
A Python Library for Matrix Algebra on GPU and
Multicore Architectures

1st Nance, Jr., Delario
Mathematics and Computer Science

Davidson College
Davidson, United States
denance@davidson.edu

2nd Tomov, Stanimire
Innovative Computing Laboratory
University of Tennessee, Knoxville

Knoxville, United States
tomov@icl.utk.edu

3rd Wong, Kwai
National Institute for Computational Sciences

University of Tennessee, Knoxville
Knoxville, United States

kwong@utk.edu

Abstract—Despite C/C++ and Python both being very popular
programming languages, each tool possesses unique advantages
and disadvantages. Notably, computers can run C/C++ code very
quickly, but C/C++ code has to first be compiled and the syntax
can be difficult for new programmers to understand. Python code,
however, sacrifices speed for an easy-to-understand syntax and
can be run interactively. Thankfully, it is possible to combine
the benefits of Python and C/C++. For example, NumPy is a
popular package of linear algebra operations written in C but
used with Python. Such a combination allows programmers to
not only utilize the fast speeds of C code but also Python’s
simple syntax. NumPy’s potential, however, is limited by its
inability to run on graphics processing units (GPUs), processors
specialized for handling computations. On the other hand, a
linear algebra library known as Matrix Algebra on GPU and
Multicore Architectures (MAGMA) is suited for running its code
on GPUs. Coupled with the fact that its code is written in
C/C++, MAGMA offers extremely fast computations. To combine
MAGMA’s speed with Python’s easy-to-understand syntax, we
researched how to use C++ code with Python. By researching
a tool known as Simplified Wrapper and Interface Generator
(SWIG), we created PyMAGMA - a library of chosen MAGMA
functions which can be imported in Python 3.9 for use.

Index Terms—BLAS, C++, MAGMA, Python, SWIG, wrapper

© 2022 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in
other works.

DOI: 10.1109/MASS56207.2022.00121

I. BACKGROUND

A. Basic Linear Algebra Subprograms

Basic Linear Algebra Subprograms (BLAS) is a package
of routines for performing standard linear algebra operations
involving vectors and matrices. Originally written in Fortran,
BLAS routines are separated into three levels. Level 1 BLAS
contains routines for vector-vector operations, such as the dot
product [5]. Contrarily, Level 2 BLAS has routines for matrix-
vector operations, including GEMV - the GEneral Matrix-
Vector product [3]. Level 3 BLAS contains routines for matrix-

National Science Foundation (NSF)

matrix operations (e.g., GEMM - the GEneral Matrix-Matrix
product) which, through block matrix multiplication, become
more memory efficient than Level 1 and 2 routines when ran
on “high-performance” computers [2].

B. Matrix Algebra on GPU and Multicore Architectures

Matrix Algebra on GPU and Multicore Architectures
(MAGMA) is a computational library of C++ functions for
performing linear algebra operations such as BLAS routines,
LU decompositions, linear system solvers, and eigenvalue
problem solvers [8]. MAGMA’s main advantage over other
linear algebra libraries, such as the Linear Algebra PACKage
(LAPACK) [1] and NumPy [4], is that it contains not only
functions which can run on central processing units (CPUs)
but also functions which can run on graphics processing units
(GPUs). Whereas CPUs are computer processors tasked with
most processing roles like handling input and output (I/O),
GPUs focus on performing computations, resulting in GPUs
running code much faster than CPUs. Because LAPACK
code is designed to run on CPUs but not GPUs, MAGMA
redesigns the LAPACK algorithms to perform efficiently on
GPUs. Thus, when using LAPACK on an Intel® Xeon® CPU
X5650 and MAGMA on a NVIDIA GeForce GTX 1650
SUPER to perform Single-precision GEMM (SGEMM) on
random square matrices with sizes not exceeding 10304 x
10304, MAGMA performs approximately ten times faster than
LAPACK (Fig. 1).

