
2

Ginkgo: A Modern Linear Operator Algebra Framework for
High Performance Computing

HARTWIG ANZT, Karlsruhe Institute of Technology, Germany and Innovative Computing Laboratory,
University of Tennessee
TERRY COJEAN, Karlsruhe Institute of Technology
GORAN FLEGAR, Universidad Jaime I
FRITZ GÖBEL, THOMAS GRÜTZMACHER, PRATIK NAYAK, TOBIAS RIBIZEL, and
YUHSIANG MIKE TSAI, Karlsruhe Institute of Technology
ENRIQUE S. QUINTANA-ORTÍ, Universitat Politècnica de València

In this article, we present Ginkgo, a modern C++ math library for scienti&c high performance computing.
While classical linear algebra libraries act on matrix and vector objects, Ginkgo’s design principle abstracts
all functionality as “linear operators,” motivating the notation of a “linear operator algebra library.” Ginkgo’s
current focus is oriented toward providing sparse linear algebra functionality for high performance graphics
processing unit (GPU) architectures, but given the library design, this focus can be easily extended to accom-
modate other algorithms and hardware architectures. We introduce this sophisticated software architecture
that separates core algorithms from architecture-speci&c backends and provide details on extensibility and
sustainability measures. We also demonstrate Ginkgo’s usability by providing examples on how to use its
functionality inside the MFEM and deal.ii &nite element ecosystems. Finally, we o'er a practical demonstra-
tion of Ginkgo’s high performance on state-of-the-art GPU architectures.

CCS Concepts: • Mathematics of computing→Mathematical software; • Computing methodologies
→ Massively parallel algorithms; • Software and its engineering→ Software creation and management;

Additional Key Words and Phrases: High performance computing, healthy software lifecycle, multi-core and
manycore architectures

This work was supported by the “Impuls und Vernetzungsfond of the Helmholtz Association” under grant VH-NG-1241. G.
Flegar and E. S. Quintana-Ortí were supported by project TIN2017-82972-R of the MINECO and FEDER and the H2020 EU
FETHPC Project 732631 “OPRECOMP”. This research was also supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative e'ort of the U.S. Department of Energy O(ce of Science and the National Nuclear Security Administration.
The experiments on the NVIDIA A100 GPU were performed on the HAICORE@KIT partition, funded by the “Impuls und
Vernetzungsfond” of the Helmholtz Association. The experiments on the AMD MI100 GPU were performed on Tulip, an
early-access platform hosted by HPE.
Authors’ addresses: H. Anzt, Karlsruhe Institute of Technology, Hermann von Helmholtz Platz 1, Eggenstein-Leopoldshafen,
76344 Germany; email: hartwig.anzt@kit.edu; T. Cojean, F. Göbel, T. Grützmacher, P. Nayak, T. Ribizel, and Y. M. Tsai,
Karlsruhe Institute of Technology, Hermann von Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Germany; emails:
{terry.cojean, fritz.goebel, thomas.gruetzmacher, pratik.nayak, tobias.ribizel, yu-hsiang.tsai}@kit.edu; G. Flegar, Univer-
sidad Jaume I, Av. Vicent Sos Baynat, Castellón de la Plana, 12071, Spain; email: g)egar@uji.es; E. S. Quintana-Ortí,
Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain; email: quintana@disca.upv.es.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro&t or commercial advantage and that copies bear this notice and
the full citation on the &rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci&c permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0098-3500/2022/02-ART2 $15.00
https://doi.org/10.1145/3480935

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.

mailto:permissions@acm.org
https://doi.org/10.1145/3480935


2:2 H. Anzt et al.

ACM Reference format:
Hartwig Anzt, Terry Cojean, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak, Tobias Ribizel,
Yuhsiang Mike Tsai, and Enrique S. Quintana-Ortí. 2022. Ginkgo: A Modern Linear Operator Algebra Frame-
work for High Performance Computing. ACM Trans. Math. Softw. 48, 1, Article 2 (February 2022), 33 pages.
https://doi.org/10.1145/3480935

1 INTRODUCTION
With the rise of manycore accelerators, such as graphics processing units (GPUs), there is an
increasing demand for linear algebra libraries that can e(ciently transform the massive hard-
ware concurrency available in a single compute node into high arithmetic performance. At the
same time, more and more application projects adopt object-oriented software designs based on
C++.

In this article, we present the result from our e'ort toward the design and development of
Ginkgo [14], a next-generation, high performance sparse linear algebra library for multi-core and
manycore architectures. The library combines ecosystem extensibility with heavy, architecture-
speci&c kernel optimization using the platform-native languages CUDA (for NVIDIA GPUs), HIP
(for AMD GPUs), and OpenMP (for general-purpose multi-core processors, such as those from
Intel, AMD, or ARM). The software development cycle that drives Ginkgo ensures production-
quality code by featuring unit testing, automated con&guration and installation, Doxygen1 code
documentation, as well as a continuous integration, and continuous benchmarking framework.
Ginkgo is an open source e'ort licensed under the BSD 3-clause.2

The object-oriented Ginkgo library is constructed around two principal design concepts. The
&rst principle, aiming at future technology readiness, is to consequently separate the numer-
ical algorithms from the hardware-speci&c kernel implementation to ensure correctness (via
comparison with sequential reference kernels), performance portability (by applying hardware-
speci&c kernel optimizations), and extensibility (via kernel backends for other hardware architec-
tures), see Figure 1. The second design principle, aiming at user-friendliness, is the convention
to express functionality in terms of linear operators: every solver, preconditioner, factorization,
matrix-vector product, and matrix reordering is expressed as a linear operator (or composition
thereof).

The rest of the article is organized as follows. In Section 2, we leverage a simple use case to
motivate the design choices underlying Ginkgo, and elaborate on the concept of linear operators,
memory management, hardware-speci&c kernel optimization, and event logging. Section 3 pro-
vides additional details on Ginkgo’s current solvers, realizations for the sparse matrix-vector
product (SpMV) kernel, and preconditioner capabilities. Section 4 elaborates on how the design
allows for easy extension, so that users can contribute new algorithmic technology or additional
hardware backends. As many applications are in desperate need for high performance sparse lin-
ear algebra technology, Section 5 showcases the usage of Ginkgo as a backend library in scienti&c
applications, and also reviews Ginkgo’s integration into the extreme-scale Software Develop-
ment Kit (xSDK). In Section 6, we describe how Ginkgo’s design and development cycle promotes
sustainable software development; and in Section 7, we o'er representative performance results
indicating Ginkgo’s competitiveness for sparse linear algebra on high-end GPU architectures. We
conclude in Section 8 with a summary of the article and the potential of the library design becom-
ing a role model for future developments.

1http://www.doxygen.nl/.
2https://opensource.org/licenses/BSD-3-Clause.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.

https://doi.org/10.1145/3480935
http://www.doxygen.nl/
https://opensource.org/licenses/BSD-3-Clause


Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:3

Fig. 1. Ginkgo library architecture separating the core containing the algorithms from architecture-specific
backends.

2 AN OVERVIEW OF GINKGO’S DESIGN
Figure 2 displays Ginkgo’s rich class hierarchy together with its main namespaces and classes.
To better understand the role of each object, this section introduces Ginkgo’s interface using
a minimal, concrete example as a starting point, and gradually presenting more advanced ab-
stractions that demonstrate Ginkgo’s high composability and extensibility. These abstractions
include:

— the LinOp and LinOpFactory classes, which are used to implement and compose linear al-
gebra operations;

— the Executor classes that allow transparent algorithm execution on multiple devices; and
— other utilities such as the Criterion classes, which control the iteration process, as well as

the memory passing decorators that allow &ne-grained control of how memory objects are
passed between di'erent components of the library and the application.

2.1 Ginkgo Usage Example
Figure 3 illustrates the speci&c )owchart Ginkgo uses to solve a linear system, highlighting the
interactions between Ginkgo’s classes. In the program code for this example given in Listing 1,
the system matrix A, the right-hand side b, and the initial solution guess x, are initially read from
the standard input using Ginkgo’s “read” utility (lines 10–12). Next, the program creates a factory
for a CG Krylov solver preconditioned with a Block–Jacobi scheme (lines 14–16). The solver is
con&gured to stop either after 20 iterations or having improved the original residual by 15 orders
of magnitude (lines 17–20). (Stopping criteria are further discussed in Section 2.5.) The system
matrix is bound to the iterative solver, which is used to solve the system with the right-hand side
and initial guess. The initial guess is overwritten with the computed solution (line 24). Solvers
(and more generally LinOp and LinOpFactory) are discussed in detail in Section 2.2. Finally, the
solution is printed to the standard output (line 26).

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:4 H. Anzt et al.

Fig. 2. Ginkgo’s class hierarchy showcasing the main namespaces (colored boxes) and classes (gray boxes)
for Ginkgo.

1 #include <iostream >
2 #include <ginkgo/ginkgo.hpp >
3
4 int main()
5 {
6 // Instantiate a CUDA executor
7 auto omp = gko:: OmpExecutor :: create();
8 auto exec = gko:: CudaExecutor :: create(0, omp);
9 // Read data

10 auto A = gko::read <gko:: matrix::Csr <>>(std::cin , exec);
11 auto b = gko::read <gko:: matrix::Dense <>>(std::cin , exec);
12 auto x = gko::read <gko:: matrix::Dense <>>(std::cin , exec);
13 // Create the solver factory
14 auto solver_factory =
15 gko:: solver::Cg <>::build()
16 .with_preconditioner (gko:: preconditioner ::Jacobi <>::build().on(exec))
17 .with_criteria(
18 gko::stop:: Iteration ::build().with_max_iters (20u).on(exec),
19 gko::stop:: ResidualNormReduction <>:: build()
20 .with_reduction_factor (1e-15)
21 .on(exec))
22 .on(exec);
23 // Create the solver from the factory and solve the system
24 solver_factory ->generate(gko::give(A))->apply(gko::lend(b), gko::lend(x));
25 // Write result
26 write(std::cout , gko::lend(x));
27 }

Listing 1. A minimal example that uses Ginkgo to solve a linear system. The system matrix, right-hand
side, and the initial solution guess are read from the standard input. The system is solved on an NVIDIA-
enabled GPU using the CG method enhanced with a block-Jacobi preconditioner. Two stopping criteria
are combined to limit the maximum number of iterations and set the desired relative error. The solution
is wri&en to the standard output.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:5

Fig. 3. Flowchart providing an alternative view of the code example shown in Listing 1. All object interactions
are represented by arrows. The colors correspond to the type of the objects following the color convention
in Figure 2.

Ginkgo supports execution on GPU and CPU architectures using di'erent backends (currently,
CUDA, HIP, and OpenMP). To accommodate this, when creating an object, the user passes an in-
stance of an Executor in order to specify where the data for that object should be stored and the
operations on that data should be performed. The particular example in Listing 1 creates a CUDA
Executor (line 7) that employs the &rst GPU device (the one returned by the cudaGetDevice()
method). Since CUDA-GPU accelerators are controlled by the CPU, an OpenMP Executor is
needed to orchestrate the execution on the GPU. (Section 2.3 describes the executors model in
more detail.)

Ginkgo avoids expensive memory movement and copies. At the same time, sharing data be-
tween di'erent modules in the code might cause unexpected results (e.g., one module changes a
matrix used by a solver in a di'erent module, which causes that solver to tackle the wrong sys-
tem). Ginkgo resolves the dilemma by allowing both shared and exclusive (unique) ownership of
the objects. This comes at the price of some verbosity in argument passing: in most cases, plain
arguments cannot be passed directly, but have to be wrapped in special “decorator” functions that
specify in which “mode” they are passed (shared, copied, etc.).

The minimal example in Listing 1 already utilizes two of the decorator functions, gko::give and
gko::lend, both in line 23. The &rst one, gko::give(A), causes the caller to yield the ownership
of matrix A to the solver, leaving the caller’s version of A in a valid, but unde&ned state (e.g.,
accessing any of its methods is not de&ned, but the object can still be de-allocated or assigned
to). The second decorator, appearing twice, in gko::lend(x) and gko::lend(b), “lends” objects
x and b to the solver by temporarily passing ownership to it until the control )ow returns from
apply back to the caller. This is a special ownership mode that is only used when the callee does
not need permanent ownership of the object. Di'erent ownership modes, as well as their relation
to std::move are discussed in Section 2.4.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:6 H. Anzt et al.

