Intel project [15] evaluates DPC++ in four aspects:
memory bandwidth utilization, migration of well-established
CUDA algorithms, performance of migrated DPC++ to native
implementations of CUDA, and oneMKL performance. The
results show that DPC++ achieves bandwidth performance
comparable to OpenCL [24] and CUDA. With respect to
migrating well-established CUDA algorithms, the computa-
tional science algorithms of lid-driven cavity flow, heart wall
tracking, k-means clustering, and GROMACS were each suc-
cessfully migrated and tested. Porting to the Tesla K40 and
Tesla V100, DPC++ performed reasonably well. A comparison
of SGEMM between cuBLAS and oneMKL showed poor per-
formance for oneMKL comparatively. Their explanation is that
context creation cannot be excluded from the oneMKL event
recording like it is in cuBLAS. Sufficiently large matrices help
mitigate the overhead.

Porting sparse linear algebra library to Intel GPUs by
developing a kernel backend based on the DPC++ program-
ming environment was investigated in [39]. The main sparse
kernel, the sparse matrix product (SpMV), was tuned in the
Ginkgo math library and compared to Intel’s oneMKL vendor
library. Similarly to this work, all Intel GPU experiments were
conducted on hardware that is part of the Intel DevCloud.
Results show SpMVs achieve about 90% of peak bandwidth on
GEN12 and about 60-70% of peak bandwidth on GEN9 Intel
GPUs, and the performance comparison to oneMKL show
mixed results.

This report focuses specifically on the DPC++ implemen-
tation of SYCL and tests both CPU and GPU hardware.
Previous works provide a baseline expectation for performance
of DPC++ code, specifically migrated CUDA code.

III. BACKGROUND

A. Structure of MAGMA

The MAGMA library has been originally designed and
implemented for heterogeneous systems that use NVIDIA
GPUs [41]. Support was later extended to OpenCL [13],
Intel Xeon Phi [42], and more recently to AMD GPUs by
translating CUDA code to HIP [40]. To extend portability to
oneAPI supported hardware, this translation process must be
completed again. Figure 1 depicts the directories in MAGMA
that are written in CUDA and used for executing CUDA
code. It has been updated to depict the intended structure of
MAGMA after support has been extended to oneAPI. In the
updated structure, CUDA code has been migrated with the
DPCT tool, followed by manual changes to DPC++ completed
as necessary. DPC++ code may then be used to port to
any oneAPI supported hardware. The oneMKL library [20]
replaces cuBLAS. Specific to MAGMA, DPC++ compiler
directives must be implemented by hand.

Fig. 1. Extended files structure of the MAGMA library and the MAGMA
directories that contain CUDA code.

Note that the rest of the MAGMA library contains code
and abstractions that are architecture-independent and do not
need translation. The different ports of MAGMA to different
architectures and programming models need to translate only
the code in Figure 1.

B. The oneAPI Programming Model

There are three main components integrated into the design
of the oneAPI programming model [10]. The most important
component is DPC++, the direct programming language of
oneAPI. It works in conjunction with oneAPI libraries, which
are for API-based programming, and analysis and debugging
tools. These together allow for a hardware-independent pro-
gramming model where single-source code can be ported
to scalar, vector, matrix, and spatial architectures. DPC++
itself is an implementation of the Khronos standard SYCL.
SYCL is an accelerator language that allows code reuse across
hardware targets. It is designed to add data parallelism and
heterogeneous programming to standard ISO C++.

The oneAPI tools used in this project were downloaded
through the Intel® oneAPI Base Toolkit [17]. Notably, this
includes the DPC++ compiler [18], the DPCT tool, and
oneMKL. The oneAPI compiler allows for code reuse by opti-
mally compiling ISO C++ and SYCL across oneAPI supported
hardware targets. The DPCT tool performs source-to-source
migration from CUDA to DPC++ with high efficiency. For
code that cannot be migrated, human readable comments are
printed to aid in the completion of the migration by the user
manually. The tool is based on LLVM/Clang [21], which, in
this project, allowed for the possibility of porting to NVIDIA
and AMD GPUs. The tool oneMKL refers to both an open-
source math library interface and a library itself. It is designed
for compatibility with a range of computational devices; thus,
oneMKL is first called as an interface. It then calls the math
kernel library that corresponds with the target device. For
CPUs and Intel GPUs, oneMKL as a library is called and used.
For NVIDIA GPUs, NVIDIA cuBLAS or MAGMA may be
called and used instead.

Other compilers for C++ with SYCL besides the one in
Intel’s oneAPI, that are not used and investigated in this
work, include implementations from Codeplay, Huawei, and
Heidelberg University.

C. Computational Environment
The hardware used to test the performance of DPC++

includes two multicore CPUs (one from AMD and one from
Intel), one NVIDIA GPU, and one Intel GPU. Ideally, more
hardware configurations will be of interest to test, tune for,
and use, and we have ran on some, including high-end Intel
GPUs in the early-access precursors of the Aurora system,
to find that the conclusions and main massage of this paper
remain the same. The results that we show in this paper include
the AMD EPYC 7742 CPU, the Intel® Xeon® Processor
E5-2698 v4, the NVIDIA GeForce RTX 3060, and the Intel
UHD Graphics P630 [0x3e96]. The AMD CPU comes with
64 cores, a base clock of 2.25GHz, 128 threads, and L3 cache
of 256MB [34]. This contrasts to the Intel CPU, which has
20 cores, a base clock of 2.20 GHz, 40 threads, and 50MB of
L3 smart cache [35]. The design of oneAPI allows DPC++ to
be compiled directly to multicore CPUs upon installation of
oneAPI.