C. Simplified Wrapper and Interface Generator

Simplified Wrapper and Interface Generator (SWIG) is one
of many tools for interfacing C/C++ code with other program-
ming languages. For example, programmers can use SWIG to
create interfaces through which C/C++ functions can be used
in Python. Unlike other interface tools, however, SWIG can
generate interfaces in many high-level languages (e.g., Java,
Perl, Ruby, PHP), not only Python [9]. This unique feature
makes SWIG suited for programmers who might interface
C/C++ functions with multiple languages in the future.

For Python in particular, SWIG builds interfaces by gener-
ating three files: a wrapper file containing code for translating
C/C++ functions to the Python interpreter, a shared library
containing the compiled C/C++ code to interface as well as

Fig. 1. Performing single-precision matrix multiplication with LAPACK
(SGEMM), MAGMA (SGEMM), and NumPy (MatMul)

the compiled wrapper file’s code, and a Python file allowing
users to import the shared library into Python and use the
C/C++ functions inside.

II. SIMPLIFIED WRAPPER AND INTERFACE GENERATOR
WORKFLOW

To illustrate the process of using SWIG to generate a Python
interface for a library of C++ functions, we give high-level
descriptions of the main files involved when using SWIG on
a Linux machine (Fig. 2). For more details on interfacing C
functions and C++ classes, using SWIG on Windows, how
to use SWIG with different target languages, or how SWIG
works internally, please refer to the SWIG 4.0 Documentation
[7].

Header File (.h)

Interface File (.i) Import File (.py)

Wrapper File (wrap.cxx)

Compiled Wrapper File (.o)

Shared Library (.so) File of C++ code

Fig. 2. A flowchart of files created when building Python interfaces for C++
code with SWIG

A. Installation

To install SWIG on the Linux operating system, users
can type apt-get install swig in the command line

and then press Enter. To check if SWIG’s latest version
(4.0.2 as of July 2022 [9]) was installed, users should input
swig -version into the Linux command line.

B. Header File (.h)

To use SWIG after installing it, the user should decide what
C++ functions they wish to interface with Python. Once the
functions have been chosen, a header file must be created (Fig.
2). This file should contain the declarations (or definitions) of
all the C++ functions to interface with Python. In addition to
function declarations, the header file should include any macro
definitions or typedefs used by the C++ functions.

With the header file, a SWIG user can organize C++
functions which they want to interface into a single file. By
maintaining this file, the user can easily add functions to or
remove functions from the created Python interface by adding
or removing its declaration/definition in the header file and
then following Fig. 2 to recreate the interface’s shared library
(.so).

C. Interface File (.i)

After the SWIG user creates a header file (.h) for the C++
functions which they wish to interface with Python, the user
must create a special SWIG file known as the interface file
(Fig. 2). According to Sec. 5.7.2 of [7], the interface file should
contain a #include statement and SWIG’s %include di-
rective for the header file and the name of the Python interface
which the user wants to create. Optionally, however, SWIG
features known as “typemaps” can be added to customize how
SWIG’s wrapper code will convert between C++ and Python
data types. Typemaps are further discussed in Sections 12 and
13 of [7].

D. Import File (.py)

The Python file which we will refer to as the “import file”
contains Python’s import command, which will let users
import the interfaced C++ functions into Python once the
shared library file (.so) is created. Also, inside the import file is
a Python function for each C++ function whose declaration or
definition is in the header file. Each of these Python functions
will call the corresponding C++ function inside the shared
library, letting Python users use a desired C++ function by
simply calling its Python counterpart. To create the import
file with the Linux command line, the user should use the
SWIG command swig -c++ -python NAME.i, where
NAME.i represents the name of the interface file (.i).