2.2 LinOp and LinOpFactory

2.2.1 Motivation. Ginkgo exposes an application programming interface (API) that allows
to easily combine di'erent components for the iterative solution of linear systems: solvers, matrix
formats, preconditioners, and so on. The API enables running distinct iterative solvers and enhanc-
ing the solvers with di'erent types of preconditioners. A preconditioner can be a matrix or even
another solver. Furthermore, the system matrix does not need to be stored explicitly in memory,
but can be available only as a function that is applied to a vector to compute a matrix-vector prod-
uct (matrix-free). The objective of providing a clean and easy-to-use interface mandates that all
these special cases are uniformly realized in the API.

The central observation that guides Ginkgo’s design is that the operations and interactions
between the solver, the system matrix, and the preconditioner can be represented as the application
of linear operators:

(1) The major operation that an iterative solver performs on the system matrix A is the mul-
tiplication with a vector (realized as a Matrix-Vector product, or MV). This operation can
be viewed as the application of the induced linear operator LA : z "→ Az. In some cases,
multiplication with the transpose is also needed, which is yet another application of a linear
operator LAT : z "→ AT z.

(2) The solver itself solves a system Ax = b, which is the application of the linear operator
SA : b "→ A−1b (= x ). Here, the term “solver” is not used to denote a function f that takes
A and b as inputs and produces x , but instead a function with the system matrix A already
&xed (that is, SA = f (A , ·)).

(3) The application of the preconditioner M , as in v = M−1u, can be viewed as the application
of the linear operator PM : u "→ M−1u (= v ).

There are several remarks that have to be made regarding the observations above. First, in the
context of numerical computations, with &nite precision arithmetic, the term “linear operator”
should be understood loosely. In fact, none of the previous categories strictly satisfy the linearity
de&nition of the linear operator: L(αx + βy) = αL(x ) + βL(y), where α , β are scalars and x ,y
denote vectors. Instead, they are just approximations of the linear operators that satisfy the formula
L(αx + βy) = αL(x ) + βL(y) + E, where the error term E = E (L,α , β,x ,y) is the result of one or
more of the following e'ects:

(1) rounding errors introduced by storing non-representable values in )oating-point format;
(2) rounding errors introduced by &nite-precision )oating-point arithmetic;
(3) instability and inaccuracy of the method used to apply the linear operator to a vector; and
(4) inexact operator application, e.g., only few iterations of an iterative linear solver.
The data layout and the implementation of any linear operator is internal to that operator, and

the interface does not expose implementation details. For example, a direct solver could store its
matrix data in factored form, as two triangular factors (e.g.,A = LU ) and implement its application
as two triangular solves (with L andU ). In contrast, an iterative solver could just store the original
system matrix, and the entire implementation of the method could be a part of the linear operator
application. Nonetheless, both operators can still expose the same public interface.

2.2.2 LinOp. In coherence with the observations in Section 2.2.1, the central abstraction
in Ginkgo’s design is the abstract class (interface) LinOp, which represents the mathematical
concept of a linear operator. All concrete linear operators (solvers, matrix formats, and precon-
ditioners) are instances of LinOp. Furthermore, this generic operator L exposes a pure virtual
method apply(b, x) that is overridden by a concrete linear operator with an implementation

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:7

that computes the result x = L(b) with conformal dimensions for L, x , and b, where vectors are
interpreted as dense matrices of dimension n × 1. This design enables that a single interface can
be leveraged to compute an MV with di'erent matrix formats, the application of distinct types of
preconditioners, the solution of linear systems using various solvers, or even the application of a
user-de&ned linear operator.

Using the LinOp abstraction, an iterative solver can be implemented via references to other
LinOps that represent the system matrix and the preconditioner. The solver does not have to be
aware of the type of the matrix or the preconditioner—it is su(cient to know that they are both
conformal with the LinOp interface. This means that the same implementation of the solver can be
con&gured to integrate various preconditioners and matrices. Furthermore, the linear operator ab-
straction can also be used to compose “cascaded” solvers where the preconditioner can be replaced
by another, less accurate solver, or even to create matrix-free methods by supplying a specialized
operator as the system matrix, without explicitly storing the matrix.

2.2.3 LinOpFactory. LinOp exposes a uniform interface to di'erent types of linear algebra
operations. A missing piece in the puzzle is how these LinOps are created in the &rst place. For
example, in order to solve a system with a matrix A represented by the linear operator LA, an
operation has to be provided which, given the operator LA, creates a solver operator SA. Similarly,
to create a preconditioner PA for a matrix A, an operator that maps LA– PA is needed. These are
both examples of higher order (non-linear) functions that map linear operators to other linear
operators (in this case Σ : LA "→ SA and Φ : LA "→ PA). Ginkgo provides an abstract class
LinOpFactory that represents mappings such as Σ and Φ. Concretely, the class LinOpFactory
provides an abstract method generate(LinOp) which, given a linear operator from the domain of
the mapping, returns the corresponding LinOp from its input.

The linear operators constructed by using operator factories are usually solvers and precon-
ditioners. For example, in order to construct a BiCGSTAB solver operator that solves a problem
with the system matrix A, represented by the operator LA, one would &rst create a BiCGSTAB
factory (which implements the LinOpFactory interface and represents the operator S); and then
call generate on S , passing the operator LA as input, to obtain a BiCGSTAB operator SA, with the
system matrix, A.

Some factories are designed to be combined with other factories. For instance, to create an
iterative re&nement solver, which uses CG preconditioned with Jacobi as the inner solver, one
would create an iterative re&nement factory S , and as the inner solver factory, pass a CG factory
constructed with a Jacobi factory as the preconditioner factory. Then, when calling the generate
method on S with the system matrix represented by a linear operator LA, this linear operator is
propagated to the CG and Jacobi factories, to create CG and Jacobi operators with the system
matrix A.

Instead of using LinOpFactory, an alternative (and more obvious) approach would have been
to just use the constructor of LinOp to provide all the “component” linear operators. However,
this alternative presents the drawback that the “type” of the operator cannot be decoupled from
its data. To illustrate this, consider the scenario of a solver S, which tackles a linear system using
the LU factorization; and then invokes two triangular solvers on the resulting L and U factors.
There are multiple algorithms for the solution of the triangular systems, which in Ginkgo are
represented by di'erent linear operators. Thus, the operators to use should somehow be passed
as input parameters to the solver S . The problem is that they cannot be constructed outside of S ,
since their factors are not known at that point. LinOpFactory provides an elegant solution to this
problem, since instead of a LinOp, the solver S can be provided with linear operator factories, which
are then used to construct the triangular solver operators once the factors L and U are known.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:8 H. Anzt et al.

2.2.4 Re-visiting the Example. After the previous elaboration on LinOp and LinOpFactory, it is
timely to re-visit the example in Listing 1. The objects A, b, and x in lines 9–11 are LinOp objects
that store their data as “matrices” in (compressed sparse row CSR [28]) and dense matrix formats,
respectively. Calling the method apply on these objects has the e'ect of calculating the matrix-
vector product using that data. The solver_factory object (de&ned in lines 13–21), is actually a
compound LinOpFactory used to create a solver with the CG method. In this particular case, the
CG solver is preconditioned with a Block–Jacobi method (speci&ed by providing a Block–Jacobi
factory as the preconditioner factory to the CG factory).

All the work actually occurs in line 23. First, the CG factory solver_factory is used
to generate a linear operator object representing the CG solver by calling the generate
method. Since solver_factory has a Block–Jacobi factory set as the preconditioner factory, the
solver_factory’s generate method invokes generate on the Block–Jacobi factory; and the sys-
tem matrix A is passed as input argument, which has the e'ect of generating a Block–Jacobi pre-
conditioner operator for that matrix. Then, the resulting linear operator is immediately used to
solve the system by applying it on b. This will have the e'ect of iterating the CG solver precon-
ditioned with the generated Block–Jacobi preconditioner operator on the system matrix A, thus
solving the system.

2.2.5 Linear Operator Algebra. Traditional linear algebra libraries, such as BLAS [27] and LA-
PACK [9], use vectors and matrices as basic objects, and provide operations such as matrix prod-
ucts and the solution of linear systems on these objects as functions. In contrast, Ginkgo achieves
composability and extensibility (cf. Section 4) by treating linear operations as basic objects, and pro-
viding methods to manipulate these operations in order to express the desired complex operation.
This is the principle guiding the design of Ginkgo, which motivates the title of this article: while
other libraries can be characterized as “linear algebra libraries”, Ginkgo’s algebra is performed on
linear operators, making it a “linear operator algebra library”.

While the current focus of Ginkgo is on the iterative solution of sparse linear systems, other
types of operations on linear operators also &t into Ginkgo’s concept of LinOp and LinOpFactory.
For example, a matrix factorization A = UV can be viewed as a linear operator factory Ψ : LA "→
FU ,V , where the linear operator FU ,V : b "→ UVb stores the two factors U and V , and provides
public methods to access the factors.

2.3 Executors for Transparent Kernel Execution on Di&erent Devices
An appealing feature of Ginkgo is the ability to run code on a variety of device architectures trans-
parently. In order to accommodate this functionality, Ginkgo introduces the Executor class at its
core. In consequence, the &rst task a user has to do when using Ginkgo is to create an Executor.

The Executor speci&es the memory location and the execution space of the linear algebra ob-
jects and represents computational capabilities of distinct devices. Currently, four executor types
are provided:

— CudaExecutor for CUDA-enabled GPUs;
— HipExecutor for HIP-enabled GPUs;
— OmpExecutor for OpenMP execution on multi-core CPUs; and
— ReferenceExecutor for sequential execution on CPUs (used for checking correctness).

Each of these executors implements methods for allocating/deallocating memory on the device
targeted by that executor, copying data between executors, running operations, and synchronizing
all operations launched on the executor. These executors are single GPU, but the Ginkgo library
can be integrated into a distributed MPI setting and make use of fast kernels. In addition, several

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:9

new executors are being worked on and will come in the near future: DPC++ executors and MPI
executors. We currently also investigate the potential of a generic GPU executor that automatically
selects the right executor according to the hardware available.

Listing 1 illustrated the use of Executor. Combined with the gko::clone(Executor, Object)
utility function, the Executor class makes it straight-forward to move all data and operations
to a host OpenMP executor, as in Listing 2. That code creates an gko::OmpExecutor object
for execution on the CPU (line 1). Next, a CUDA executor representing a GPU device with
ID 0 is created (line 2); and the system matrix data is read from a &le and allocated on the
gko::CudaExecutor’s device memory (line 4). Finally, the function gko::clone creates a copy
of A on the gko::OmpExecutor, that is, in the platform’s main memory (line 6).

1 auto omp = gko:: OmpExecutor :: create();
2 auto cuda = gko:: CudaExecutor :: create(0, omp);
3 // As in previous example , A is allocated on a CUDA device
4 auto A = gko::read <gko:: matrix::Csr <>>("data/A.mtx", cuda);
5 // copy A to an OpenMP -capable device
6 auto A_copy = gko:: clone(omp , A);
7 // All subsequent operations triggered from A_copy will use executor omp
8

Listing 2. Copy of a matrix in CSR format from a CUDA device to a CPU through the OmpExecutor.

In order to allow a transparent execution of operations on multiple executors, the kernels in
Ginkgo have separate implementations for each executor type, organized into several modules, see
Figures 1 and 4 for the code distribution, respectively. The core module contains all class de&nitions
and non-performance critical utility functions that do not depend on an executor. In addition, there
is a module for each executor, which contains the kernels and utilities speci&c for that executor.
Each module is compiled as a separate shared library, which allows to mix-and-match modules
from di'erent sources. This paves the road for hardware vendors to provide their own proprietary
modules: they only have to optimize their module, make it available in binary form, and users can
then link it with Ginkgo. We note that the similarities between HIP and CUDA allow the usage
of common template kernels that are identical in kernel design but are compiled with architecture-
speci&c parameters to either the HipExecutor or the CudaExecutor. This strategy reduces code
replication and favors productivity and maintainability [30].