The NVIDIA GPU used has 3,585 CUDA cores, a base
clock of 1,320 MHz, and 12 GB of memory [36]. Addi-
tional software was installed to compile DPC++ to this GPU:
DPC++-LLVM (Clang-LLVM) [21]. This corresponds to the
LLVM/Clang design of the DPCT tool. DPC++-LLVM is an
open source project on the DPC++ compiler. After the initial
download, the compiler can be built for either an NVIDIA
or AMD GPU target backend. The tutorial for NVIDIA
support in [21] was successfully conducted for the NVIDIA
GeForce RTX 3060 with one adjustment. The tutorial clones
the compiler repository with git, runs a python script, and
then performs the following command: make install -j ’nproc’.
This was replaced with two commands, make sycl-toolchain
-j ’nproc’ and make install, for a successful installation.

The Intel GPU differs from the NVIDIA GPU in design.
It is a mobile integrated GPU rather than a discrete GPU.
It has 192 cores, a base clock of 350 MHz and a shared
memory system [37], and as a mobile device has significantly
less computational power than the NVIDIA GPU. At the
time this research was conducted, a discrete Intel GPU was
unavailable for public testing [25]. Contrary to the other
computational devices, the Intel GPU was run on the cloud,
through Intel DevCloud [26]. Intel DevCloud offers remote
development environments that grant access to Intel hardware.
This project used the JupyterLab environment to access the
publicly available Intel GPU.

IV. METHODOLOGY

This research aimed to both measure the effort and evaluate
the ease of portability, but it should be acknowledged that the
research was limited in time and conducted over the course of
a summer internship of ten weeks. The first step involved sys-
tem configuration for running DPC++ code. The oneAPI Base
Toolkit was installed on various architectures, and the process
was documented. To test the DPCT for migration accuracy,
the following CUDA samples where first downloaded from
GitHub [27]. The example matrixMul.cu was used, available
in the matrixMul directory. It provides a standard SGEMM
algorithm in CUDA, derived from V. Volkov and J. Demmel’s
state-of-the-art SGEMM for Nvidia Tesla GPUs [38]. The
matrixMul.cu file and corresponding header files were moved
into a separate directory. This allowed us to test the DPCT tool
with a file that had header dependencies, which would be the
case for migration within MAGMA. Translated CUDA files are
appended with an extension for DPC++; thus, matrixMul.cu
was migrated to matrixMul.dp.cpp in an output directory. After
this step, the DPC++-LLVM compiler was installed and built
to target NVIDIA GPUs. This allowed us to test DPC++ code
on a GPU. Next, an account to the University of Tennessee’s
Innovative Computing Laboratory (ICL) was granted to access
more powerful CPUs and GPUs. The system configuration
step must be repeated in this environment; the installation
of oneAPI was again successful, but the installation of the
DPC++-LLVM compiler was unsuccessful. At this point, the
Intel and AMD multicore CPUs and the NVIDIA GPU were
accessible, so the decision was made to prioritize the goal of
translating MAGMA. The consequence of this prioritization
left behind the testing of DPC++ on AMD GPUs. Next, to
provide a self-contained example of the port for reproducible
purposes, a directory was setup with MAGMA SGEMM
CUDA code and all of the required dependencies (about 50
files, including all magma header files and GEMM sources).
The DPCT tool was used to recursively migrate the SGEMM
files and headers. Some embedded header files did not get
translated by the tool, so these were migrated independently
in a separate directory. They were afterwards copied into the
directory with the translated DPC++ files. Compiler directives
specific to MAGMA were implemented manually to complete
the translation process. To test the MAGMA DPC++ SGEMM,
a benchmark based on extending the matrixMul.dp.cpp file

i f (TransA == 0 && TransB == 0) {

dim3 dimGrid (magma ce i ld iv (m, BLK M nn) ,
magma ce i ld iv (n , BLK N nn)) ;

sgemm kerne l fe rmi nn<<< dimGrid , dimBlock , 0 ,
queue−>c u d a s t r e a m () >>> (

m, n , k , dA , ldda , dB , lddb ,
dC , lddc , a lpha , be t a ,
(i n t) o f f s e t A , (i n t) o f f s e t B) ;

}
Listing 1. Original CUDA code in MAGMA calling the C = ↵AB + �C
sgemm routine.

i f (TransA == 0 && TransB == 0) {
s y c l : : range<3> dimGrid (1 , magma ce i ld iv (n , BLK N nn) ,

magma ce i ld iv (m, BLK M nn)) ;
/ * DPCT1049 : 3 6 : The work − group s i z e p a s s e d t o t h e SYCL

k e r n e l may exceed t h e l i m i t . To g e t t h e d e v i c e l i m i t ,
que ry i n f o : : d e v i c e : : max work group s ize .
A d j u s t t h e work − group s i z e i f needed . * /

queue−>su bmi t ([&] (s y c l : : h a n d l e r &cgh) {
s y c l : : a c c e s s o r<F l o a t i n g P o i n t t , 2 ,

s y c l : : access mode : : r e a d w r i t e ,
s y c l : : a c c e s s : : t a r g e t : : l o c a l>

sA acc c t1 (s y c l : : range<2>(BLK K nn , BLK M nn+1) , cgh) ;
s y c l : : a c c e s s o r<F l o a t i n g P o i n t t , 2 ,

s y c l : : access mode : : r e a d w r i t e ,
s y c l : : a c c e s s : : t a r g e t : : l o c a l>

s B a c c c t 1 (s y c l : : range<2>(BLK N nn , BLK K nn +1) , cgh) ;

cgh . p a r a l l e l f o r (s y c l : : nd range<3>(dimGrid * dimBlock ,
dimBlock) ,

[=] (s y c l : : nd i tem<3> i t e m c t 1) {
sgemm kerne l fe rmi nn (m, n , k , dA , ldda , dB , lddb ,

dC , lddc , a lpha , be t a ,
(i n t) o f f s e t A , (i n t) o f f s e t B ,
i t e m c t 1 , sA acc c t1 ,
s B a c c c t 1) ;

}) ;
}) ;

}
Listing 2. DPC++ translated CUDA code from MAGMA calling the C =
↵AB + �C sgemm routine.

