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Abstract—In the context of parallel applications, communica-
tion is a critical part of the overall computation and a potential
bottleneck. The traditional approach to tackle communication
challenges consists of redesigning algorithms so that the complex-
ity or the communication volume is reduced. However, there are
algorithms like the Fast Fourier Transform (FFT) where reducing
the volume of communication is very challenging but holds
promise because it can lead to a large benefit in terms of time-to-
completion. In this technical report, we design mixed-precision
and approximate 3D FFTs that trade-off speed for accuracy. We
target hybrid architectures with GPUs. In particular, we revisit
the implementation of the GPU-aware MPI all-to-all routine at
the core of 3D FFTs by using advanced MPI features, such
as One-Sided Communication, and integrate data compression
during communication to reduce the volume of data exchanged.
Since some compression techniques are ’lossy’ in the sense
that they involve a loss of accuracy, we study the impact of
lossy compression in heFFTe, the state-of-the-art FFT library
for large scale 3D FFTs on hybrid architectures with GPUs.
Consequently, we design an approximate 3D FFT algorithm that
trades off user-controlled accuracy for speed. We show that we
speedup the 3D FFTs proportionally to the compression rate.
In terms of accuracy, comparing our approach with a reduced
precision execution, where both the data and the computation
are in reduced precision, we show that when the volume of
communication is compressed to the size of the reduced precision
data, the approximate FFT algorithm is as fast as the one in
reduced precision while the accuracy is one order of magnitude
better.

Index Terms—MPI, All-to-all, Lossy compression, Approxi-
mate FFTs, Mixed-precision algorithms, ECP, heFFTe

I. INTRODUCTION

The Fast Fourier Transform (FFT) is a performance critical
algorithm used in many applications such as PDE simulations
and solvers, fast convolution, molecular dynamics, and many
others. By essence, the FFT is a collection of orthogonal
transformations that makes this operation numerically stable.
With large 3D problems, the parallelization of the FFT is
a necessity. The classical way for computing a 3D FFT is
to perform a succession of 1D FFTs in each dimension,
interleaved with transpose of the data across the dimension.
In the general case, the original data may be placed in a
domain decomposition fashion across the MPI processes, as
illustrated on Figure 1, Left. Thus, in this case, prior to the
computation in the first direction, a collective communication
phase, called reshape, is required in order to have the data

for complete 1D vectors redistributed to individual processes,
as illustrated in the second (from Left) domain redistribution.
This step is repeated for all the remaining directions. Finally,
one last redistribution can place the data back into their
original location. In the case where the original and final data
are placed differently, the number of reshapes can be reduced.
However, we consider in the following the general case of four
reshapes, as depicted in Figure 1. Each reshape is a collective
MPI communication operation where a subset of the processes
communicates with another subset. This general case suits well
the use of the MPI Alltoallv routine, a generalized all-to-all.

The inherent sequentiality of the algorithm makes its per-
formance challenging to improve. While most efforts on
improving the FFT performance target the computation part
of the algorithm, very few consider the communication aspect
despite its critical importance. For example, in [1], authors
ported the entire computation on the GPUs to obtain a 42⇥
speedup (vs. using multicore CPUs). The problem is that
between each computation of the 1-D FFTs there is an all-
to-all communication that cannot be accelerated in a similar
way, and thus the communication is bound to become a
growing bottleneck. Indeed, the same authors report that with
a large number of nodes, more than 95% of the runtime is
spent in communication, and as a result any effort to further
optimize the computation part will have a minimal impact on
the overall time-to-solution of the algorithm. Moreover, since
the problem can hardly be balanced in all dimensions, the
amount of data to transfer can vary from one destination to
another, and as a result improving the overall performance is
even more challenging [1]. This is a fundamental problem and
can be observed in many FFT libraries, e.g., refer to [2] for a
compilation of the FFT libraries available in the literature, as
well as their performance benchmarking and comparison.

A wide-spread use of the FFT is as a preconditioner, in
which case the accuracy of the method could be reduced
without impacting the overall accuracy of the application. One
example of such an approach is the use of mixed-precision
iterative refinement methods to accelerate dense linear systems
solvers [3]. There the most expensive part of the solve is the
factorization of a given matrix A. Therefore, computing the
factorization of A in a lower precision, can give a significant
speedup because modern hardware compute faster on lower
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Fig. 1. Data movements in the x, y and z direction of the 3D FFT algorithm using MPI Alltoallv, on a 3D grid of 4⇥ 3⇥ 3 processors.