Ginkgo contains dummy kernel implementations of all modules that throw an exception when-
ever they are called. This allows a user to deactivate certain modules if no hardware support is
available or to reduce compilation time. In general, during the con&guration step, Ginkgo’s auto-
matic architecture detection activates all modules for which hardware support has been detected.

The Executor design allows switching the target device where the solver in Listing 1 is executed
through a one-line change that replaces the executor used for it. In addition, if one of the arguments
for the apply method is not on the same executor as the operator being applied, the library will
temporarily move that argument to the correct executor before performing the operation, and
return it back once the operation is complete. Even though this is done automatically, the user
may attain higher performance by explicitly moving the arguments in order to avoid unnecessary
copies (in the case, for example, of repeated kernel invocation).

2.4 Memory Management
Libraries have to specify several key memory management aspects: memory allocation, data
movement and copy, and memory deallocation. In contrast to traditional libraries such as BLAS
and LAPACK, which leave memory management to the user, Ginkgo allocates/deallocates its
memory automatically, using the C++ “Resource Acquisition Is Initialization” (RAII3) concept

3https://en.cppreference.com/w/cpp/language/raii.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:10 H. Anzt et al.

Fig. 4. Code distribution among di'erent modules in Ginkgo develop version 1.3.0. The entire code base in
this release is 9.0 MB (represented by the entire figure). The top level rectangles represent di'erent top-level
directories; these are: the core (1.5 MB) module, examples (1.2 MB), the reference module (1.2 MB), the HIP
and CUDA modules (1.1 MB each), the include directory with the core module’s public headers (916 KB), the
omp module (748 KB), the common directory which contains shared HIP and CUDA kernels (472 KB), and
the doc (260 KB) and benchmark (252 KB) directories. The first rectangles in the core, CUDA, HIP, omp, and
reference modules represent unit tests for these modules, which amount to 668, 464, 460, 372, and 752 KB,
respectively.

combined with the native allocation/deallocation functions of the executor (cf. Section 2.3). Alter-
natively, to eliminate unnecessary allocations and data copies, Ginkgo’s matrix formats can be
con&gured to use raw data already allocated and managed by the application by using Array views.

A more di(cult problem is to realize data movement and copies between di'erent entities of the
application (e.g., functions and other objects). The memory management has to not only protect
against memory leaks or invalid memory deallocations, but also avoid unnecessary data copies.
The problem is usually solved by specifying a well-de&ned owner for each object, responsible for
deallocating the object once it is no longer needed.

For simple C++ types, this behavior is enabled via the use of parameter quali&ers: Parameters
are passed by-value and thus copied unless explicitly declared as references (which is when they
are passed by-reference without copying). The C++11 standard added move semantics as a third
alternative where an input parameter that is either explicitly (using std::move) or implicitly (by

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:11

Fig. 5. Di'erent ways of passing polymorphic objects as parameters in Ginkgo:gko::clone, gko::lend,
gko::give, and gko::share together with the lifetime of the passed object.

not having a name) designated a temporary value may move its internal data into the function
without copying, leaving it in a valid but unspeci&ed state. However, trying to pass polymorphic
objects by-value would lead to object slicing [3]. In Ginkgo, we avoid these issues with polymor-
phic types like Executor and LinOp by always passing and returning them as pointers. To this goal,
we use the smart pointer types std::unique_ptr and std::shared_ptr, which were added in the
C++11 standard. They provide safe resource management using RAII while still providing (almost)
the same semantics as raw pointers. Ginkgo uses pointers for parameters and return types in three
di'erent contexts, where we say that a function parameter is used in a non-owning context if the
object will only be used during the function call, and in an owning context if the object needs to
be accessible even after the function call completed. Figure 5 shows the di'erent ways to pass a
polymorphic object as a parameter in Ginkgo.

Functions that only need to modify a polymorphic object in a non-owning context take this
object as a raw pointer parameter T*. To simplify the interaction with smart pointers, Ginkgo pro-
vides the overloaded gko::lend function which returns the underlying raw pointer for both smart
and raw pointers. This decorator function allows for a concise and uniform way to pass polymor-
phic objects to functions without ownership transfer. “Lending” an object can be compared with
normal by-reference semantics for value types. When by-value semantics are necessary, we can
explicitly pass a copy using gko::lend(gko::clone(·)).

Functions that need to receive a polymorphic object in an owning context take this object as
a std::shared_ptr<T>. We can pass an object to such a parameter in three ways: gko::clone
creates a copy of the current object to be passed to the function (by-value), gko::give speci&es that
the object will not be used afterwards and can thus be moved into the function (move semantics)
and gko::share speci&es that the ownership should be shared with the function (by-reference).
Note that the gko::share annotation can usually be left out, since all owning smart pointers in C++
already provide conversions to std::shared_ptr.

Functions that create new instances of a polymorphic object return a std::unique_ptr<T>,
while access to already existing objects is provided with std::shared_ptr<const T> to allow
the objects to be used in both owning and non-owning contexts.

The overloaded decorator functions gko::clone, gko::lend, gko::give, and gko::share pro-
vide a uniform interface for all types of smart and raw pointers, while still ensuring type safety.
For example, calling gko::give with a non-owning pointer will fail to compile and output an
appropriate error message.

2.5 Control of the Iteration Process
Virtually all iterative methods include the concept of a “stopping criterion” that evaluates whether
the current approximation to the solution of the linear systems is accurate enough. To facilitate

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:12 H. Anzt et al.

controlling the iteration process, Ginkgo provides a collection of stopping criteria. All of them
are implementations of the base Criterion class, which speci&es what type of information can be
passed to the stopping criterion. A concrete criterion provides an implementation of the check()
method that veri&es if its condition has been met and, therefore, the iteration process has to be
stopped.

The stopping criteria are initially generated from criterion factories (created by the user) by
passing the system matrix, right-hand side, and an initial guess. In addition, during the iteration
process, information can be updated when calling the check() function with the new iteration
count, residual, solution or residual norm.

Currently, three basic stopping criteria are provided in Ginkgo:
— The Time criterion, which automatically stops the iteration process after a certain amount

of time;
— the Iteration criterion, which stops the iteration process once a certain iteration count has

been reached; and
— the ResidualNormReduction criterion, which stops the iteration process once the initial

relative residual norm has been reduced by the certain speci&ed amount.
Additionally, Ginkgo provides a Combined criterion, which can be used to combine multiple

criteria together through a logical–OR operation (|), so that the &rst subcriterion that is ful&lled
stops the iteration process. This is illustrated in lines 16–19 of Listing 1. This design implies some
stopping criteria may detain the iteration process before “convergence” is reached, in particular the
Time and Iteration criteria. Ginkgo provides a stopping_status class, which can be inspected
to &nd out which criterion stopped the iteration process.

The Criterion class hierarchy is designed to avoid negative impact on the performance, and
may even improve it. For example, in case an iterative method is applied with multiple right-hand
side vectors, the stopping_status is evaluated for each right-hand side individually, skipping
vector updates in subsequent iterations for those right-hand side vectors where convergence has
been achieved.

Also, all operations required to control the iteration process can be handled inside the
Criterion classes. The consequence is that, for most solvers, the residual norm and related oper-
ations are computed only when using the ResidualNormReduction criterion. Therefore, the user
can combine a solver with a simple stopping criterion to make it more lightweight or choose a
more precise but more expensive stopping criterion. In summary, Ginkgo’s design of stopping
criteria tries to honor the C++ philosophy of “only paying for what you use”.

2.6 Event Logging
Another utility that is provided to users in Ginkgo is the logging of events with the purpose to
record information about Ginkgo’s execution. This covers many aspects of the library, such as
memory allocation, executor events, LinOp events, stopping criterion events, and so on. For ease
of use, the event logging tools provide di'erent forms of output formats, and allow the usage
of multiple loggers at once. As with the rest of Ginkgo, this tool is designed to be controllable,
extensible, and as lightweight as possible. To o'er support for all those capacities, the Logger
infrastructure follows the visitor and observer design patterns [23]. This design implies a minimal
impact of logging on the logged classes and allows to accommodate any logger.

The following four loggers are currently provided in Ginkgo:
— the Stream logger, which logs the events to a stream (e.g., &le and screen);
— the Record logger, which stores the events in a structure, which has a history of all received

events that the user can retrieve at any moment;
ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:13

— the Convergence logger is a simple mechanism that stores the relative residual norm and
number of iterations of the solver on convergence; and

— the PAPI SDE logger uses the PAPI Software De&ned Events backend [25] in order to enable
access to Ginkgo’s internal information through the PAPI interface and tools.

Almost every class in Ginkgo possesses multiple corresponding logging events. The logged
classes are: Executor, Operation, PolymorphicObject, LinOp, LinOpFactory, and Criterion.
The user has the freedom to choose whether he/she wants to log all events or select only some of
them. When an event is not selected for logging by the user, as a result of the implementation of
the logging facilities, the event is not propagated and generates a “no-op”.

3 USING GINKGO AS A LIBRARY
3.1 Solver
Currently, Ginkgo provides a list of Krylov solvers (BICG, BiCGSTAB, CG, CGS, FCG, and GM-
RES) for the iterative solution of sparse linear systems, &xed-point methods, and direct solvers for
sparse triangular systems such as those that appear in incomplete factorization preconditioning.
In order to generate a solver, a solver factory (of type LinOpFactory) must &rst be created, where
solver control parameters, such as the stopping criterion, are set. The concrete solver is then gen-
erated by binding the system matrix to the solver factory. This allows to generate multiple solvers
for distinct problems with the same solver settings, e.g., in time-stepping methods. Except for It-
erative Re"nement (IR), where the internal solver can be chosen, all iterative solvers have the
option to attach a preconditioner of the class LinOp. Furthermore, all solvers implement the ab-
stract LinOp interface, which not only simpli&es the solver usage, but also allows to use the same
notation for calling solvers, preconditioners, SpMV, and so on. This allows the user to compose
iterative solvers by choosing another iterative solver as a preconditioner.

3.2 Preconditioner
Ginkgo allows any solver to be used as a preconditioner, i.e., to cascade Krylov solvers. Addi-
tionally, Ginkgo features diagonal scaling preconditioners (Block–Jacobi) as well as incomplete
factorization (ILU-type) preconditioners. As any of the other solvers, preconditioners are gener-
ated through a LinOpFactory and implement the abstract class LinOp.

The Block–Jacobi preconditioners can switch between a “standard” mode and an “adaptive pre-
cision” mode [15]. In the latter case, the memory precision is decoupled from the arithmetic preci-
sion, and the storage format for each inverted diagonal block is optimized to preserve the numerical
properties while reducing the memory access cost [22].

The ILU-based preconditioners can be generated by interfacing vendor libraries, via the ParILU
algorithm [19], or via a variant known as the ParILUT algorithm [13] that dynamically adapts the
sparsity pattern of the incomplete factorization to the problem characteristics [18].

For the application of an ILU-type preconditioner, Ginkgo leverages two distinct solvers: one
for the lower triangular matrix L and one for the upper triangular matrix U . The default choices
are the direct lower and upper triangular solvers but the user can change this to use iterative
triangular solves.

In Listing 3, we illustrate how an ILU preconditioner can be customized in almost all aspects.
In this case, we select a CGS solver for solving the upper triangular system by &rst creating the
factory in lines 18–23 and then attaching it to the preconditioner factory in lines 26–28. Instead
of relying on the internal generation of the incomplete factors, we generate them ourselves in
lines 13–15. Afterwards, we generate the ILU preconditioner in line 29. In the end, we employ the
now already generated preconditioner in line 40 with a BiCGSTAB solver.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:14 H. Anzt et al.