Fig. 2. Left: Original CUDA sgemm call in MAGMA; Right: The corresponding DPC++ code translated using DPCT plus some hand fixes.

was created to call the MAGMA SGEMM implementation and
header files rather than the original, standard implementation
of MAGMA’s SGEMM benchmark.

Figure 2 shows an example of the DPCT translation of
the MAGMA SGEMM call. The original code is on the left
listing and the translated one followed by manual changes
is to the right. Note that the DPCT tool looked into the
original code and if texture memory or shared memory are
used, the allocations get pulled and declared as objects outside
the call and get passed to the routine as parameters. The
sA_acc_ct1 and sB_acc_ct1 objects in this case are for
shared memory. There were many more objects for texture
memory use generated automatically that were giving errors,
even though they were not used as a result of being into macro
sections. Those had to be removed by hand and this is one
example of what we had to fix manually.

To evaluate the performance of DPC++, different tests were
set up for the CPUs, the NVIDIA GPU, and the Intel GPU.
For the NVIDIA GPU, the original sample CUDA SGEMM
and MAGMA SGEMM algorithms were compared with
their migrated DPC++ counterparts. This corresponds with
DPC++(MAGMA), MAGMA, DPC++(CUDA), and CUDA in
Figure 6, included in the OneAPI Portability Results sections
of this paper. For the two CPUs, since CUDA cannot run
on CPU, the original sample CUDA and MAGMA SGEMM
implementations were replaced with MKL and C++. This
provides a performance baseline since MKL is written in
optimized Assembly code and C++ uses OpenMP [28]. This
corresponds to DPC++(MAGMA), DPC++(CUDA), MKL,
and C++(OpenMP) in Figures 4 and 5. For the Intel GPU,
oneMKL was first compared to the migrated standard SGEMM

and MAGMA SGEMM algorithms. The MAGMA SGEMM
algorithm, tuned for NVIDIA GPUs, performed poorly, so
new algorithm parameters were tested. An explanation of
the algorithm parameters is provided in the following sec-
tion. The original test parameters are labeled cuda, and
two new sets of SGEMM algorithm parameters are labeled
ker2, and ker11. This corresponds to DPC++(MAGMA cuda),
DPC++(MAGMA ker2), and DPC++(MAGMA ker11) in Fig-
ure 8. For all performance tests, the N matrix dimensions
tested remained constant. The original CUDA SGEMM al-
gorithm required N to be divisible by 32. The largest size
of N tested was 8,192. The range of N was intended to
mimic performance tests conducted in a previous extension
of MAGMA to support OpenCL [13].

V. GENERAL MATRIX-MATRIX MULTIPLICATION
(GEMM) DESIGN AND IMPLEMENTATION IN DPC++

The GEMM design and implementation are of fundamental
importance in HPC as many scientific computing applica-
tions are designed in terms of GEMM operations. GEMM
is expected to run close to machine peak of the underlying
hardware so that applications using GEMMs derive their
high-performance and performance portability across different
hardware from highly efficient GEMM implementations. This
is the reason that we concentrate on the GEMM kernel in this
paper. Performance portable GEMM implementations however
are very challenging to develop – even for just one specific
architecture, let alone having a single code to be performance-
portable across architectures. Still, our goal is to evaluate
exactly that, i.e., to what extent can a single DPC++ GEMM
implementation be performance-portable.

To evaluate the performance-portability of a DPC++ code
we need to set first references for comparison. These will
be lower-bound implementations that are reasonable reference
implementations (as given in Listings 1 and 2), that the DPC++
code will hopefully outperform, and higher-bound state-of-the-
art implementations, typically architecture-specific and written
in Assembly (e.g., MKL or MAGMA for Nvidia GPUs, cf.
Figure 3), that the DPC++ code will ideally get close to in
performance.
vo id sgemm ijk (i n t m, i n t n , i n t k ,

f l o a t a lpha , f l o a t *A, i n t lda ,
f l o a t *B , i n t ldb ,

f l o a t be t a , f l o a t *C , i n t l d c) {
f o r (i n t i = 0 ; i < m; ++ i) {

f o r (i n t j = 0 ; j < n ; ++ j) {
f l o a t sum = 0 . 0 ;
f o r (i n t l = 0 ; l < k ; ++ l) {

sum += A[i + l d a * l] * B[l + j * l d b] ;
}
C[i + j * l d c] = b e t a * C[i + j * l d c] + a l p h a * sum ;

}
}

}

Listing 3. ijk loop implementation of the sgemm routine.

Listing 1 gives a reference GEMM implementation that is,
in general, of very low performance, and thus a very low bar
to outperform. Therefore, Listing 1 code is almost never used
by itself in practice. A higher performance implementation is
to block for computation for higher memory reuse, as given in
Listing 2. Note that Listing 2 uses the Listing 1 code in its in-
nermost loop, and also renders a parallel implementation using
OpenMP, where the I and J loops are collapsed to be performed
in data-parallel fashion on different CPU cores/threads. The
implementation is also parameterized, allowing the tuning of
this code to be of very high-performance. This code is used as
a target goal to outperform using DPC++ code. In subsequent
performance measurements we denote it by C++(OpenMP), as
given in Figures 4 and 5.
d e f i n e BLK 96
vo id sgemm bijk (i n t m, i n t n , i n t k ,

f l o a t a lpha , f l o a t *A, i n t lda ,
f l o a t *B , i n t ldb ,

f l o a t be t a , f l o a t *C , i n t l d c) {
pragma omp p a r a l l e l f o r c o l l a p s e (2) s c h e d u l e (dynamic)
f o r (i n t I = 0 ; I < m; I +=BLK)

f o r (i n t J = 0 ; J < n ; J +=BLK)
f o r (i n t K = 0 ; K < k ; K+=BLK) {

i n t bm = min (BLK, m− I) ;
i n t bn = min (BLK, n− J) ;
i n t bk = min (BLK, k−K) ;
i f (K==0)

sgemm ijk (bm , bn , bk , a lpha , A+ I +K* lda , lda ,
B+J * l d b +K, ldb , be t a , C+ I +J * ldc , l d c) ;

e l s e
sgemm ijk (bm , bn , bk , a lpha , A+ I +K* lda , lda ,

B+J * l d b +K, ldb , 1 . 0 , C+ I +J * ldc , l d c) ;
}

}

Listing 4. Blocked OpenMP implementation of the sgemm routine.