E. Wrapper File (wrap.cxx)

SWIG generates the wrapper file after the user inputs into
the Linux command line the same SWIG command used to
create the import file (.py) (Fig. 2). Inside the wrapper file
is namesake wrapper code for translating the C++ functions,
which were declared in the header file (.h), to the Python
interpreter. When the user calls a Python function from the
import file (.py), the wrapper code converts the function inputs
to their equivalent C++ data types, calls the corresponding C++

function with the generated C++ inputs, converts the return
value into its equivalent Python data type, and then returns
the Python value. If a user wants to customize specific type
conversions in the wrapper file, the user should enforce the
corresponding typemaps in the interface file (.i). For more
detail on SWIG’s wrapper code, please refer to Sections 4.2
and 5.2 in [7].

F. Compiled Wrapper File (.o)

Before the SWIG-generated wrapper code can translate
C++ functions to the Python interpreter, the code must
first be compiled into object code (Fig. 2). To com-
pile the wrapper file (wrap.cxx), users can try running
the Linux command g++ -fPIC -c NAME_wrap.cxx
PATH_TO_PYTHON, where NAME_wrap.cxx represents the
name of the wrapper file, and PATH_TO_PYTHON represents
the path to the folder containing Python.h on the user’s Linux
machine. According to Section 6.4 in [7], the Linux command
used to compile the wrapper file differs across machines.

G. Shared Library (.so)

Assuming the user has a library containing object code
for the C++ functions declared in the header file (.h),
they can create the Python interface’s shared library with
the Linux command ld -shared OBJECT_LIBRARY
COMPILED_WRAPPER.o -o _MODULE.so. In this com-
mand, OBJECT_LIBRARY represents the path to the ex-
isting library of C++ object code to use with Python,
COMPILED_WRAPPER.o represents the name of the com-
piled wrapper file (.o), and MODULE is the name of the Python
interface specified in the interface file (.i). The shared library
file will be named _MODULE.so. After running the Python
command import MODULE (where MODULE is the interface
name defined in the interface file), the SWIG user can call the
interfaced C++ functions from Python.

III. GENERATING PYMAGMA

We now discuss the process of creating the first version of
PyMAGMA, our SWIG-generated library of C++ functions
from MAGMA to be used with Python 3.9. While the first
version of PyMAGMA could be successfully imported into
Python, we could not use it to call MAGMA functions
containing pointer arguments. Our work to solve this problem
is detailed in Section IV.

A. Header File (pymagma.h)

To eventually interface many MAGMA functions in Python,
we first tried interfacing twenty-one MAGMA functions re-
quired for performing many of MAGMA’s GPU compu-
tations (e.g., GEMM). Notably, our first header file con-
tained declarations of C++ functions for managing memory,
managing queues, sending data between CPUs and GPUs,
and managing the GPU in use (Listing 1). Additionally,
the header file contained declarations for Double-precision
GEMM (DGEMM) and Double-precision GEneral TRiangular
Factorization (DGETRF).

magma malloc / / Dynamica l ly a l l o c a t e s GPU memory
magma malloc cpu / / Dynamica l ly a l l o c a t e s CPU memory
magma free cpu / / F r e e s a l l o c a t e d CPU memory
m a g m a f r e e i n t e r n a l / / F r e e s a l l o c a t e d GPU memory
magma getdevice / / R e t u r n s t h e ID of t h e GPU i n use
magma se tdev ice / / S e t s t h e GPU t o use wi th MAGMA
m a g m a g e t m a t r i x i n t e r n a l / / Sends a m a t r i x from GPU t o CPU
m a g m a s e t m a t r i x i n t e r n a l / / Sends a m a t r i x from CPU t o GPU
magmablas dgemm / / P e r f o r m s DGEMM on GPU

Listing 1. Sample C++ functions declared in our first pymagma.h header file

B. Interface File (pymagma.i)

Our interface file (pymagma.i) for the first version of
PyMAGMA contained an include statement and include
directive for the pymagma.h header file and the name of the
Python library we wanted to create: PyMAGMA (Listing 2).
We did not enforce any SWIG typemaps.
/ / Naming t h e PyMAGMA l i b r a r y