1 #include <iostream >
2 #include <ginkgo/ginkgo.hpp >
3
4 int main()
5 {
6 // Instantiate a CUDA executor
7 auto cuda = gko:: CudaExecutor :: create(0, gko:: OmpExecutor :: create());
8 // Read data
9 auto A = gko::read <gko:: matrix::Csr <>>(std::cin , cuda);

10 auto b = gko::read <gko:: matrix::Dense <>>(std::cin , cuda);
11 auto x = gko::read <gko:: matrix::Dense <>>(std::cin , cuda);
12 // Generate ILU(0) factorization
13 auto ilu_factorization =
14 gko:: factorization ::ParIlu <>::build().on(cuda)
15 ->generate(A);
16 // Create a custom upper solver factory
17 auto upper_solver_factory =
18 gko:: solver::Cgs <>::build()
19 .with_criteria(
20 gko::stop:: ResidualNormReduction <>:: build()
21 .with_reduction_factor (1e-5)
22 .on(cuda))
23 .on(cuda);
24 // Create an ILU preconditioner factory with a CGS upper solver
25 auto ilu_factory =
26 gko:: preconditioner ::Ilu <gko:: solver::LowerTrs <>, gko:: solver::Cgs <>>::build()
27 .with_u_solver_factory(gko:: share(upper_solver_factory))
28 .on(cuda);
29 auto ilu_prec = ilu_factory ->generate(gko:: share(ilu_factorization));
30 // Create the solver factory with ILU preconditioning
31 auto solver_factory =
32 gko:: solver::Bicgstab <>:: build()
33 .with_criteria(
34 gko::stop:: ResidualNormReduction <>:: build()
35 .with_reduction_factor (1e-15)
36 .on(cuda),
37 .with_generated_preconditioner(gko:: share(ilu_prec))
38 .on(cuda);
39 // Create the solver from the factory and solve the system
40 solver_factory ->generate(gko::give(A))->apply(gko::lend(b), gko::lend(x));
41 // Write result
42 write(std::cout , gko::lend(x));
43 }
44

Listing 3. An example of creating a CG solver with ILU preconditioning with an iterative solver for the
upper triangular factor.

4 USING GINKGO AS A FRAMEWORK
As described in Section 2, Ginkgo provides a set of generic linear operators, including various
general matrix formats, popular solvers, and simple preconditioners. However, sparse linear alge-
bra often includes problem-speci&c knowledge. This means that, in general, a highly-optimized
implementation of a generic algorithm will still be outperformed by a carefully crafted custom al-
gorithm employing application-speci&c knowledge. To tackle this, Ginkgo promotes extensibility
so that users can develop their own implementation for speci&c functionality without needing to
modify Ginkgo’s code (or recompile it).

Domain-speci&c extensions can be elaborated as part of the application that uses them, or even
bundled together to create an ecosystem around Ginkgo. Currently, this is possible for all linear
operators, stopping criteria, loggers, and corresponding factories. Adding custom data types also
requires only minor changes in a single header &le and a recompilation. The only extension that
requires more signi&cant e'orts is the addition of new architectures and executors. This involves
modifying a key portion of Ginkgo as it requires the addition of specialized implementations of
all kernels for the new architecture and executor.

In contrast to the previous section, where Ginkgo is used as a library and the application is built
around it, this section describes how Ginkgo can be used as a framework in which the application
inserts its own custom components to work in harmony with Ginkgo’s built-in technology.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:15

4.1 Utilities Supporting Extensibility
Ginkgo’s facilities for memory management (e.g., automatic allocation and deallocation, or trans-
parent copies between di'erent executors) are designed to simplify its use as a library. As a result,
the implementation burden is then shifted to the developers of these facilities, which are either the
developers of Ginkgo or, in case the application using Ginkgo needs custom extensions, the de-
velopers of that application. To alleviate the burden and help developers focus on their algorithms,
Ginkgo provides basic building blocks that handle memory management and the implementation
of interfaces supported by the component being developed.

4.1.1 Array. Most components in Ginkgo have some sort of associated data, which should be
stored together with its executor. When copying a component, its data should also be copied, pos-
sibly to a di'erent executor. When the object is destroyed, the data should be deallocated with it.
Doing this manually for every class introduces a large amount of boilerplate code, which increases
the e'ort of developing new components, and can lead to subtle memory leaks. In addition, di'er-
ent devices have di'erent APIs for memory management, so a separate version would have to be
written for each executor.

To handle these issues in a single point in code, while removing some of the burden from the
developer, Ginkgo provides the Array class. This is a container which encapsulates &xed-sized
arrays stored on a speci&c Executor. It supports copying between executors and moving to an-
other executor. In addition, it leverages the RAII idiom4 to automatically deallocate itself from the
memory when it is no longer needed.

1 auto omp = gko:: OmpExecutor :: create();
2 auto cuda = gko:: CudaExecutor :: create(0, omp);
3 using arr = gko::Array <int >;
4
5 arr x(cuda , {1, 2, 3, 4}); // an array of integers on the GPU
6 arr cpu_x(omp , x); // a copy of x on the CPU
7 arr z(omp , 10); // an uninitialized array of 10 integers on the CPU
8
9 z = x; // copy x from the GPU to z (on the CPU)

10 z.set_executor(cuda); // move z to the GPU
11
12 auto d[] = {1, 2, 3, 4};
13 auto d_arr = arr::view(omp , 4, d); // use existing data
14
15 auto size = x.get_num_elems (); // get the size of x
16 auto x_data = x.get_data (); // get raw pointer to x's data
17 // Note that x_data [0] would cause a segmentation fault if called from the CPU.
18 // Memory used for x, cpu_x and z is automatically deallocated.
19 // d_arr does not try to deallocate the memory.

Listing 4. Usage examples of the Array class.

Listing 4 shows some common usage examples of arrays. Lines 5–7 display several ways of
initializing the Array: using an initializer list, copying from an existing array (from a di'erent
executor), or allocating a speci&ed amount of uninitialized memory. The last constructor will only
allocate the memory, without calling the constructors on individual elements, which remains the
responsibility of the caller. While this is not the usual behavior in C++, properly parallelizing the
construction of the elements in multi- and manycore systems is a non-trivial task. Nevertheless,
the elements of the arrays used in Ginkgo are mostly trivial types, so there is usually no need to
call the constructor in the &rst place.

Lines 9–10 shown in Listing 4 illustrate how the assignment operator can be used to copy arrays
and how the executor of the array can be changed via the set_executor method. The combination
of the assignment operator and the RAII idiom usually means that classes using arrays as building

4https://en.cppreference.com/w/cpp/language/raii.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:16 H. Anzt et al.

blocks do not require user-de&ned destructors or assignment operators, since the ones synthesized
by the compiler behave as expected (in particular, this is true for all of Ginkgo’s linear operators,
stopping criteria, and loggers).

Lines 12–13 show that Array can also be used to store data in a non-owning fashion in a view,
i.e., the data will not be de-allocated when the Array is destroyed. This feature is particularly useful
when using Ginkgo to operate on data owned by the application or another library.

Finally, raw data stored in the Array can be retrieved as shown in Lines 15–17. The get_data
method will return a raw pointer on the device where the array is allocated, so trying to dereference
the pointer from another device will result in a runtime error.

4.1.2 Introduction to Mixins. Most components in Ginkgo expose a rich collection of utility
functions, usually related to conversion, object creation, and memory movement. These utilities
are usually trivial to implement, and do not di'er much between components. However, they still
require that the developer implements them, which steers the focus away from the actual algo-
rithm development. Ginkgo addresses this issue by using mixins [2]. Since those are neither well-
known by the community5 nor well-supported in languages commonly used in high performance
computing (e.g., C, C++, and Fortran), this subsection provides a simple example where mixins are
leveraged to reduce boilerplate code. The remaining parts of Section 4 introduce mixins provided
by Ginkgo when extending certain aspects of its ecosystem.

As a toy example, assume there is an interface Clonable, which consists of a single method
clone exposed to create a clone of an object. This method is useful if the object that should be
cloned is only available through its base class (i.e., the static type of the object di'ers from its dy-
namic type). A common example where this is used is the prototype design pattern [26]. Obviously,
the implementation of the clone method should just create a new object using the copy construc-
tor. Listing 5 is an example implementation of such a hierarchy consisting of three classes A, B,
and C. Classes A and B directly implement Clonable, while C indirectly implements it through B.

1 struct Clonable {
2 virtual ~Clonable () = default;
3 virtual std::unique_ptr <Clonable > clone() const = 0;
4 };
5
6 struct A : Clonable {
7 std::unique_ptr <Clonable > clone() const override {
8 return std::unique_ptr <Clonable >(new A{*this});
9 }

10 };
11
12 struct B : Clonable {
13 std::unique_ptr <Clonable > clone() const override {
14 return std::unique_ptr <Clonable >(new B{*this});
15 }
16 };
17
18 struct C : B {
19 std::unique_ptr <Clonable > clone() const override {
20 return std::unique_ptr <Clonable >(new C{*this});
21 }
22 };

Listing 5. An example hierarchy implementing clonable without the use of mixins.

The implementation of the clone method is almost identical in all classes, so it represents a
good candidate for extraction into a mixin. Mixins are not supported directly in C++, so their
implementation is handled via inheritance, usually coupled with the Curiously Recurring Tem-
plate Pattern (CRTP) [20]. Nevertheless, using inheritance in this context should not be viewed
as establishing a parent–child relationship between the mixin and the class inheriting from it, but

5The only mixin known to the authors is std::enable_shared_from_this from the C++ standard library.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:17

instead as the class “including” the generic implementations provided by the mixin. Listing 6 shows
the implementation of the same hierarchy using the EnableCloning mixin designed to provide a
generic implementation of the clone method. The mixin relies on the knowledge of the type of
the implementer to call the appropriate constructor, which is provided as a template parameter.
The base interface implemented by the mixin is also passed as a template parameter to allow indi-
rect implementations, as is the case in class C. Once the mixin is set up, any class that wishes to
implement Clonable can just include the mixin to automatically get a default implementation of
the interface, making the class cleaner, and removing the burden of writing boilerplate code.

1 struct Clonable {
2 virtual ~Clonable () = default;
3 virtual std:: unique_ptr <Clonable > clone() const = 0;
4 };
5
6 template <typename Implementer , typename Base = Clonable >
7 struct EnableCloning : Base {
8 std:: unique_ptr <Clonable > clone() const override {
9 return std:: unique_ptr <Clonable >(

10 new Implementer {* static_cast <const Implementer*>(this)});
11 }
12 };
13
14 struct A : EnableCloning <A> {};
15
16 struct B : EnableCloning <B> {};
17
18 struct C : EnableCloning <C, B> {};
19

Listing 6. An example hierarchy implementing clonable using the EnableCloning mixin.

Ginkgo uses mixins to provide default implementations, or parts of implementations of poly-
morphic objects, linear operators, various factories, as well as a few of other utility methods. To
better distinguish mixins from regular classes, mixin names begin with the “Enable” pre&x.

4.2 Creating New Linear Operators
The matrix structure is one of the most common types of domain-speci&c information in sparse
linear algebra. For example, the discretization of the 1D Poisson’s di'erential equation with a 3-
point stencil results in a tridiagonal matrix with a value 2 for all diagonal entries and −1 in the
neighboring diagonals. This special structure enables designing a matrix format which only needs
to store the two values on and below/above the diagonal. Such compact matrix formats require
far less memory than general ones, which directly translates into performance gains in the SpMV
computation.

We adopt the example of the stencil matrix to demonstrate how to implement a custom ma-
trix format. The code structure is shown in Listing 7. The actual implementations of the OpenMP,
CUDA, and reference kernels are not shown here for brevity as they do not use any important fea-
tures of Ginkgo. A full implementation is available in Ginkgo’s custom-matrix-format example,
which is included in Ginkgo’s source distribution.6

Line 1 includes the EnableLinOp mixin, which implements the entire LinOp interface except
the two apply_impl methods. These methods are called inside the default implementation of
the apply method to perform the actual application of the linear operator. The default imple-
mentation of apply contains additional functionalities (executor normalization, argument size
checking, logging hooks, etc.). Thus, by using the two-stage design with apply and apply_impl,
the implementers of matrix formats do not have to worry about these details. Line 2 includes
the EnableCreateMethod mixin, which provides a default implementation of the static create

6https://github.com/ginkgo-project/ginkgo.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:18 H. Anzt et al.

method. The default implementation will forward all the arguments to the StencilMatrix’ con-
structor, allocate, and construct the matrix using the new operator, and return a unique pointer
(std::unique_ptr) to the constructed object.