The MAGMA general matrix-matrix multiplication
(GEMM) algorithm translated and tested in this report is
shown in Figure 3. This algorithm is used for GEMM of any
type, including single precision. There are nine important
constants that tune the algorithm to a hardware architecture.

The first two, labelled DIM X and DIM Y, determine the
dimensions of the thread block executed in parallel. The
second set of parameters, DIM M and DIM N, provide the
dimensions of the sub-matrix product that a thread block
computes. The remaining five parameters affect how loading
into shared memory is done for parts of the A and B matrices
(as illustrated on Figure 3). Another important aspect to
note is that the product sub-matrix CIJ is stored in the
registers of the multiprocessor/core that computes CIJ , which
vary in number across different hardware. Thus, selecting
the size of CIJ is crucial for obtaining high performance.
This algorithm was developed and autotuned for optimal
performance on NVIDIA GPUs [33]. The parameters that
optimize the GEMM algorithm on current high-end NVIDIA
devices are labeled as cuda in Table 1.

A

B

C

C = A B

DIM_M

DIM_K

DIM_X

DIM_Y

AIK CIJ

For I = 1 .. M step DIM_M
 For J = 1 .. N step DIM_N
 For K = 1 .. K step DIM_K
 CIJ += AIK BKJ

template < DIM_X, DIM_Y, DIM_M, DIM_N,
DIM_K, DIM_XA, DIM_YA, DIM_XB, DIM_YB>

. . .

. . .

BKJ

DIM_N

•  Implementation is templated with 9 parameters
•  Computation is done with thread blocks of size [DIM_X , DIM_Y]
•  Thread tij computes [DIM_M / DIM_X, DIM_N / DIM_Y] elements of CIJ
•  AI K gets loaded in shared memory by [DIM_XA , DIM_YA] threads
•  BKJ gets loaded in shared memory by [DIM_XB , DIM_YB] threads
•  CIJ is held and computed in registers

tij

Fig. 3. The GEMM algorithm in MAGMA [14].

Although double-precision (64-bit) floating-point arithmetic
(FP64) is a standard in HPC, we choose to present results
in single-precision 32-bit floating point arithmetic (FP32).
The MAGMA codes have single implementation regarding
precision and the rest are generated (alternative is to tem-
plate precision and generate the different versions by a C++
compiler). In particular, MAGMA sources are written for
double-complex arithmetic and single real, double real, and
single complex are generated. Thus, the precision choice is
not important for the choice and conclusion results in this
paper. A motivation to choose FP32 is that FP32 arithmetic
is often more than 2⇥ faster than FP64 for many GPUs and
many applications, including machine learning and deep neural
networks, are currently aiming to leverage this performance

boost to somehow get away with reducing the accuracy
(even to FP16) and possibly regaining it with mixed-precision
calculations where the bulk of the computation is in reduced
FP16 or FP32 precision [43] [44].

VI. ONEAPI PORTABILITY RESULTS

A. Test Parameters
The algorithm optimized for the NVIDIA GPUs, with

parameters labeled as cuda and listed in Table 1, performed
well on the multicore CPUs, significantly outperforming the
reference OpenMP code and even the Intel MKL on AMD
CPUs. This was confirmed by measuring the performance,
monitoring the CPU usage, and profiling information. For
the NVIDIA GPU, performance was also very good as the
migrated code retained the performance of CUDA. The cuda
GEMM kernel did not perform well on the integrated Intel
GPU, as expected. New parameter sets were tested. The best
two selected, labeled ker2 and ker11, are listed in Table 1,
along with a number of other parameters included in the search
space used for this paper.

B. MAGMA to DPC++ Portability on Multicore CPUs
1) Hardware Usage: Profiling and performance measure-

ments, as well as monitoring commands like htop [29], were
used to verify CPU usage. These are important indicators on
whether the algorithm parameters are a good fit for the archi-
tecture. In particular, htop was used as an interactive process
viewer to confirm exact process usage and for troubleshooting,
e.g., to observe and verify the number of threads used and their
load. The migrated code used 100% for each of the CPU’s
cores available.

2) Performance: The migrated DPC++ code successfully
ran on multicore CPUs. As initial migrated code, it demon-
strated impressive performance. On the AMD CPU, shown in
Figure 4, the migrated DPC++(MAGMA) SGEMM algorithm
significantly outperforms the OpenMP C++(OpenMP) imple-
mentation, as well as the DPC++(CUDA), and even the MKL
implementation (for N less than 7,000). This result is very
significant as it shows that an algorithm designed for Nvidia
GPUs can be very efficient for multicore CPUs as well. Note
that the DPC++(MAGMA) implementation outperforms even
our upper performance target, which is MKL in this case.
This means parallelization, blocking for reduced communi-
cation, and vectorization have been all efficiently achieved.
Thus, since a fast multicore GEMM is very challenging
to develop, this is one illustration of both functional and
performance portability of MAGMA GEMM, and arguably
the entire MAGMA because of the GEMM importance, to
multicore CPUs using the Intel’s oneAPI programming model
and toolkit. Furthermore, MAGMA never had a port to just
multicore CPUs, and this result shows that the oneAPI port
as being developed is a feasible solution to easily provide this
functionality in a performance portable way.