%module pymagma
%{

i n c l u d e ”pymagma . h ”
%}
%i n c l u d e ”pymagma . h ”

Listing 2. The contents of our pymagma.i interface file

C. Import File (pymagma.py)

d e f magma pr in t env i ronmen t () :
r e t u r n pymagma . magma pr in t env i ronmen t ()

d e f magma malloc (p t r p t r , b y t e s) :
r e t u r n pymagma . magma malloc (p t r p t r , b y t e s)

Listing 3. Sample Python functions in the pymagma.py import file for calling
the interfaced C++ functions from MAGMA

After creating the pymagma.h header file and pymagma.i
interface file, we used SWIG to generate our pymagma.py
import file. With this file, we could try importing the first
version of PyMAGMA after building it. For each C++
function which we declared in the pymagma.h header file,
our import file contained a Python function for calling the
C++ function (Listing 3). To create the pymagma.py im-
port file and pymagma wrap.cxx wrapper file, we entered
the following SWIG command into the Linux terminal:
swig -DSWIG_NO_CPLUSPLUS_CAST -c++ -python
pymagma.i (Listing 4).
swig −DSWIG NO CPLUSPLUS CAST −c++ − py thon pymagma . i
g++ − fPIC −c pymagma wrap . cxx

− I / home / u s e r 1 / anaconda3 / i n c l u d e / py thon3 . 9
l d − s h a r e d / home / u s e r 1 / magma / l i b / libmagma . so

/ u s r / l i b / x86 64 − l i n u x −gnu / l i b o p e n b l a s . so pymagma wrap . o
−o pymagma . so

Listing 4. The Linux commands used to generate pymagma.py and py-
magma wrap.cxx, pymagma wrap.o, and pymagma.so

D. Wrapper File (pymagma wrap.cxx)

SWIGINTERN PyObjec t * wrap magma malloc (. . .) {
. . .

a rg2 = (s i z e t) (v a l 2) ;
r e s u l t = (magma in t t) magma malloc (arg1 , a rg2) ;
r e s u l t o b j = SWIG From int ((i n t) (r e s u l t)) ;
r e t u r n r e s u l t o b j ;

f a i l :
r e t u r n NULL;

}

Listing 5. Low-level wrapper code for MAGMA’s magma malloc() function
in the pymagma wrap.cxx wrapper file

As its name suggests, our pymagma wrap.cxx wrapper file
contained wrapper code for translating our chosen MAGMA
functions to Python’s interpreter (Listing 5). To create the py-
magma wrap.cxx wrapper file, we used the same SWIG com-
mand for creating our pymagma.py import file (Listing 4). Ini-
tially, we did not include -DSWIG_NO_CPLUSPLUS_CAST
in the Linux command; however, not doing so resulted in
an error when trying to compile the wrapper file (Listing
6). Specifically, SWIG’s use of C++ typecasting (i.e., static,
const, and reintepret) in the wrapper file was invalid, pre-
venting the wrapper file from being compiled. Thus, to force
SWIG to use C-style typecasts instead of C++ typecasts, an
Innovative Computing Laboratory researcher helped us include
-DSWIG_NO_CPLUSPLUS_CAST in the Linux command
used to generate the pymagma wrap.cxx wrapper file.
e r r o r : r e i n t e r p r e t c a s t from t y p e ’ c o n s t vo id ** ’ t o t y p e

’ vo id ** ’ c a s t s away q u a l i f i e r s

Listing 6. The error from trying to compile pymagma wrap.cxx without using
�DSWIG NO CPLUSPLUS CAST when creating the file

E. Compiled Wrapper File (.o)

To compile our pymagma wrap.cxx wrapper file into
the pymagma wrap.o object file, we used the Linux
command !g++ -fPIC -c pymagma_wrap.cxx
-I/home/user1/anaconda3/include/
python3.9 (Listing 4). In the command, the
-I/home/.../python3.9 path is the path to the
Python.h file on our Linux machine.