1 class StencilMatrix : public gko:: EnableLinOp <StencilMatrix >,
2 public gko:: EnableCreateMethod <StencilMatrix > {
3 public:
4 StencilMatrix(std:: shared_ptr <const gko::Executor > exec ,
5 gko:: size_type size = 0, double left = -1.0,
6 double center = 2.0, double right = -1.0)
7 : gko:: EnableLinOp <StencilMatrix >(exec , gko::dim <2>{size}),
8 coefficients(exec , {left , center , right}) {}
9

10 protected:
11 using vec = gko:: matrix::Dense <>;
12 using coef_type = gko::Array <double >;
13
14 void apply_impl(const gko::LinOp *b, gko::LinOp *x) const override {
15 auto dense_b = gko::as<vec >(b);
16 auto dense_x = gko::as<vec >(x);
17
18 struct stencil_operation : gko:: Operation {
19 stencil_operation(const coef_type &coefficients , const vec *b,
20 vec *x)
21 : coefficients{coefficients}, b{b}, x{x} {}
22
23 void run(std::shared_ptr <const gko:: ReferenceExecutor >) const override {
24 // Reference kernel implementation
25 }
26 void run(std::shared_ptr <const gko:: OmpExecutor >) const override {
27 // OpenMP kernel implementation
28 }
29 void run(std::shared_ptr <const gko:: CudaExecutor >) const override {
30 // CUDA kernel implementation
31 }
32 void run(std::shared_ptr <const gko:: HipExecutor >) const override {
33 // HIP kernel implementation
34 }
35
36 const coef_type &coefficients;
37 const vec *b;
38 vec *x;
39 };
40 this ->get_executor ()->run(
41 stencil_operation(coefficients , dense_b , dense_x));
42 }
43
44 void apply_impl(const gko::LinOp *alpha , const gko::LinOp *b,
45 const gko::LinOp *beta , gko:: LinOp *x) const override {
46 auto dense_b = gko::as<vec >(b);
47 auto dense_x = gko::as<vec >(x);
48 auto tmp_x = dense_x ->clone();
49 this ->apply_impl(b, gko::lend(tmp_x));
50 dense_x ->scale(beta);
51 dense_x ->add_scaled(alpha , gko::lend(tmp_x));
52 }
53
54 private:
55 coef_type coefficients;
56 };
57
58 // using the matrix format:
59 auto A = StencilMatrix :: create(exec , b->get_size ()[0], -1.0, 2.0, -1.0);

Listing 7. Example implementation of a user-defined matrix format specialized for 3-point stencil
matrices.

The constructor itself is de&ned in lines 4–8. Its parameters are the executor where the matrix
data should be located and operations performed, the size of the stencil, and the three coe(cients
of the stencil. The executor and the size are handled by EnableLinOp, and the coe(cients are
stored in an Array (de&ned in line 55) located on the executor used by the matrix.

Linear operators provide two variants of the apply method. The “simple” version performs the
operation x = Ab and the “advanced” version for x = αAb + βx . Both of them are often used
in linear algebra, and can be expressed in terms of each other: A “simple” application is just an
“advanced” one with α = 1 and β = 0. The “advanced” application can be expressed in terms

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:19

of other operations, namely by combining the original x vector and the result of the “simple”
application using the scal and axpy BLAS routines (called scale and add_scaled in Ginkgo). In
general, specialized versions result in superior performance. Thus, Ginkgo provides both of them
separately. However, for the sake of brevity, this example implements the “advanced” version in
terms of the “simple” one (lines 14–42).

The remainder of the code (lines 15–57) contains the implementation structure of the “simple”
application. The input parameters contain the input vector b and the vector x where the solution
will be stored. Each input and solution vector is represented by one column of a linear operator. To
accommodate future extensions (e.g., sparse matrix–sparse vector multiplication), both x and b are
general linear operators. However, the only type supported by this example (and all of Ginkgo’s
built-in operators) is matrix::Dense. Downcasting these vectors to matrix::Dense is realized in
lines 15–16 using the gko::as utility, which throws an exception if one of them is not in fact a
dense matrix.

The implementation of the apply operation depends on the hardware architecture. The Ref-
erence version uses a simple sequential CPU implementation; the OpenMP version relies on a
parallel implementation based on OpenMP; and the CUDA and HIP versions launch a CUDA
kernel and a HIP kernel, respectively. To support all four implementations, Ginkgo de&nes the
Operation interface. An object that implements this interface is passed to the executor’s run
method, which will select the appropriate implementation depending on the executor (lines 40–41).
Thus, StencilMatrix has to de&ne a class (called stencil_operation in this example, lines 18–
39) which implements the Operation interface and encapsulates the four implementations. The
implementations are placed into the four overloads of the run method: the reference version in
lines 23–25; the OpenMP version in lines 26–28; the CUDA version in lines 29–31; and the HIP ver-
sion in lines 32–34. References to the required data also have to be passed to stencil_operation
so that the implementation can access it. For the purpose of this example, the run method is embed-
ded into the class de&nition, but these can be separated as the library sees &t to support di'erent
backends, or the framework provided by Ginkgo to manage operations can be reused to emulate
the multi-backend setup shown in Section 2.3.

The new matrix format can be used instead of the CSR format in the example in Listing 1 by
changing the de&nition of A in line 9 as shown in line 59 of Listing 7, and placing the de&nition of
A after the de&nition of b. In addition, lines 14–15 de&ning the preconditioner have to be removed,
since the Block–Jacobi preconditioning requires additional functionalities of the matrix format.7

Matrix formats are not the only linear operators that can be extended. A similar approach can
be used to de&ne new solvers and preconditioners.

4.3 Creating New Stopping Criteria
Implementing new stopping criteria requires a deeper understanding of the concept than that ex-
plained in Section 2.5. To accommodate higher generality, a criterion is allowed to maintain state
during the execution of a solver (e.g., a criterion based on a time limit may need to record the point
in time when the solver was started). On the other hand, a linear operator may invoke a solver
multiple times, every time its apply method is called. As a consequence, the same criterion cannot
be reused for multiple runs, as the state from the previous invocation may interfere with a sub-
sequent run. The solution is to prevent users from directly instantiating criteria. Instead, the user
instantiates a criterion factory, which is then used by the solver to create a new criterion instance
every time the solver is invoked. When creating the criterion, the solver will pass basic information
about the system being solved, which includes the system matrix, the right-hand side, the initial

7StencilMatrix would have to de&ne conversion to matrix::Csr for Block–Jacobi preconditioning to work.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:20 H. Anzt et al.

guess, and optionally the initial residual. During its execution, the solver will call the criterion’s
check method to decide whether to stop the process. This method receives a list of parameters that
includes the current iteration number, and optionally one or more of the following: the current
residual, the current residual norm, and the current solution. Based on this information, the crite-
rion decides, separately for each right-hand side, whether the iteration process should be detained.

Currently, Ginkgo includes conventional stopping criteria for iterative solvers based on iter-
ation count, execution time, or residual thresholds, as well as mechanisms to combine multiple
criteria. Nevertheless, users may achieve tighter control of the iteration process by de&ning their
own stopping criteria. Listing 8 o'ers a sample stopping criterion based on the number of iterations
which, even though already available in Ginkgo as gko::stop::Iteration, is simple enough to
show in full as part of this article.

As mentioned in Section 2.5, all stopping criteria, including custom ones, should implement the
Criterion interface. In addition to the check method, the interface provides various other utility
methods which facilitate memory management. To reduce the volume of boiler-plate code needed
for new stopping criteria, Ginkgo provides the EnablePolymorphicObject mixin. This mixin
inherits an interface supporting memory management (in this case Criterion), and implements
utility methods related to it (line 2). For the mixin to work properly, the class being enabled has to
provide a constructor with an executor as its only parameter (lines 21–23).

Creating a criterion factory can be simpli&ed by using the CREATE_FACTORY_PARAMETERS,
FACTORY_PARAMETER, and ENABLE_CRITERION_FACTORY macros. The &rst one creates a member
type parameters_type, which contains all of the parameters of the criterion (lines 4–6). Each
parameter is de&ned using the FACTORY_PARAMETER macro, which adds a data member of the re-
quested name and default value, as well as a utility method “with_<parameter name>” that can
be used when constructing the factory to set the parameter. In this case, the only parameter is the
maximum number of iterations (line 5). Finally, the ENABLE_CRITERION_FACTORY macro creates a
factory member type named Factory that uses the parameters to create the criterion. The macro
also adds a data member parameters_ which holds those parameters (line 7). When used to in-
stantiate a new criterion, the factory will pass itself, as well as an instance of parameters_type,
to the constructor of the criterion. This constructor is de&ned in lines 25–29.

1 class Iteration
2 : public gko:: EnablePolymorphicObject <Iteration , gko::stop::Criterion > {
3
4 GKO_CREATE_FACTORY_PARAMETERS(parameters , Factory) {
5 gko:: size_type GKO_FACTORY_PARAMETER(max_iters , 0);
6 };
7 GKO_ENABLE_CRITERION_FACTORY(Iteration , parameters , Factory);
8
9 public:

10 bool check(gko::uint8 stoppingId , bool setFinalized ,
11 gko::Array <stopping_status > *stop_status , bool *one_changed ,
12 const gko::stop:: Updater &updater) override {
13 if (updater.num_iterations_ < parameter_.max_iters) {
14 return false;
15 }
16 this ->set_all_statuses(stoppingId , setFinalized , stop_status);
17 *one_changed = true;
18 return true;
19 }
20
21 explicit Iteration(std:: shared_ptr <const gko::Executor > exec)
22 : gko:: EnablePolymorphicObject <Iteration , gko::stop::Criterion >(
23 std::move(exec)) {}
24
25 explicit Iteration(const Factory *factory ,
26 const gko::stop:: CriterionArgs &args)
27 : gko:: EnablePolymorphicObject <Iteration , Criterion >(
28 factory ->get_executor ()),
29 parameters_{factory ->get_parameters ()} {}
30 };

Listing 8. An example of a stopping criterion that stops the iteration proces once a certain iteration
limit is reached.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:21

Finally, the implementation of the criterion logic is comprised inside the check method
(lines 10–19). The current state of the solver is passed via the Updater object. This particular
criterion uses the Updater::num_iterations property to check whether the limit on the number
of iterations has been reached (line 13). If this is not the case, the criterion returns false,
indicating to the solver that iterative process should continue (line 14). Otherwise, the stopping
statuses of all columns are set (line 16), and the one_changed property is set to true to indicate
that at least one of the statuses changed (lines 14–17). Finally, once the iteration process for
all right-hand sides has been completed, the criterion returns true. The stoppingId and the
setFinalized )ags are additional descriptors that may be used to retrieve additional details
about the event that stopped the iteration process.

4.4 Executors and Extending Ginkgo to New Architectures
The executor is a central class in Ginkgo that provides all important primitives for allocating/deal-
locating memory on a device, transferring data to other supported devices, and basic intra-device
communication (e.g., synchronization). An executor always has a master executor, which is a CPU-
side executor capable of allocating/deallocating space in the main memory, this executor can be
either the serial ReferenceExecutor or the OmpExecutor, which are both CPU-side only. This
concept is convenient when considering devices such as CUDA or HIP accelerators, which fea-
ture their own separate memory space. Although implementing a Ginkgo executor that leverages
features such as uni"ed virtual memory (UVM) is possible via the interface, in order to attain
higher performance we decided to manage all copies by direct calls to the underlying APIs.