Arithmetic Size Range Unit round-off Peak Tflop/s
(bits) x

min,s x

min

x

max

V100 MI100

BFloat16 16 9.2⇥ 10�41 1.2⇥ 10�38 3.4⇥ 1038 3.9⇥ 10�3 N/A 92
FP16 16 6.0⇥ 10�8 6.1⇥ 10�5 6.6⇥ 104 4.9⇥ 10�4 125 184
FP32 32 1.4⇥ 10�45 1.2⇥ 10�38 3.4⇥ 1038 6.0⇥ 10�8 15.7 23
FP64 64 4.9⇥ 10�324 2.2⇥ 10�308 1.8⇥ 10308 1.1⇥ 10�16 7.8 11.5

TABLE I
PARAMETERS FOR THE IEEE FP16, FP32, AND FP64 ARITHMETIC PRECISION, AND THEIR RESPECTIVE PEAK PERFORMANCES ON NVIDIA V100 AND

AMD MI100 GPUS.

number of bits, as highlighted in Table I. Then, a process of
refinement is needed to obtain the originally desired accuracy.
When applicable, the use of mixed-precision solvers leads to
significant speedup [3]. In the context of FFT, using mixed-
precision in the local 1D FFT computations would only give
a limited overall benefit, as the local FFTs are already highly
optimized using GPUs, and therefore already take only a
few percents of the overall time. Thus, other approaches are
needed, including the one pursued in this technical report and
work to develop fast mixed-precision approximate FFTs by
reducing the FFT’s communication costs through accelerated
GPU-aware MPI integrated with on-the-fly data compression
and decompression.

Our contribution in this work is three-fold. First, we de-
signed a mixed-precision approximate FFT algorithm (de-
scribed in Section III) that reduces the volume of communica-
tion through lossy compression while controlling the accuracy.
Second, we apply compression techniques on the data using
GPUs before each communication, reducing the cost of com-
munication, and thus the overall execution time in Section IV.
Finally, we designed and implemented a very efficient all-
to-all MPI algorithm for GPU-direct communications using
one-sided communication scheme in Section V. All these
developments were tested through the open source state-of-the-
art heFFTe library for 3D FFTs [4], extending its fuctionality
to provide fast mixed-precision approximate 3D FFTs that
can control the computational accuracy through user-specified
error tolerance. Experimental setup and results are given in
Section VI, and conclusions in Section VII.

II. RELATED WORK

There has been a great deal of work related to different
components of the approach that we pursue in this technical
report. For example, efforts on development and optimizations
of multidimensional FFTs have been put in heFFTe [1],
leading to a very efficient implementation of the 3-D FFT.
Data compression has also been intensively studied mainly
driven by the power of GPUs. Libraries like ZFP [5] and
SZ and their use in many applications [6] provide efficient
implementations of lossy and/or lossless compression on both
CPU and/or GPU. However, the use of data compression to
minimize FFT communications has not yet been studied.

Similarly, mixed-precision methods have been intensively
studied in various areas [7]. One relevant and interesting idea
for the particular case of enabling FP16 acceleration of FFTs
is to dynamically split a FP32 vector into two scaled FP16
vectors, apply the FFT transformations on the two vectors
using GPU Tensor Cores acceleration, and combine back the
results into an FP32 vector [8].

As a major user of large all-to-all communication, several
studies investigate minimizing the communication impact on
the FFT. In general they propose to change the collective
algorithm to order the communications in a way to alleviate
the network congestion, or to take advantage of specific
network topologies, or specific network or NIC capabilities.
One solution [9] leverages on off-loadable network inter-
face, and designs a non-blocking all-to-all by enabling lists
of operations over the interface. Leveraging on high-speed
network resources like NVLink to overlap communication



latency has been studied by [10]. Similarly, a recent study [11]
has optimized all-to-all communication by offloading certain
operations onto specialized NIC, such as SmartNIC. Besides
relying on special hardware capabilities, study [12] proposed
to allocate shared buffer for send and receive, and use Morton
order to guide memory copies and thus maximize the memory
bandwidth. More general studies investigate taking advantage
of architecture awareness to achieve better communication
performance. Study [13] proposed kernel-assisted mechanisms
for multi-core architectures, to improve collective operations.
A parallel MPI software package [14] presents an imple-
mentation of the truncated Tucker decomposition, aiming to
compressing distributed data. When considering architecture
of dense GPU clusters, a GPU-based on-the-fly compression
technique [15] integrated in MVAPICH2 library is intro-
duced. To accelerate MPI communication, an approximate-
communication scheme [16] has been proposed. [17] presents
a study of several compression algorithms that can be used
for run-time message compression, based on the datatype
used by applications. Library [18] extends state-of-the-art
MPI libraries with non-blocking (asynchronous) operations
and low-precision data representations features. Additionally,
improving MPI reduction with the combination of OpenMP
and data compression is proposed in [19].

There are many multidimensional FFT libraries for
distributed-memory systems, including AccFFT [20],
FFTE [21], fftMPI [22], heFFTe [1], 2Decomp&FFT [23],
nb3DFFT [24], FFTW [25], SWFFT [26], and
FFTADVMPI [27]. We choose to show the developments
through heFFTe because heFFTe is open-source state-of-the-
art library when compared for performance and accuracy to
the other FFT libraries, and is the only one providing support
across the different GPUs from NVIDIA, AMD, and Intel [4].