The same conclusions can be derived from runs on Intel
multicore CPUs. The results are shown in Figure 5. Note
that as MKL is specifically tuned for Intel CPUs, MKL

Fig. 4. SGEMM Performance on AMD EPYC 7742 64-Core Processor @
2.25GHZ

had the highest performance, as one would expect. However,
the MAGMA DPC++(MAGMA) implementation is not much
lower, and still outperformed the standard CUDA SGEMM
algorithm translated to DPC++. More notably, the trans-
lated DPC++ code significantly outperformed the OpenMP
implementation (on both the Intel and AMD CPUs). We
note that performance improvements are possible for the
DPC++(MAGMA) by autotuning, e.g., by testing a search
space of algorithms like the one in Table 1 and as discussed in
the Intel GPUs section. The result here is for the fixed GEMM
kernel/algorithm (parameters) that is used for high-end Nvidia
GPUs.

Fig. 5. SGEMM Performance on INTEL® XEON® CPU E5-2698 V4 20-
Core Processor @ 2.20GHZ

C. MAGMA to DPC++ portability on NVIDIA GPUs
1) Hardware Usage: After successfully porting to the

NVIDIA GPU with the DPC++-LLVM installation, usage
was checked with the command watch -n0.5 nvidia-smi [30].
Migrated code was shown to use 100% of the NVIDIA GPU.

TABLE I
GEMM TEST PARAMETERS

constants DIM X DIM Y DIM M DIM N DIM K DIM XA DIM YA DIM XB DIM YB

cuda 16 16 96 96 16 32 8 8 32
ker1 32 4 64 64 4 32 4 32 4
ker2 16 16 64 64 8 32 8 8 32
ker3 4 32 64 64 4 32 4 32 4
ker4 4 32 64 64 4 4 32 4 32
ker5 32 4 64 64 4 4 32 4 32
ker6 16 4 64 64 2 32 2 32 2
ker7 16 4 64 64 1 64 1 64 1
ker8 8 4 32 32 1 32 1 32 1
ker9 8 4 64 32 1 32 1 32 1

ker10 4 4 32 32 2 8 2 8 2
ker11 12 4 48 48 2 24 2 24 2

This indicated that optimization of the SGEMM MAGMA
algorithm was retained.

2) Performance: The performance of the initial migrated
code on the NVIDIA GPU demonstrated impressive results. As
shown in Figure 6, the migrated MAGMA DPC++(MAGMA)
code, originally tuned for the NVIDIA GPU, retained the
performance of the CUDA implementation. This is significant
result as it illustrates that DPC++ is expressive enough for
parallel algorithms that have to map and run well on Nvidia
GPUs, as it matches in performance CUDA that is designed for
Nvidia GPUs. Also, it shows that the Intel oneAPI compiler
is very good in generating highly optimized code for Nvidia
GPUs. This is the ideal outcome for a new language, its
compiler, and a translation tool – the tool to translate a highly-
optimized code to a new language, compile the new code, and
achieve the same performance as the original code on hardware
for which the original code had been tuned.

Combined with the results from the previous section, we
conclude that after a full translation of MAGMA is complete,
the same code can be used for both functional and performance
portability to NVIDIA GPUs, multicore CPUs, and Intel
GPUs.

Fig. 6. SGEMM Performance on NVIDIA GeForce RTX 3060

D. MAGMA to DPC++ portability on Intel GPUs

1) Hardware Usage: The Intel GPU was tested on the cloud
with Intel DevCloud. Inferences about the usage were made
based on the performance obtained.

2) Performance: The initial migration to DPC++ did not
compile on the Intel GPU. [15] offered insight into the issue
by explaining the maximum work group size [31] for NVIDIA
devices and the integrated Intel GPU. For NVIDIA devices,
it is constant at 1024, while for this specific Intel device,
it is 256. The variables that determine the work group size
were updated in the migrated code. The code then compiled
and executed. Initial performance results were collected. As
shown in Figure 7, these results were very poor; the MAGMA
DPC++ SGEMM algorithm never exceeded two GFlop/s in
performance. This indicated that the parameters originally
used in the MAGMA SGEMM algorithm, labeled cuda in
Table 1, needed to be updated to accommodate for the Intel
GPU architecture. Multiple constant sets were tested next, to
discover ker2 and ker11, which increased the performance to
more than ten times that of the standard SGEMM algorithm,
as shown in Figure 8. Optimal algorithm parameters are yet to
be determined. Without specific details about the Intel GPU
architecture, several hundred parameter combinations must
be tested through trial and error (following an autotuning
approach [33]).

VII. CONCLUSIONS AND FUTURE WORK DIRECTIONS

Intel’s oneAPI proves to be a promising approach for
portable parallel programming on heterogeneous systems with
various hardware architectures. The DPCT tool can be used
successfully for an initial port of CUDA code to DPC++.
DPC++ code was successfully compiled and tested on mul-
ticore CPUs, NVIDIA GPUs, and the integrated Intel GPU.
Thus, the MAGMA port to DPC++ can be used to provide
support for Intel GPUs, NVIDIA GPUs, AMD GPUs, and
multicore CPUs. DPC++ shows that large numerical libraries
like MAGMA, originally written in CUDA to support NVIDIA
GPUs, can be easily translated to DPC++ to provide functional
portability to different vendor GPUs, as well as multicore
CPUs. Initial migrated code tuned for NVIDIA GPUs performs

Fig. 7. Initial SGEMM Performance on Intel UHD Graphics P630 [0x3e96]

Fig. 8. Tuned SGEMM Performance on Intel UHD Graphics P630 [0x3e96]

well on multicore CPUs. It retains performance of algorithms
optimized for NVIDIA GPUs. Initial migrated code that is
tuned for NVIDIA GPUs performs poorly on the available
Intel GPU, but tuning can improve performance. However,
optimal parameters are difficult to find without specific knowl-
edge of the hardware architecture as thousands of parameter
combinations must be tested to find the best.

The success of the MAGMA SGEMM migration has estab-
lished a process for the eventual full extension of MAGMA
support to oneAPI. To take full advantage of the computational
capabilities of the Intel GPU for GEMM algorithms, further
sets of constants must be tested using autotuning techniques
to discover the best performing versions.