Support for new devices (e.g., optimized versions of the library for di'erent architectures, new
accelerators or co-processors, and new programming models) in a heterogeneous node can be
added to Ginkgo by creating new executors for those devices. This requires (1) creating a new
class, which implements the Executor interface; (2) adding kernel declarations in all Ginkgo
classes with kernels for the new executor; (3) extending the internal gko::Operation to execute
kernel operations on the new executor; and (4) implementing kernels for all Ginkgo classes on
the new architectures. Although this is an involved process and implies modi&cations in multi-
ple parts of Ginkgo, the process has been successfully executed to extend Ginkgo to support a
new HIP executor. Thanks to Ginkgo’s design, most changes to Ginkgo’s base classes transfer
to gko::Executor and its related gko::Operation classes. In addition, although most matrix for-
mats, solvers, preconditioners, and utility functions rely on kernels that need to be implemented to
support a new execution space, a good &rst step is to declare all kernels as GKO_NOT_IMPLEMENTED.
This allows to obtain a compiling &rst version featuring the new executor with kernels throwing
an exception when called. The required kernel implementations can then be progressively added
without endangering the successful compilation of the software stack.

5 USING GINKGO WITH EXTERNAL LIBRARIES
In this section, we describe and demonstrate how to interface Ginkgo from other libraries. Speci&-
cally, we showcase the usage of Ginkgo’s solver and preconditioner functionality from the deal.ii
[8] and MFEM [10] &nite element software packages.

5.1 Using Ginkgo as a Solver
To use Ginkgo as a solver in an external library, one must &rst adapt the data structures of the
external library to Ginkgo’s data structures. We accomplish this by borrowing the raw data from
the external library’s data structures; next operate on this data—e.g., solve a linear system; and
then return the result back to the application in the original data format.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:22 H. Anzt et al.

The key aspect of the library interfacing is the adoption of Ginkgo’s data structures and formats.
As shown in the previous sections, Ginkgo possesses several data format implemented and was
designed to be easy to extend, which makes this step easier. The Ginkgo library’s gko::Dense vec-
tor/matrix representation format assumes row-major storage. For all Ginkgo formats, padding can
be set and controlled. A critical step for performance is that the adoption of Ginkgo’s LinOps does
not necessarily come at the price of extra copies : if access to the underlying raw pointer is possible,
then Ginkgo can transparently reuse this raw pointer as well in its data formats in a “non-owning”
mode, where no memory deallocation will be done. This functionality is provided transparently
to all of Ginkgo’s data structures thanks to using the gko::Array as the base building block.

Listings 9 and 10 showcase the exploitation of Ginkgo functionality in deal.ii and MFEM ap-
plications. Our main objective is to expose Ginkgo’s functionalities to the external libraries while
maintaining an uniform interface within those libraries. The interfaces preserve the libraries’ own
solver interface, and take the executor determining the execution space as the only additional
parameter. All data movement is handled automatically and remains transparent to the user.

1 #include <deal.II/lac/ginkgo_solver.h>
2 #include <deal.II/lac/sparse_matrix.h>
3 #include <deal.II/lac/vector.h>
4 #include <deal.II/lac/vector_memory.h>
5
6 #include "../ testmatrix.h"
7 #include "../ tests.h"
8
9 #include <iostream >

10 #include <typeinfo >
11
12 int main()
13 {
14 // Set solver parameters
15 SolverControl control (200, 1e-6);
16
17 const unsigned int size = 32;
18 unsigned int dim = (size - 1) * (size - 1);
19
20 // Setup a simple matrix
21 FDMatrix testproblem(size , size);
22 SparsityPattern structure(dim , dim , 5);
23 testproblem.five_point_structure(structure);
24 structure.compress ();
25 SparseMatrix <double > A(structure);
26 testproblem.five_point(A);
27
28 Vector <double > f(dim);
29 f = 1.;
30 Vector <double > u(dim);
31 u = 0.;
32
33 // Instantiate a Reference executor. Change this as needed.
34 auto ref = gko:: ReferenceExecutor :: create();
35
36 // Create a ginkgo preconditioner.
37 auto jacobi = gko:: preconditioner ::Jacobi <>::build().on(ref);
38
39 // Use ginkgo to solve the system on a reference executor using the CG solver
40 // with jacobi preconditioning.
41 // Note that this is an additional constructor that takes in a created
42 // LinOpFactory object and hence is generic.
43 GinkgoWrappers ::SolverCG <> solver(control , "reference", jacobi);
44
45 // Solves the system and copies the data back to deal.ii's solution variable.
46 solver.solve(A, u, f);
47 }

Listing 9. Usage of Ginkgo’s solver capabilities in a deal.ii application. The code snippet only shows
the solution step and assumes that the system matrix and right-hand side are available from deal.ii.

5.2 Using Ginkgo’s Preconditioners
Ginkgo provides a multitude of preconditioners on both the CPU and the GPU. An example of
such a preconditioner is the Block–Jacobi preconditioner. To accomodate the use of Ginkgo’s

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:23

preconditioners in deal.ii or MFEM, an additional constructor for each of the concrete solver
classes has been provided which takes in a gko::LinOpFactory as an argument. In the most gen-
eral case this can be taken to be any generic linear operator factory with an overloaded apply
implementation to serve as a preconditioner.

5.3 Interoperability With xSDK
Ginkgo is a part of the extreme-scale Scienti"c Software Development Kit (xSDK [5]), a
software stack that comprises some of the most important research software libraries and that is
available on all US leadership computing facilities. Ginkgo is included in the xSDK release 0.5.0 [4],
which is available as a Spack metapackage.

Within the xSDK e'ort, interoperability examples with MFEM and deal.ii showcase the LinOp
concept of Ginkgo, and the use of Ginkgo as a solver using partial assembly of the &nite element
operator within MFEM.

1 #include "mfem.hpp"
2
3 int main() {
4
5 .
6 . // Setup the finite element space and assemble the linear
7 . // and bilinear forms #a#.
8 .
9

10 OperatorPtr A;
11 Vector B, X;
12 a->FormLinearSystem(ess_tdof_list , x, *b, A, X, B);
13
14 // Solve the linear system with CG + ILU from Ginkgo.
15
16 // Instantiate a Reference executor.
17 auto ref = gko:: ReferenceExecutor :: create();
18 // Setup the preconditioner.
19 auto ilu_precond =
20 gko:: preconditioner ::Ilu <gko:: solver::LowerTrs <>,
21 gko:: solver::UpperTrs <>>::build()
22 .on(ref);
23
24 // Create the solver object with convergence parameters.
25 GinkgoWrappers :: CGSolver ginkgo_solver("reference", 1, 2000, 1e-12, 0.0,
26 ilu_precond.release ());
27
28 // The solve method internally converts the MFEM objects to Ginkgo's
29 // objects if necessary , computes the solution and returns the solution.
30 ginkgo_solver.solve (&(( SparseMatrix &)(*A)), X, B);
31
32 // Get solution back to MFEM
33 a->RecoverFEMSolution(X, *b, x);
34
35 .
36 . // Clean up
37 .
38 }

Listing 10. Usage of Ginkgo’s solver capabilities in a MFEM application.

6 SOFTWARE SUSTAINABILITY EFFORTS
An important aspect of the Ginkgo library is its orientation toward software sustainability, ease
of use, and openness to external contributions. Aside from Ginkgo being used as a framework for
algorithmic research, its primary intention is to provide a numerical software ecosystem designed
for easy adoption by the scienti&c computing community. This requires sophisticated design guide-
lines and high quality code. With these goals in mind, Ginkgo follows the guidelines and policies
of the xSDK and the Better Scienti"c Software (BSSw [6]) initiative. In order to facilitate easy
adoption, Ginkgo is open source with a modi&ed BSD license, which does not restrict commercial
use of the software. The main repository is publicly available on github and only prototype im-
plementations of ongoing research are kept in a private repository. The github repository is open

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:24 H. Anzt et al.

to external contributions through a peer-review concept and uses issues for bug tracking and to
bolster development e'orts. A Continuous Integration (CI) system realizes the automatic syn-
chronization of repositories, and the compilation and testing of the distinct branches. The CI is
also setup to ensure quality of the library in terms of memory leaks, threading issues, detection
of bugs thanks to static code analyzers, and so on. The con&guration and compilation processes
are facilitated with CMake. The testing is realized using Google Test [7] and comprises a compre-
hensive list of unit tests ensuring the library’s functionality. A feature spearheading sustainable
high performance software development is Ginkgo’s Continuous Benchmarking (CB) frame-
work. This component of Ginkgo’s ecosystem automatically runs performance tests on each code
change; archives the performance results in a public git repository; and allows users to investi-
gate the performance via an interactive web tool, the Ginkgo Performance Explorer8 [11]. Finally,
the documentation is automatically kept up-to date-with the software, and multiple wiki pages
containing examples, tutorials, and contributor guidelines are available.

7 EXPERIMENTAL EVALUATION
7.1 Experimental Setup
In the performance evaluation, we consider two GPU-centric HPC nodes from di'erent hardware
vendors: The AMD node is integrated into the Tulip Early Access System (EAS) for the Frontier
Exascale machine, and consists of two AMD EPYC 7742 64-cores processors and four AMD MI100
GPUs. The MI100 GPU features 32 GB HBM2 memory accessible at of 1.23 TB/s (according to
the speci&cations), and has a theoretical peak of 11.54 (double precision) TFLOP/s. The NVIDIA
node is integrated into the HAICORE supercomputer, and consists of two Intel Xeon Gold 6248R
24 cores processors and four NVIDIA Volta A100 accelerators. The NVIDIA A100 GPUs each have
a theoretical peak of 9.7 (double-precision) TFLOP/s and feature 40 GB of high-bandwidth memory
(HBM2). The board speci&cations indicate a memory bandwidth of 1.6 TB/s for this accelerator. We
run all our experiments on a single GPU. In all experiments, we the GCC 9 compiler, CUDA 11.0.194,
and HIP with the ROCm 4.0.20496 software stack. We note that we do not intend this to be a
performance-focused paper, and therefore refrain from showing a comprehensive performance
evaluation, but only show selected performance results that are representative for the common
usage of Ginkgo.

7.2 The Cost of Runtime Polymorphism
Relying on static and dynamic polymorphism largely simpli&es code maintenance and extendabil-
ity. A common concern when using these C++ features is the runtime overhead induced by runtime
polymorphism. Due to Ginkgo’s design, multiple runtime polymorphisms are evaluated at di'er-
ent levels. For example, calling the SpMV apply() functionality goes through three polymorphism
forks: Format selection, Executor selection, and Kernel variant selection. Solvers undergo a similar
process, except that during each iteration they call multiple kernels: an SpMV, possibly a precondi-
tioner, and so on. An important aspect to note is that the cost of polymorphism can be mitigated if
polymorphic jumps are consistent, since the branching can be predicted and the same instructions
will be properly cached.

To evaluate the performance impact of the multiple runtime polymorphism branches, in Table 1
we &rst measure the overhead for all Ginkgo’s solvers. The results there are obtained using a
matrix of size 1, with an initial solution x = 0 and the right-hand side (b) set to 1. We only use the
stopping criterion Iteration to ensure the solver is ran the correct amount of time. This allows

8https://ginkgo-project.github.io/gpe/.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:25

Table 1. Overhead of the Main Ginkgo Solvers Measured by Averaging
10.000 Solver Runs, each Doing 1.000 Iterations

Solver BiCGSTAB CG CGS FCG GMRES
Time per iteration (µs) 1.26 1.28 1.00 1.45 1.51

Fig. 6. Performance profile comparing the runtime of Ginkgo’s SpMV kernels with the vendor libraries on
the AMD MI100. The plain names represent the Ginkgo kernels, the “hipsp_” names refer to the vendor
implementations in AMD’s hipSPARSE library.

running the full solver algorithm executing all runtime polymorphism branches with negligible
kernel execution time. We report results for 1,000 solver iterations averaged over 10,000 solver
runs. Table 1 shows that the time per iteration is at most 1.5µs for any of the solvers.