F. Shared Library (pymagma.so)

In the first version of PyMAGMA, our pymagma.so shared
library contained object code from the pymagma wrap.o file
and libmagma.so file - a shared library of object code for
various C++ functions in MAGMA. To create pymagma.so,
we successfully ran the Linux command ld -shared
/home/user1/magma/lib/libmagma.so
pymagma_wrap.o -o _pymagma.so (Listing 4).

G. Testing

>>> i m p o r t pymagma as pmg
>>> pmg . magma in i t () # 0 r e p r e s e n t s s u c c e s s
0
>>> pmg . m a g m a f i n a l i z e () # 0 r e p r e s e n t s s u c c e s s
0

Listing 7. Successfully calling magma init() and magma finalize() with
PyMAGMA

By using SWIG to generate the pymagma wrap.cxx,
pymagma.py, and pymagma.so files, we successfully
built our first version of the PyMAGMA library. To test the
functionality of that PyMAGMA version, we tried calling three
C++ functions which we declared in the pymagma.h header
file: magma_init(), magma_print_environment(),
and magma_finalize(). We successfully called
magma_init() and magma_finalize() through
PyMAGMA in a Python environment on the Linux terminal
(Listing 7), but magma_print_environment() was not
completely functional with PyMAGMA. Specifically, when

trying to call magma_print_environment(), correct
output was displayed before the warning *** stack smashing
detected *** appeared. We believed that data in our local
machine’s stack memory was somehow getting incorrectly
overwritten.

To resolve the issue, we tried creating
PyMAGMA on Google Colab and calling
magma_print_environment() with Google Colab’s
command line. Correct output was displayed with no
warnings (Listing 8), possibly due to Google Colab using
SWIG 3.0.12. Specifically, whereas SWIG 4.0.1 was used
to create PyMAGMA locally, SWIG 3.0.12 was used to
create PyMAGMA on Google Colab. Possibly, SWIG’s newer
4.0.1 version contains code for triggering “stack smashing”
warnings while the older 3.0.12 version does not. Nevertheless,
we desired to call magma_print_environment()
locally without stack smashing since SWIG 4.0.1 is newer
than version 3.0.12. After relinking the object files in the
libmagma.so library and locally creating PyMAGMA again
with the same Linux commands (Listing 4), we could
run magma_print_environment() without any stack
smashing warnings (Listing 8).
>>> i m p o r t pymagma as pmg

. . .
>>> pmg . magma pr in t env i ronmen t ()
% MAGMA 2 . 6 . 0 svn 32− b i t magma int t , 64− b i t p o i n t e r .
Compiled wi th CUDA s u p p o r t f o r 3 . 5
% CUDA r u n t i m e 11030 , d r i v e r 11040 . OpenMP t h r e a d s 2 4 .
% d e v i c e 0 : NVIDIA GeForce GTX 1650 SUPER , 1740 .0 MHz c lock ,

3910 .6 MiB memory , c a p a b i l i t y 7 . 5
% Tue Aug 2 1 4 : 3 3 : 2 0 2022

Listing 8. Successfully calling magma print environment() with PyMAGMA

IV. EXTENDING PYMAGMA

>>> i m p o r t pymagma
. . .

>>> a d d r e s s = 0
>>> b y t e s = 4
>>>
>>> pymagma . magma malloc (a d d r e s s , b y t e s)

. . .
TypeEr ro r : i n method ’ magma malloc ’ , a rgument 1 o f t y p e

’ magma ptr * ’

Listing 9. Attempting to call PyMAGMA’s magma malloc() function, which
expects a pointer as its first argument, even though Python users cannot
normally create pointers

Python users do not normally have the ability to create
pointer types, but many MAGMA functions in PyMAGMA
require pointer arguments (Listing 9). Therefore, we wanted
to give PyMAGMA users the ability to somehow generate
pointers in Python. To combat this issue, we created and added
to the pymagma.h header file C++ functions which act as
new versions of some of the original functions in PyMAGMA
(Listing 10). Other than not requiring arguments of pointer
types, many of these new functions operate nearly identically
to their original MAGMA counterparts.