ACKNOWLEDGMENT

This project was sponsored by the National Science Foun-
dation through the Research Experience for Undergraduates
(REU) award no. 2020534 with additional support from the
National Institute of Computational Sciences and Innova-
tive Computing Laboratory at the University of Tennessee,

Knoxville. The contributions of the second author were sup-
ported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of two U.S. Department of Energy
organizations (Office of Science and the National Nuclear
Security Administration) responsible for the planning and
preparation of a capable exascale ecosystem, including soft-
ware, applications, hardware, advanced system engineering
and early tested platforms, in support of the nation’s exascale
computing imperative.

REFERENCES

[1] Advancing computing and data capabilities for scientific discovery and
continued U.S. technological leadership. Oak Ridge National Lab.
urlhttps://www.ornl.gov/directorate/ccsd

[2] Computing at LLNL. Lawrence Livermore National Laboratory. https:
//computing.llnl.gov/

[3] High performance computing. U.S. Department of Energy, Office of
Science. https://www.energy.gov/science/high-performance-computing

[4] NVIDIA history. NVIDIA. https://www.nvidia.com/en-us/about-nvidia/
corporate-timeline/

[5] New Titan supercomputer named fastest in the world.
Department of Energy. https://www.energy.gov/articles/
new-titan-supercomputer-named-fastest-world-0

[6] June 2019. The Top 500 List. https://www.top500.org/lists/top500/2019/
06/

[7] June 2022. The Top 500 List. https://www.top500.org/lists/top500/2022/
06/

[8] Aurora: HPC and AI at exascale. Intel. https://www.intel.com/
content/www/us/en/high-performance-computing/supercomputing/
exascale-computing.html

[9] Compare benefits of CPUs, GPUs, and FPGAs for
different oneAPI compute workloads. Intel. https://www.
intel.com/content/www/us/en/developer/articles/technical/
comparing-cpus-gpus-and-fpgas-for-oneapi.html#gs.83qstn

[10] Intel oneAPI programming overview. Intel. https://
www.intel.com/content/www/us/en/develop/documentation/
oneapi-programming-guide/top/introduction-to-oneapi-programming/
intel-oneapi-programming-overview.html

[11] MAGMA. Innovative Computing Laboratory, University of Tennessee at
Knoxville. https://icl.utk.edu/magma/

[12] A. S. Dufek et al. “Case study of using Kokkos and SYCL
as performance-portable frameworks for Milc-Dslash benchmark on
NVIDIA, AMD and Intel GPUs.“ in 2021 International Workshop on
Performance, Portability and Productivity in HPC (P3HPC), 2021, pp.
57-67, doi: 10.1109/P3HPC54578.2021.00009.

[13] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra.
“From CUDA to OpenCL: Towards a performance-portable solution
for multi-platform GPU programming.” in Parallel Computing, vol. 38,
2012, pp. 391–407.

[14] R. Nath, S. Tomov, and J. Dongarra, “An improved MAGMA GEMM
for Fermi Graphics Processing Units.” The International Journal of High
Performance Computing Applications 24, no. 4 (November 2010): pp.
511—515. https://doi.org/10.1177/1094342010385729.

[15] Benchmarking the performance of oneAPI on heterogeneous computing
Platforms. Moasys, Intel Software. 2021. https://www.moasys.com/files/
upload oneapi webinar 20210618.pdf?ckattempt=2

[16] Data Parallel C++: the oneAPI implementation of SYCL*. Intel.
https://www.intel.com/content/www/us/en/developer/tools/oneapi/
data-parallel-c-plus-plus.html#gs.83xmmq

[17] Intel® oneAPI Base Toolkit. Intel. https://www.intel.com/content/www/
us/en/developer/tools/oneapi/base-toolkit.html#gs.8anj8g

[18] Intel® oneAPI DPC++/C++ Compiler. Intel. https://www.intel.
com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.
vnkxf8

[19] Z. Wang, et al. “A source-to-source CUDA to SYCL code migra-
tion tool: Intel®DPC++ Compatibility Tool,“ presented at IWOCL’22:
International Workshop on OpenCL. vol. A17, pp. 1-2, May 2022.
https://doi-org.libproxy.library.unt.edu/10.1145/3529538.3529562

https://computing.llnl.gov/
https://computing.llnl.gov/
https://www.energy.gov/science/high-performance-computing
https://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
https://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
https://www.energy.gov/articles/new-titan-supercomputer-named-fastest-world-0
https://www.energy.gov/articles/new-titan-supercomputer-named-fastest-world-0
https://www.top500.org/lists/top500/2019/06/
https://www.top500.org/lists/top500/2019/06/
https://www.top500.org/lists/top500/2022/06/
https://www.top500.org/lists/top500/2022/06/
https://www.intel.com/content/www/us/en/high-performance-computing/supercomputing/exascale-computing.html
https://www.intel.com/content/www/us/en/high-performance-computing/supercomputing/exascale-computing.html
https://www.intel.com/content/www/us/en/high-performance-computing/supercomputing/exascale-computing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/comparing-cpus-gpus-and-fpgas-for-oneapi.html#gs.83qstn
https://www.intel.com/content/www/us/en/developer/articles/technical/comparing-cpus-gpus-and-fpgas-for-oneapi.html#gs.83qstn
https://www.intel.com/content/www/us/en/developer/articles/technical/comparing-cpus-gpus-and-fpgas-for-oneapi.html#gs.83qstn
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/introduction-to-oneapi-programming/intel-oneapi-programming-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/introduction-to-oneapi-programming/intel-oneapi-programming-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/introduction-to-oneapi-programming/intel-oneapi-programming-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/introduction-to-oneapi-programming/intel-oneapi-programming-overview.html
https://icl.utk.edu/magma/
https://doi.org/10.1177/1094342010385729.
https://www.moasys.com/files/upload_oneapi_webinar_20210618.pdf?ckattempt=2
https://www.moasys.com/files/upload_oneapi_webinar_20210618.pdf?ckattempt=2
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html#gs.83xmmq
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html#gs.83xmmq
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html#gs.8anj8g
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html#gs.8anj8g
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.vnkxf8
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.vnkxf8
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.vnkxf8
https://doi-org.libproxy.library.unt.edu/10.1145/3529538.3529562