7.3 SpMV Kernel Performance
We next evaluate the performance of the SpMV kernel for all matrices available in the Suite Sparse
Matrix Collection [1, 28] on the AMD MI100 and the NVIDIA A100 GPU [29]. For this purpose,
we compare the performance pro&le of the SpMV kernels available in the Ginkgo library with
their counterparts available in the NVIDIA cuSPARSE and the AMD hipSPARSE libraries. We eval-
uate hipSPARSE instead of rocSPARSE since usage as a portability layer supersedes performance
considerations. Using a performance pro&le allows to identify the test problem share (y-axis) for
a maximum acceptable slowdown compared to the fastest algorithm (x-axis). This graph summa-
rizes two important aspects of SpMV algorithms: (1) by considering the values for x = 1.0, we
identify the share of problems for which each algorithm is the overall fastest; and (2) by looking
further, for example at x = 1.75, we can derive for which portion of the problem share each algo-
rithm is able to perform with at most 1.75 times slowdown compared to the overall fastest results.
Ideally one would reach 100% for as little x as possible. Thus, the slope is re)ecting how well an
SpMV kernel generalizes: it is often acceptable to be a little slower than the fastest algorithm for
a speci&c test case if the algorithm achieves good performance for a wide range of problems.

The performance pro&les shown in Figures 6 and 7 reveal that Ginkgo’s kernels are at least
competitive, and in some cases superior to the vendor libraries.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:26 H. Anzt et al.

Fig. 7. Performance profile comparing the runtime of Ginkgo’s SpMV kernels with the vendor libraries on
the NVIDIA A100. The plain names represent the Ginkgo kernels, “cusp_” labels refer to the vendor imple-
mentations in NVIDIA’s cuSPARSE library.

Table 2. Memory Access Volume of a Full Run of the Distinct Solver

Solver Access Volume Per Iteration
BiCGSTAB 15.5 · n ·VT + nnz ·VT + 2 · nnz · IT
CG 18 · n ·VT + nnz ·VT + 2 · nnz · IT
CGS 14.5 · n ·VT + nnz ·VT + 2 · nnz · IT
FCG 21 · n ·VT + nnz ·VT + 2 · nnz · IT
GMRES (5/2 ·k + 21/2+ 14/k ) ·n ·VT + (1+ 1/k ) · (nnz ·VT + 2 ·nnz · IT )

Here VT is the value type size in bytes (e.g., for double it is 8 bytes); IT is value type for the index
type; and iter is the number of iterations the solver does. In GMRES, k is the Krylov dimension
(or restart iteration setting).

7.4 Ginkgo Solver Performance
Prior to evaluating the performance of Ginkgo’s Krylov solvers, we point out that Krylov solvers
operating with sparse linear systems are memory-bound algorithms. For this reason, we initially
assess the bandwidth e(ciency of the implementations of the di'erent Krylov solvers. Concretely,
we select the COO matrix format for the SpMV kernel, and run the Krylov solvers without any
preconditioner. In Table 2, we list the target Krylov solvers along with their average memory access
volume per iteration. The formula for the GMRES algorithm is more involved as we implement a
variant enhanced with restart. The formulas are made with assumptions for simpli&cations such
as in terms of caching, such that they can underestimate the memory access volume.

For the experimental evaluation, we run 10,000 solver iterations on 10 di'erent but represen-
tative test matrices from the Suite Sparse collection. For GMRES, we set the restart parameter to
100. In Figures 8 and 9, we visualize the memory bandwidth usage of the di'erent Krylov solvers
for both a A100 GPU executing CUDA code and an AMD MI100 GPU executing HIP code. In
each graph, we indicate the experimental peak bandwidth achieved by a reference stream triad9

9a[i] = b[i] + αc[i].

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:27

Fig. 8. Memory e'iciency of Ginkgo’s Krylov solvers on NVIDIA A100. The matrices are sorted by number
of rows.

Table 3. Stream Bandwidth Results from [21] on the A100 and MI100
Machines for Key Operations

Operation A100 performance (GB/s) MI100 performance (GB/s)
Copy 1390.702 995.791
Mul 1389.095 1000.932
Add 1399.518 981.627
Triad 1399.171 980.516
Dot 1327.195 720.551

bandwidth benchmark [21]. For the STREAM triad bandwidth benchmark, the MI100 reaches
980.5 GB/s whereas the A100 reaches 1399.2 GB/s, although the theoretical bandwidth of the MI100
is 1.23 TB/s whereas it is 1.6 TB/s for the A100. The bandwidth performance analysis reveals that
the algorithms are achieving bandwidth rates in the range of 350–500 GB/s on the MI100 machine
and 900–1200 TB/s on the A100 machine. This means that the Ginkgo solver performance reaches
about 50% of the STREAM bandwidth on the MI100 GPU, whereas it achieves between 64% and
85% on the A100 GPU, depending on solvers and test matrix combination. On the A100, the GM-
RES solver matches or even exceeds the STREAM bandwidth for the small test matrices. A deeper
investigation reveals that for these test matrices, the vectors are small enough to be cached during
the Modi&ed Gram–Schmidt orthogonalization process. Indeed, for the three matrices in with less
than 1.5 million rows, between 3 and 4 Krylov basis vectors can be kept in the A100 L2 cache of
40 MB, whereas for the next larger (Cube_Coup_dt0) with more than 2.1 million rows, only two
vectors can be stored in cache.

To better understand the performance discrepancy between A100 and MI100, in Table 3 we pro-
vide detailed bandwidth results on both machines for key operations. The machines show di'erent
behaviors: the A100 GPU achieves bandwidth rates consistent across all operations, reaching be-
tween 1.33 and 1.4 TB/s. The MI100 GPU on the other hand reaches around 1 TB/s for four of the
&ve benchmarks, but the bandwidth drops by 30% to 720 GB/s for the dot product exhibiting a
global reduction pattern. The relatively poor performance for global reductions on the AMD GPU

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:28 H. Anzt et al.

Fig. 9. Memory e'iciency of Ginkgo’s Krylov solvers on the AMD MI100. The matrices are sorted by number
of rows.

may be one aspect to the lower relative performance of the Ginkgo solvers on the MI100 GPU. A
second aspect is that we employ Ginkgo’s COO SpMV kernel inside the Krylov solvers, a kernel
that makes heavy use of atomics for the vector updates. Unlike the A100 performance, the MI100
performance su'ers heavily under atomic collisions. Ultimately, we also have to accept that the
MI100 GPU and the accompanying ROCm software stack has not yet reached the maturity level
of NVIDIA’s counterpart, leaving signi&cant room for further improvement. A &nal aspect worth
mentioning is that the MI100 can enter throttling mode when overheating which could explain
some performance discrepancies.

7.5 Ginkgo Preconditioner Performance
Ginkgo provides both (Block–Jacobi type) preconditioners based on diagonal scaling and (ILU
type) incomplete factorization preconditioners. Ginkgo’s ILU preconditioner technology is spear-
heading the community, including ParILUT, the &rst threshold-based ILU preconditioner for GPU
architectures [18]. This preconditioner approximates the values of the preconditioner via &xed-
point iterations while dynamically adapting the sparsity pattern to the matrix properties [13]. De-
pending on the matrix characteristics, this preconditioner can signi&cantly accelerate the solution
process of linear system solves; see Figure 10.

Advanced techniques for the ILU preconditioner generation are complemented with fast trian-
gular solvers, including iterative methods [12, 24], and the approximation of the inverse of the tri-
angular factors via a sparse matrix (incomplete sparse approximate inverse preconditioning [17]).

The Block–Jacobi preconditioner available in Ginkgo outperforms its competitors by automati-
cally adapting the memory precision to the numerical requirements, therewith reducing the mem-
ory access time of the memory-bound preconditioner application [15, 22]. The inversion of the
diagonal block is realized via a heavily-tuned batched variable size Gauss–Jordan elimination [16];
see Figure 11.

8 CONCLUSIONS AND PERSPECTIVES
Ginkgo is a modern C++-based sparse linear algebra library for GPU-centric HPC architectures.
The library design is embracing platform portability as a central design principle, and the software
ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:29

Fig. 10. Time-to-solution comparison between standard ILU preconditioning (NVIDIA’s cuSPARSE) and
Ginkgo’s ParILUT for solving anisotropic flow problems on two NVIDIA GPU generations. The GMRES
solver is taken from the Ginkgo library.

Fig. 11. Performance of the Block–Jacobi preconditioner generation on the NVIDIA A100 GPU. The precon-
ditioner generation includes the Gauss–Jordan elimination featuring pivoting, the condition number calcula-
tion and exponent range analysis, the storage format optimization, the format conversion, and the precondi-
tioner storage in GPU main memory. The Di'erent bars for each size represent the distinct memory precision
scenarios and the scenarios where the performance data includes the automatic precision detection based
on the block condition number and exponent range.

development is guided by sustainability, productivity, and performance. Rigorous unit testing, the
existence of application examples and benchmarking functionality, and the use of a Linear Oper-
ator abstraction aim at fostering user acceptance. In this article, we have presented the Ginkgo
library design and functionality usage, including the integration into the deal.ii and MFEM &nite
element ecosystems. We also demonstrated the high performance of Ginkgo on high-end GPU ar-
chitectures. Future work will focus on enhanced work-sharing capabilities and the integration into
application projects. We will also continue to enhance the Ginkgo functionality with the addition

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:30 H. Anzt et al.

of advanced, application-specialized preconditioning techniques. The design of the Ginkgo library
bene&ts from the lessons learned in other software projects, and we are positive that the sustain-
ability aspects presented in this work will serve as inspiration for future software development
projects.

APPENDICES
A REPRODUCE THE RESULTS OF THIS ARTICLE
To ensure full result reproducibility, we next explain how to generate and analyze the Ginkgo
solver performance in term of bandwidth for an A100 platform. More precisely, we detail how
to reproduce Figure 8, and potentially Figure 9 by only changing platform and adapting some of
the following instructions. We assume that the code is benchmarked on a standard machine using
slurm and modules. If that is not the case, some extra adaptation will be needed. For additional
help in reproducing these experiments please send a mail to mailto:ginkgo.library@gmail.com or
mailto:terry.cojean@kit.edu.

The main steps are as follows:
(1) install ssget and prefetch the matrices from the suitesparse collection;
(2) download and build Ginkgo;
(3) prepare the experiment scripts and run the experiments;
(4) publish the experiments to github and generate the plots using the online Ginkgo Perfor-

mance Explorer.

A.1 Fetching the Matrices
First of all, a tool is required for benchmarking: https://github.com/ginkgo-project/ssget.

This tool is a bash script simplifying the download of test matrices from the SuiteSparse matrix
collection. The script can be placed anywhere in the PATH but line 39 (ARCHIVE_LOCATION) has
to be con&gured, this is where the matrices will be stored. On some platforms, this can be another
location with faster read access during jobs. For example, on a machine like Summit, this would
typically be somewhere in $MEMBERWORK/<project>/.....

The matrices used for the experiments can be pre-downloaded, as this saves some node time.
First, let’s create a small &les containing the SuiteSparse matrices ID we use for the experiments.
This should create a &le with one number per line, which we will later reuse to run the experiments,
as shown is Listing 11:

1 printf '%s\n' 1903 2276 1398 2380 2573 2659 2548 2547 2266 1403 >
2 %$HOME/TOMS -gko -reproduce/matrices.list

Listing 11. Create a file with relevant matrix IDs.

Then, we can fetch each of those matrices, see Listing 12.
1 for i in $(cat $HOME/TOMS -gko -reproduce/matrices.list); do
2 ssget -f -i \$i
3 done

Listing 12. Download the relevant SuiteSparse matrices to reproduce the experiments.