To test PyMAGMA’s accuracy of MAGMA’s linear algebra
routines, we desired the ability to create C++ arrays in Python
with values chosen by us, pass those arrays into linear algebra
routines, and then print the resulting array to see if its contents

are correct. However, Section 5.4.5 of [7] shows that Python
users cannot normally index or print interfaced C++ arrays
like Python lists. Therefore, to put specific values into C++
arrays and then print them, we created PyMAGMA functions
for managing C++ arrays with Python. Furthermore, to test
PyMAGMA’s speed, we created functions for generating ran-
dom C++ arrays with Python.

In this section, we will discuss one of the functions which
we added to PyMAGMA to generate pointers in Python
(Listing 10) and four of the functions which we created to
manage C++ arrays with Python (Listings 11 - Listing 14).

A. pymagma malloc()

magma int t
magma malloc (magma ptr * p t r p t r , s i z e t b y t e s) ;

vo id *
pymagma malloc (s i z e t b y t e s)
{

vo id * a ;
magma malloc(&a , b y t e s) ;
r e t u r n a ;

}

Listing 10. The definition for the pymagma malloc() function to let Py-
MAGMA users dynamically allocate GPU memory

The magma malloc() function in MAGMA is designed to
dynamically allocate memory on the current GPU but requires
a ptr ptr argument of type magma ptr* (acts as the void**
type in C++). To let PyMAGMA users dynamically allocate
GPU memory, we created a pymagma malloc() function with
a similar purpose to the MAGMA version but returns a pointer
to the Python user and does not require the ptr ptr argu-
ment (Listing 10). Specifically, pymagma malloc() declares
a pointer of type void*, calls magma malloc() function to
allocate a block of GPU memory starting at the address stored
in the created void pointer, and finally returns the pointer.

B. pymagma sarray cpu()

f l o a t *
pymagma sarray cpu (magma int t h e i g h t , magma in t t w id th)
{

vo id * v o i d a r r a y = pymagma malloc cpu (
s i z e o f (f l o a t) * h e i g h t * wid th) ;

f l o a t * s a r r a y = (f l o a t *) v o i d a r r a y ;
r e t u r n s a r r a y ;

}

Listing 11. The definition for the pymagma sarray cpu() function to let
PyMAGMA users create arrays of C++ floats in CPU memory

To test PyMAGMA’s accuracy, we desired a way to create
matrices of C++ floats on CPUs. We achieved this by creating
the pymagma sarray cpu() function (Listing 11). After a
Python user passes height and width arguments into the func-
tion, pymagma sarray cpu() calls our pymagma malloc cpu()
function to dynamically allocate a 1D block of CPU memory
for height ⇤ width C++ floats, and then returns the base
address of that block as a float* pointer. Despite the allocated
block of CPU memory being stored linearly, PyMAGMA users
can manipulate the float values stored in the block as if the
block was a 2D matrix (Listing 12).

C. pymagma sset cpu()

vo id
pymagma sset cpu (f l o a t * A,

magma int t row , magma int t co l ,
magma in t t lda , f l o a t v a l u e)

{
A[row + l d a * c o l] = v a l u e ;

}

Listing 12. The definition for the pymagma sset cpu() function to let
PyMAGMA users change values in arrays of C++ floats in CPU memory

To check if PyMAGMA gives accurate results for MAGMA
routines, we wanted a way to test MAGMA routines with
specific matrices chosen by us. Therefore, we created the
pymagma sset cpu() function (Listing 12) for editing the
values in arrays of C++ floats on CPUs. Specifically, after
an user passes A, row, col, lda, and value arguments into
the function, the function sets the float value in the position
at row + lda ⇤ col in the 1D memory block A returned
by pymagma sarray cpu(). From a high-level, 2D matrix
perspective, pymagma sset cpu() simply updates the value at
row row and column col in the given matrix A.