[20] M. Krainiuk, M. Goli, V. R. Pascuzzi. “oneAPI open-source math
library interface,” presented at 2021 International Workshop on
Performance, Portability and Productivity in HPC (p3HPC). 2021.
https://ieeexplore-ieee-org.libproxy.library.unt.edu/stamp/stamp.jsp?tp=
&arnumber=9652858&tag=1

[21] Compiling SYCL for different GPUs. Intel. https://www.
intel.com/content/www/us/en/developer/articles/technical/
compiling-sycl-with-different-gpus.html

[22] oneAPI. Intel. https://www.oneapi.io/spec/
[23] SYCL Specification. KHRONOS. https://registry.khronos.org/SYCL/

specs/sycl-1.2.1.pdf
[24] The OpenCL specification. Khronos. https://registry.khronos.org/

OpenCL/specs/opencl-1.1.pdf
[25] Intel® Iris® Xe Max Graphics to be retired from Intel® DevCloud

on 07/29/2022. Intel. https://community.intel.com/t5/Intel-DevCloud/
Intel-Iris-Xe-Max-Graphics-to-be-retired-from-Intel-DevCloud-on/
m-p/1402673#M5623

[26] Intel DevCloud. Intel. https://www.intel.com/content/www/us/en/
developer/tools/devcloud/overview.html

[27] CUDA Samples. NVIDIA. https://github.com/NVIDIA/cuda-samples
[28] OpenMP application programming interface. https://www.openmp.org/

wp-content/uploads/OpenMP-API-Specification-5-2.pdf
[29] Part 3.2 - Linux task managers, top, and htop Microsoft.

https://docs.microsoft.com/en-us/troubleshoot/developer/webapps/
aspnetcore/practice-troubleshoot-linux/3-2-task-managers-top-htop

[30] NVIDIA System Management Interface. NVIDIA. https://developer.
nvidia.com/nvidia-system-management-interface

[31] SYCL* Thread Mapping and GPU Occupancy. Intel.
https://www.intel.com/content/www/us/en/develop/documentation/
oneapi-gpu-optimization-guide/top/thread-mapping.html

[32] G. Castaño, Y. Faqir-Rhazoui, C. Garcı́a, M. Prieto-Matı́as. “Evaluation
of Intel’s DPC++ Compatibility Tool in heterogeneous computing,“ in
Journal of Parallel and Distributed Computing, vol. 165, pp. 120-129.
2022. https://doi.org/10.1016/j.jpdc.2022.03.017

[33] J. Kurzak, S. Tomov, J. Dongarra. “Autotuning GEMM kernels for the
Fermi GPU,“ in IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 11, pp. 2045-2057, Nov. 2012, doi: 10.1109/TPDS.2011.311.

[34] AMD EPYC™ 7742. AMD. https://www.amd.com/en/products/cpu/
amd-epyc-7742

[35] Intel® Xeon® Processor E5-2698 v4. Intel. https:
//ark.intel.com/content/www/us/en/ark/products/91753/
intel-xeon-processor-e52698-v4-50m-cache-2-20-ghz.html

[36] GEFORCE RTX 3060 FAMILY. Nvidia. https://www.nvidia.com/en-us/
geforce/graphics-cards/30-series/rtx-3060-3060ti/

[37] Intel UHD Graphics P630. TechPowerUp. https://www.techpowerup.
com/gpu-specs/uhd-graphics-p630.c3676

[38] V. Volkov and J. W. Demmel, ”Benchmarking GPUs to tune dense linear
algebra,” SC ’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, 2008, pp. 1-11, doi: 10.1109/SC.2008.5214359.

[39] Y. Tsai, T. Cojean, and H. Anzt, ”Porting Sparse Linear Algebra to
Intel GPUs,” In Euro-Par 2021: Parallel Processing Workshops: Euro-Par
2021 International Workshops, Lisbon, Portugal, August 30-31, 2021,
Revised Selected Papers. Springer-Verlag, Berlin, Heidelberg, 57–68.
https://doi.org/10.1007/978-3-031-06156-1 5

[40] C. Brown, A. Abdelfattah, S. Tomov and J. Dongarra, ”Design,
Optimization, and Benchmarking of Dense Linear Algebra Algo-
rithms on AMD GPUs,” 2020 IEEE High Performance Extreme
Computing Conference (HPEC), 2020, pp. 1-7, doi: 10.1109/H-
PEC43674.2020.9286214.

[41] S. Tomov, J. Dongarra, and M. Baboulin, ”Towards dense linear alge-
bra for hybrid GPU accelerated manycore systems,” Parallel Comput-
ing, Volume 36, Issues 5–6, 2010, Pages 232-240, ISSN 0167-8191,
https://doi.org/10.1016/j.parco.2009.12.005.

[42] J. Dongarra, M. Gates, A. Haidar, Y. Jia, K. Kabir, P. Luszczek, and
S. Tomov, ”HPC programming on Intel many-integrated-core hardware
with MAGMA port to Xeon Phi,” Sci. Program. 2015, Article 9 (January
2015), Vol. 23, https://doi.org/10.1155/2015/502593.

[43] A. Haidar, S. Tomov, J. Dongarra and N. J. Higham, ”Harnessing GPU
Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision
Iterative Refinement Solvers,” SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, 2018, pp.
603-613, doi: 10.1109/SC.2018.00050.

[44] A. Abdelfattah, H. Anzt, E. Boman, E. Carson, T. Cojean, J. Don-
garra, A. Fox, M. Gates, N. Higham, X. Li, J. Loe, P. Luszczek,

S. Pranesh, S. Rajamanickam, T. Ribizel, B. Smith, K. Swirydowicz,
S. Thomas, S. Tomov, Y. Tsai, and U. Yang, ”A survey of nu-
merical linear algebra methods utilizing mixed-precision arithmetic,”
Int. J. High Perform. Comput. Appl. 35, 4 (Jul 2021), 344–369.
https://doi.org/10.1177/10943420211003313.