A.2 Building Ginkgo
Afterwards, Ginkgo can be cloned, con&gured and built according the steps in Listing 12. All paths
can be adapted as needed. The <path> to specify where to build ginkgo_build needs to be adapted.
Again, the precise path can depend on whether the platform has a speci&c fast-access directory
within jobs. We reuse these variables throughout this document.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:31

1 ginkgo_source=$HOME/TOMS -gko -reproduce/ginkgo
2 ginkgo_build=<path_to_build >/TOMS -gko -reproduce/ginkgo -build
3 module load gcc/9 cuda /11.0 cmake git
4 # For every new session , the previous setup is required
5 git clone https :// github.com/ginkgo -project/ginkgo.git ${ginkgo_source}
6 --branch master
7 mkdir -p ${ginkgo_build} && cd ${ginkgo_build}
8 cmake -DGINKGO_BUILD_CUDA=on -DGINKGO_BUILD_HIP=OFF -DGINKGO_BUILD_OMP=off
9 -DGINKGO_BUILD_EXAMPLES=off -DGINKGO_BUILD_TESTS =on -DGINKGO_DEVEL_TOOLS =off

10 -DCMAKE_C_COMPILER=$(which gcc) -DCMAKE_CXX_COMPILER =$(which g++)
11 -DCMAKE_CUDA_HOST_COMPILER =$(which g++) -DGINKGO_CUDA_ARCHITECTURES =Ampere
12 ${ginkgo_source}
13 # Compilation can happen either directly or through a job depending on the
14 # system policies.
15 srun --gres=gpu:1 --time =1:00:00 --partition=<a100 > --export=ALL make -j10
16 make -j10 # afterwards , ensure everything is compiled
17 make test
18 # Everything should run without failure. If cuda tests fail logging
19 # in again might solve some issue , this could be due to the hardware
20 # restrictions on summit after 4 hours of login time.

Listing 13. Download and build the Ginkgo so,ware to reproduce the experiments.

A.3 Prepare the Experiment Scripts and Run the Benchmarks
Listing 14 simply creates a &le for launching the experiments, namely a benchmark_ginkgo.sh
we can later use in the slurm job submission system.

1 cat > ${ginkgo_source }/ benchmark_ginkgo.sh << EOF
2 #!/bin/bash
3 #SBATCH --exclusive
4 #SBATCH --gres=gpu:1
5 #SBATCH --time =6:00:00
6 #SBATCH --partition=<a100 >
7 #SBATCH --export=ALL
8
9 cd ${ginkgo_build }/ benchmark

10 make -j10
11 chmod +x run_all_benchmarks.sh
12 export MATRIX_LIST_FILE =\ $HOME/TOMS -gko -reproduce/matrices.list
13 export SOLVERS_PRECISION =1e-200
14 export SYSTEM_NAME=A100_solvers
15 export EXECUTOR=cuda
16 export BENCHMARK=solver
17 export FORMATS="coo"
18 exec ./ run_all_benchmarks.sh

Listing 14. Generate the script required for launching the Ginkgo benchmarks.

To launch the benchmarks themselves, the following command can be used, see Listing 15:
1 sbatch \${ginkgo_source }/ benchmark_ginkgo.sh

Listing 15. Launch the Ginkgo benchmarking job.

A.4 Publish the Results and Generate the Plots
The benchmark experiments generate json &les, each containing the performance and convergence
results for one of the test matrices. For analyzing the results, any tool able to process the json
format can be used.

In this section, we describe how Ginkgo’s Performance Explorer (GPE10) can be used to
generate the plots in the article. First, we need to publish the experiment results into a Github
repository which will be then linked as source input for the GPE. For this, we can simply fork the
ginkgo-data repository. To do so, we can go to the github repository and use the forking interface:
https://github.com/ginkgo-project/ginkgo-data/tree/TOMS-interface.

10https://ginkgo-project.github.io/gpe/.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.



2:32 H. Anzt et al.

Once that is completed, we clone the TOMS-interface branch, push all results to the server, and
access the GPE for plotting the results. The detailed steps are shown in Listing 16.

1 git clone https :// github.com/<username >/ginkgo -data.git
2 ${ginkgo_build }/ benchmark/ginkgo -data --branch TOMS -interface
3 rm -rf ${ginkgo_build }/ benchmark/ginkgo -data/data/{ A100_solvers ,MI100_solvers}
4 rsync -rtv ${ginkgo_build }/ benchmark/results/
5 ${ginkgo_build }/ benchmark/ginkgo -data/data/
6 cd \${ginkgo_build }/ benchmark/ginkgo -data/data/
7 # The following updates the main #.json # files with the list of data
8 module load python /3.7.0
9 ./build -list . > list.json

10 ./ agregate < list.json > agregate.json
11 git config --local user.name "<Name >"
12 git config --local user.email "<email >"
13 git commit -am "Ginkgo Reproduced solver data"
14 git push

Listing 16. Publish the results and generate summary files to a Github benchmark repository.

For generating the plots in the GPE, the following steps are needed:
(1) Access the GPE: https://ginkgo-project.github.io/gpe/.
(2) Update data root URL, from https://raw.githubusercontent.com/ginkgo-project/ginkgo-

data/master/data. to https://raw.githubusercontent.com/<username>/ginkgo-data/TOMS-
interface/data.

(3) Click on the arrow to load the data, select the Result Summary entry above. The &rst few
entries under this should be A100(cuda).

(4) Click on select an example to choose a plotting script, and update the url from
https://raw.githubusercontent.com/ginkgo-project/ginkgo-data/master/plots. to https://raw.
githubusercontent.com/<username>/ginkgo-data/TOMS-interface/plots.

(5) Again Click on the arrow next to the URL to load everything.
(6) Select the plot “Solver bandwidth performance” script.
(7) The results should be available in the tab “plot” on the right side. The script can be edited

directly if needed.
(8) Note that the black line is using previously generated BabelStream TRIAD results. This can

also be changed/adapted by compiling and running BabelStream by following the instruc-
tions listed here: https://github.com/UoB-HPC/BabelStream.

A.5 Generate Results and Plots for a MI100 Platform
The generation of the equivalent performance results for the MI100 GPU requires only small adap-
tations to the work)ow.

On Ginkgo’s side, very few changes are required. The main change concerns the build step,
where all CUDA variables need to be removed, and -DGINKGO_BUILD_HIP=on should be used in-
stead. In addition, in the benchmarking script benchmark_ginkgo.sh, the variable EXECUTOR=hip
needs to be exported as well.

REFERENCES
[1] 2020. Suite Sparse Matrix Collection. Retrieved from http://faculty.cse.tamu.edu/davis/suitesparse.html.
[2] (accessed in April 2020). Mix in. Portland Pattern Repository.
[3] (accessed in April 2020). Object slicing. Portland Pattern Repository.
[4] (accessed in April 2020). xSDK Examples Retrieved from https://xsdk.info/release-0-5-0/.
[5] (accessed in April 2020b). xSDK: Extreme-scale Scienti&c Software Development Kit Retrieved from https://xsdk.

info/.
[6] (accessed in August 2018). Better Scienti&c Software Retrieved from https://bssw.io/.
[7] (accessed in August 2018). Google Test. Retrieved from https://github.com/google/googletest.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.

https://ginkgo-project.github.io/gpe/
https://raw.githubusercontent.com/ginkgo-project/ginkgo-data/master/data
https://raw.githubusercontent.com/ginkgo-project/ginkgo-data/master/plots
https://github.com/UoB-HPC/BabelStream
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://xsdk.info/release-0-5-0/
https://xsdk.info/
https://bssw.io/
https://github.com/google/googletest


Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing 2:33

[8] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller, T. Heister, L. Heltai, K. Kormann,
M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. 2018. The deal.II library, version 9.0. Journal of
Numerical Mathematics 26, 4, (2018), 173–183.

[9] E. Anderson Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen. 1999. LAPACK users’ guide. Society for Industrial and Applied Mathematics, 3rd. ed.
Philadelphia

[10] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W.
Pazner, M. Stowell, V. Tomov, J. Dahm, D. Medina, and S. Zampini. 2019. Mfem: A modular &nite element methods
library. https://www.sciencedirect.com/science/article/abs/pii/S0898122120302583?via%3Dihub

[11] H. Anzt, Y.-C. Chen, T. Cojean, J. Dongarra, G. Flegar, P. Nayak, E. S. Quintana-Ortí, Y. M. Tsai, and W. Wang.
2019. Towards continuous benchmarking: An automated performance evaluation framework for high performance
software. In Proceedings of the Platform for Advanced Scienti!c Computing Conference, 1–11.

[12] H. Anzt, E. Chow, and J. Dongarra. 2015. Iterative sparse triangular solves for preconditioning. In Proceedings of the
European Conference on Parallel Processing, Springer Berlin, 650–661

[13] H. Anzt, E. Chow, and J. Dongarra. 2018. Parilut—a new parallel threshold ilu factorization. SIAM J. Sci. Comput. 40,
4, (2018) C503–C519.

[14] H. Anzt, T. Cojean, Y.-C. Chen, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak, T. Ribizel, and Y.-H. Tsai. 2020. Ginkgo:
A high performance numerical linear algebra library. Journal of Open Source Software, 5, 52 (2020), 2260.

[15] H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Ortí. 2019. Adaptive precision in block-jacobi
preconditioning for iterative sparse linear system solvers. Concurrency and Computation: Practice and Experience 31,
6, 2019, e4460.

[16] H. Anzt, J. Dongarra, G. Flegar, and E. S. Quintana-Ortí. 2019. Variable-size batched gauss–jordan elimination for
block-jacobi preconditioning on graphics processors. Parallel Comput. 81, (2019), 131–146.

[17] H. Anzt, T. K. Huckle, J. Bräckle, and J. Dongarra. 2018. Incomplete sparse approximate inverses for parallel precon-
ditioning. Parallel Comput. 71, (2018), 1–22.

[18] H. Anzt, T. Ribizel, G. Flegar, E. Chow, and J. Dongarra. 2019. ParILUT - a parallel threshold ILU for GPUs. 2019 IEEE
International Parallel and Distributed Processing Symposium. 231–241.

[19] E. Chow, H. Anzt, and J. Dongarra. 2015. Asynchronous iterative algorithm for computing incomplete factorizations
on GPUs. In Proceedings of the International Conference on High Performance Computing, Springer, 1–16.

[20] J. O. Coplien 1995. Curiously recurring template patterns. C++ Report.
[21] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith. 2016. GPU-STREAM v2.0: Benchmarking the achievable

memory bandwidth of many-core processors across diverse parallel programming models. In M. Taufer, B. Mohr,
and J. M. Kunkel, editors High Performance Computing, Springer. 489–507.

[22] G. Flegar, H. Anzt, T. Cojean, and E. S. Quintana-Ortí. 2021. Adaptive precision block-jacobi for high performance
preconditioning in the ginkgo linear algebra software. ACM Transaction on Mathematical Software, 47, 2 (2021), 1–12.

[23] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. 1994. Design patterns: elements of reusable object-oriented software.
(1st ed). Addison-Wesley Professional.

[24] F. Goebel, H. Anzt, T. Cojean, G. Flegar, and E. S. Quintana-Ortí. 2020. Multiprecision block-jacobi for iterative
triangular solves. In Proceedings of the European Conference on Parallel Processing, Springer, 546–560.

[25] H. Jagode, A. Danalis, H. Anzt, and J. Dongarra. 2019. Papi software-de&ned events for in-depth performance analysis.
The International Journal of High Performance Computing Applications 33, 6 (2019), 1113–1127.

[26] R. Johnson, E. Gamma, J. Vlissides, and R. Helm. 1995. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley.

[27] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. 1979. Basic linear algebra subprograms for fortran usage.
Transactions on Mathematical Software 5, 3 (1979), 308–323.

[28] Y. Saad. 2003. Iterative methods for sparse linear systems. (Society for Industrial and Applied Mathematics). (2nd ed).
[29] Y. M. Tsai, T. Cojean, and H. Anzt. 2020a. Sparse linear algebra on AMD and NVIDIA GPUs–the race is on. In

Proceedings of the International Conference on High Performance Computing, Springer, 309–327.
[30] Y. M. Tsai, T. Cojean, T. Ribizel, and H. Anzt. 2020b. Preparing ginkgo for amd gpus – a testimonial on porting cuda

code to hip. https://link.springer.com/chapter/10.1007/978-3-030-71593-9_9

Received May 2020; revised February 2021; accepted August 2021

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 2. Publication date: February 2022.

https://www.sciencedirect.com/science/article/abs/pii/S0898122120302583?via%3Dihub
https://link.springer.com/chapter/10.1007/978-3-030-71593-9_9