D. pymagma sprint cpu()

vo id
pymagma spr in t cpu (magma int t m, magma int t n ,

c o n s t f l o a t * A, magma int t l d a)
{

magma spr in t (m, n , A, l d a) ;
}

Listing 13. The definition for the pymagma sprint cpu() function to let
PyMAGMA users print arrays of C++ floats in CPU memory

To verify PyMAGMA’s accuracy of MAGMA routines
like SGEMM, we desired a way to print matrices of C++
floats on CPUs. We achieved this by creating the py-
magma sprint cpu() function (Listing 13). After an user
passes m, n, A, and lda arguments into the function,
pymagma sprint cpu() calls magma sprint() - an existing
MAGMA function which we also added to PyMAGMA - to
print the first m rows and n columns of a submatrix with
width lda from the 2D representation of the memory block A

generated with pymagma sarray cpu().

E. pymagma slarnv()

vo id
s l a r n v (i n t * IDIST , i n t * ISEED , i n t * N, f l o a t * X) ;

f l o a t *
pymagma slarnv (i n t d i s t , i n t h e i g h t , i n t wid th)
{

i n t n = h e i g h t * wid th ;
i n t i s e e d [4] = {0 , 0 , 0 , 1} ;
f l o a t * r a n d s a r r a y = pymagma sarray cpu (h e i g h t , w id th) ;
s l a r n v (& d i s t , i s e e d , &n , r a n d s a r r a y) ;
r e t u r n r a n d s a r r a y ;

}

Listing 14. The definition for the pymagma slarnv() function to let Py-
MAGMA users generate random arrays of C++ floats in CPU memory

To test PyMAGMA’s speed at performing MAGMA routines
(e.g., GEMM), we desired a way to quickly generate large
arrays of random C++ floats on CPUs without manually
setting values with pymagma sset cpu(). To do so, we created
the pymagma slarnv() function (Listing 14). After an user

passes in dist, height, and width arguments into the function,
pymagma slarnv() will first create a linear block of memory
representing an empty height x width matrix, Next, the
function calls slarnv () - an LAPACK function which we
added to PyMAGMA. At each position in the generated array,
slarnv () will place a C++ float from a random distribution,
depending on the value of dist. For example, if dist equals
2, then slarnv () will use random floats from the normal
distribution (�1, 1).

V. TESTING PYMAGMA

Due to Level 3 BLAS routines being very memory-efficient
for “high-performance” computations [2], we evaluated the
current state of PyMAGMA by testing the library’s accuracy
and performance of SGEMM.

A. Accuracy

To test PyMAGMA’s accuracy of SGEMM, we first called
pymagma sarray cpu() to allocate CPU memory for three
C++ arrays of floats: A, B, and C. Arrays A, B, and C

each respectively represented a 5 x 3 matrix, 3 x 5 matrix,
and 5 x 5 matrix. Next, we used pymagma sset cpu() to
set float values, chosen by us, at every position in the three
arrays. After copying the arrays to GPU memory with a
NVIDIA GeForce GTX 1650 SUPER, we obtained the result
C = �AB + C by passing the three GPU arrays into
pymagmablas sgemm() - a function which we created for call-
ing MAGMA’s magmablas sgemm() function. By calling py-
magma sprint cpu, we saw that the resulting array contained
the values which we expected, showing that PyMAGMA
accurately performed SGEMM.