APPENDIX

DATA AVAILABILITY STATEMENT

SUMMARY OF THE EXPERIMENTS REPORTED

The code is made available on GitHub. There is a Makefile.
The Intel oneAPI tools have to be installed and one can
compile with ”make cpu” for multicore CPUs, or “make
gpu” for Nvidia or Intel GPUs. The code can be run with
“make runCpu” and “make runGpu” on multicore CPUs or
GPUs, respectively. The kernels can be changed manually in
the Makefile. The default is the cuda kernel and to change
it, one must change ”$(cuda)” to “$(ker11)” to run ker11,
for example. The code is tested and is reproducible on the
architectures specified. The code has been tested and runs on
JLSE Arcticus, precursor for Aurora, to confirm portability
on high-end Intel GPUs. If we receive approval to show NDA
results, we plan to add them to the final paper.

ARTIFACT AVAILABILITY

a) Software Artifact Availability:: All author-created
software artifacts are maintained in a public repository under
an OSI-approved license.

b) Hardware Artifact Availability:: There are no author-
created hardware artifacts.

c) Data Artifact Availability: : There are no author-
created data artifacts.

d) Proprietary Artifacts:: None of the associated arti-
facts, author-created or otherwise, are proprietary.

e) List of URLs and/or DOIs
where artifacts are available::
https://github.com/stomov/oneMAGMA-example

BASELINE EXPERIMENTAL SETUP, AND MODIFICATIONS
MADE FOR THE PAPER

f) Relevant hardware details:: AMD EPYC 7742 64-
Core Processor @ 2.25GHz, Intel® Xeon® CPU E5-2698 V4
20-Core Processor @ 2.20GHZ, NVIDIA GeForce RTX 3060,
Intel UHD Graphics P630 [0x3e96]

g) Operating systems and versions:: CentOS Linux 7
(Core)

h) Compilers and versions:: Intel DPC++/C++ Compiler
for Linux v2022.1.0, DPC++-LLVM (CLang-LLVM) v15.0.0,

i) Libraries and versions:: MAGMA 2.6.2
j) Key algorithms:: GEMM

ARTIFACT EVALUATION

k) Verification and validation studies:: Verification and
validation were performed on several architectures. Multiple
runs were performed. Accuracy is always compared to a
known solution.

https://ieeexplore-ieee-org.libproxy.library.unt.edu/stamp/stamp.jsp?tp=&arnumber=9652858&tag=1
https://ieeexplore-ieee-org.libproxy.library.unt.edu/stamp/stamp.jsp?tp=&arnumber=9652858&tag=1
https://www.intel.com/content/www/us/en/developer/articles/technical/compiling-sycl-with-different-gpus.html
https://www.intel.com/content/www/us/en/developer/articles/technical/compiling-sycl-with-different-gpus.html
https://www.intel.com/content/www/us/en/developer/articles/technical/compiling-sycl-with-different-gpus.html
https://www.oneapi.io/spec/
https://registry.khronos.org/SYCL/specs/sycl-1.2.1.pdf
https://registry.khronos.org/SYCL/specs/sycl-1.2.1.pdf
https://registry.khronos.org/OpenCL/specs/opencl-1.1.pdf
https://registry.khronos.org/OpenCL/specs/opencl-1.1.pdf
https://community.intel.com/t5/Intel-DevCloud/Intel-Iris-Xe-Max-Graphics-to-be-retired-from-Intel-DevCloud-on/m-p/1402673#M5623
https://community.intel.com/t5/Intel-DevCloud/Intel-Iris-Xe-Max-Graphics-to-be-retired-from-Intel-DevCloud-on/m-p/1402673#M5623
https://community.intel.com/t5/Intel-DevCloud/Intel-Iris-Xe-Max-Graphics-to-be-retired-from-Intel-DevCloud-on/m-p/1402673#M5623
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://github.com/NVIDIA/cuda-samples
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://docs.microsoft.com/en-us/troubleshoot/developer/webapps/aspnetcore/practice-troubleshoot-linux/3-2-task-managers-top-htop
https://docs.microsoft.com/en-us/troubleshoot/developer/webapps/aspnetcore/practice-troubleshoot-linux/3-2-task-managers-top-htop
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/thread-mapping.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/thread-mapping.html
https://doi.org/10.1016/j.jpdc.2022.03.017
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://ark.intel.com/content/www/us/en/ark/products/91753/intel-xeon-processor-e52698-v4-50m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91753/intel-xeon-processor-e52698-v4-50m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91753/intel-xeon-processor-e52698-v4-50m-cache-2-20-ghz.html
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3060-3060ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3060-3060ti/
https://www.techpowerup.com/gpu-specs/uhd-graphics-p630.c3676
https://www.techpowerup.com/gpu-specs/uhd-graphics-p630.c3676

l) Accuracy and precision of timings:: Timing is given
as an average.

m) Used manufactured solutions or spectral properties::
We used manufactured solutions as well as verified third party
software to compare solutions.

n) Quantified the sensitivity of results to initial conditions
and/or parameters of the computational environment:: We

present average timing to avoid qualifying sensitivity.

o) Controls, statistics, or other steps taken to make the
measurements and analyses robust to variability and unknowns
in the system.: Averaging time measurements.

	Introduction
	Related Works
	Background
	Structure of MAGMA
	The oneAPI Programming Model
	Computational Environment

	Methodology
	General Matrix-Matrix Multiplication (GEMM) Design and Implementation in DPC++
	OneAPI Portability Results
	Test Parameters
	MAGMA to DPC++ Portability on Multicore CPUs
	Hardware Usage
	Performance

	MAGMA to DPC++ portability on NVIDIA GPUs
	Hardware Usage
	Performance

	MAGMA to DPC++ portability on Intel GPUs
	Hardware Usage
	Performance

	Conclusions and Future Work Directions
	References
	Appendix