B. Performance

Fig. 3. Performing single-precision matrix multiplication with LAPACK
(SGEMM), MAGMA (SGEMM), NumPy (MatMul), PyMAGMA (SGEMM),
and PyTorch (MatMul)

To test PyMAGMA’s performance of SGEMM, we used
pymagma slarnv() to generate three 1088 x 1088 square
matrices A, B, and C with random floats from the normal
distribution (�1, 1). After copying each of the matrices to
a NVIDIA GeForce GTX 1650 SUPER, we calculated the

rate (gigaflop/s) at which PyMAGMA performed the com-
putation C = �AB + C with SGEMM. We then compared
PyMAGMA’s performance to that of MAGMA on the same
GPU, as well as LAPACK’s performance of SGEMM and
NumPy’s single-precision performance of MatMul on a Intel®
Xeon® CPU X5650. Also, we obtained the single-precision,
GPU performance of MatMul with PyTorch, a popular Python
machine learning framework [6]. We repeated the performance
tests for nine increasing matrix sizes.

After the ten tests, we saw that PyMAGMA’s performance
was almost identical to that of MAGMA (Fig. 3). Further-
more, like MAGMA, PyMAGMA performed approximately
ten times faster than LAPACK and NumPy. Concerning Py-
Torch, we took its average performance on the NVIDIA GPU
from the ten tests because its performance drastically increased
and decreased across the tests. While PyTorch’s average per-
formance exceeded LAPACK’s and NumPy’s, (Py)MAGMA
eventually outperformed PyTorch (Fig. 3).

VI. RESULTS AND FUTURE DIRECTION

By researching how to use the Simplified Wrapper and
Interface Generator (SWIG) to interface C++ functions with
Python, we successfully created PyMAGMA: a Python library
for using chosen MAGMA functions with Python. Further-
more, we see that PyMAGMA obtains similar SGEMM per-
formances to MAGMA for square matrices with sizes not
exceeding 10304 x 10304 (Fig. 3). Currently, PyMAGMA
contains thirty-two C++ functions from MAGMA as well as
two functions from LAPACK and thirty functions which we
created when extending PyMAGMA. By successfully defining
and using added functions in PyMAGMA, we see that we can
easily add functions to the PyMAGMA library by adding their
declaration or definition to the pymagma.h header file. To use
PyMAGMA functions containing pointer arguments without
creating new functions, we plan to research how to use SWIG
typemaps with Python.

ACKNOWLEDGMENTS

Nance thanks God for granting him this opportunity. This
project was sponsored by the National Science Foundation
through the Research Experience for Undergraduates (REU)
award no. 2020534 with additional support from the National
Institute of Computational Sciences and Innovative Computing
Laboratory at the University of Tennessee, Knoxville. Nance
also thanks Dr. Kwai Wong, Dr. Stanimire Tomov, Julian Hal-
loy, and his fellow 2022 REU participants for their assistance.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D.
Sorensen, LAPACK Users’ Guide (3rd ed.), Society for Industrial and
Applied Mathematics, 1999, ISBN 0-89871-447-8 (paperback)

[2] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of
Level 3 Basic Linear Algebra Subprograms, ACM Trans. Math. Soft.,
16 (1990), pp. 1—17.

[3] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An
extended set of FORTRAN Basic Linear Algebra Subprograms, ACM
Trans. Math. Soft., 14 (1988), pp. 1—17.

[4] Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming
with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-
2649-2.

[5] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic Linear
Algebra Subprograms for FORTRAN usage, ACM Trans. Math. Soft.,
5 (1979), pp. 308—323. Pages 232-240, ISSN 0167-8191.

[6] The PyTorch website. [Online]. Available: https://pytorch.org/.
[7] The SWIG 4.0 Documentation. [Online]. Available:

https://www.swig.org/Doc4.0/index.html.
[8] Stanimire Tomov, Jack Dongarra, Marc Baboulin, “Towards dense

linear algebra for hybrid GPU accelerated manycore systems”, Parallel
Computing, Volume 36, Issues 5–6, 2010, Pages 232-240, ISSN 0167-
8191.

[9] (2019, Apr.) The SWIG website. [Online]. Available: https://swig.org/.