III. AN APPROXIMATE FFT WITH LOSSY COMPRESSION

We consider the approximate 3D FFT given in Algorithm 1.
Note that if the compression is lossy, we propose to control the
error within an error tolerance e

tol

, resulting in an approximate
FFT algorithm with controlled error.

Algorithm 1 Approximate 3D FFT with lossy compression.
Input : 3D data D

x,y,z

in FP64 precision and error

tolerance e
tol

Output: Approximate 3D FFT of D
x,y,z

stored in FP64

within error tolerance e
tol

1: for i := x, y, z do
2: Custom Alltoall (Algorithm 3) combined with data

D
x,y,z

compression/decompression within an error tol-
erance of e

tol

in direction i
3: Batched 1D FFTs for direction i in FP64
4: end for

Approximate FFTs have a wide use in applications that must
guarantee a solution within a certain error. For example, FFTs
are used in spectral methods to solve PDEs [28]. The general
steps to solve a PDE with these methods, e.g., �ru+ u = f

in ⌦ = [0..L], where f is a smooth function and periodic on
the boundary, is given in Algorithm 2. The main computational
kernels that need acceleration are the forward FFT (step 2) and
the inverse FFT (step 4), which can be done in O(N logN)
time using FFTs, vs. for example O(N3) if a dense direct
solver is applied. See also [29] for a comparison of FFT-based
solvers to other best known methods like FMM and multigrid.

Algorithm 2 Solve �ru+u = f in ⌦ = [0..2⇡] using FFTs.
Input : function f , smooth and periodic on the boundary

Output: solution u
1. Sample f [i] = f(x

i

) at N grid points x
i

= i⇤h, h = 2⇡/N
and error tolerance e

tol

2. Compute g = FFT (f, e
tol

)
3. Scale g point-wise, g[i] = g(i)/(1 + (ih)2)
4. Compute u = IFFT( g, e

tol

)

To show the need for the approximate (including mixed-
precision) FFTs that we propose, and to simplify their error
analysis, we generalize the solver in Algorithm 2 as

Ax = b

and note that there are various errors associated in this
approach. Most notably, there are the discretization error going
from the continuous PDE problem to a discrete problem,
A

h

x
h

= b
h

, using FFTs of size N (h = O(1/N)), and round-
off errors associated with solving the discrete problem in some
finite precision arithmetic. These types of approximation errors
can be subject of detailed study and evaluation, e.g., cf. [30].
Most notably, when multiple sources of errors are involved,
the total approximation error e

a

can be represented as:

e
a

= x� x̃
h

= (x� x
h

) + (x
h

� x̃
h

) = e
d

+ e
r

.

Thus, the error e
a

(e.g., in certain computable quantities or
directly in some norm || · || of interest) can be bounded by the
maximum of the discretization error (e

d

) and the round-off
error (e

r

):
||e

a

||  2 max(||e
d

||, ||e
r

||).

In other words, if a user requires a solver with a guaranteed
error below e

tol

, the ke
d

k and ke
r

k errors must be balanced,
i.e., to be about the same, and made to be the largest possible
that are still below the target e

tol

, otherwise there will be
inefficiencies and thus missed opportunities for acceleration.
For example, if e

tol

= 10�5, ke
d

k must be made about that,
e.g., through control of the number of discretization points
N , and ke

r

k as well, e.g., through control of the accuracy in
the FFT computations. Obviously, in this example, the use of
FP32 arithmetic would have been sufficient in order to solve
with enough accuracy, while being about 2⇥ faster than an
FP64 solver achieving the same overall accuracy.



The e
d

error for spectral methods can be shown to be of
order up to hN , leading to fastest possible so-called ”expo-
nential convergence”, when the solution is smooth enough. In
general, the FFT user must know some bounds for the error
e
d

and pass that value as the e
tol

for the approximate FFT.
If the user does not know it, we can propose error control
based on a posteriori error analysis, similar to techniques used
in FEM methods [31], using the approximate solutions on
different grids to deduce an error estimate (or the value of
P that makes the rate of computed convergence hP ). Further
in this work, we assume that the user knows e

d

and passes it as
e
tol

, and therefore will not be concerned any longer with the
discretization error. This is a common assumption that can be
used to accelerate many applications. Passing user-controlled
error tolerance is enabled in many numerical libraries and
is part of their APIs, e.g., most notably, libraries for sparse
iterative solvers.

Related to controlling the error due to compression and
round-off, FFT is an orthogonal transformation, so truncating
the input will result in about the same error in the output,
e.g., casting to FP32 removes about eight decimal digits of
accuracy from the input, resulting in losing eight decimal digits
from the output. There is also some accuracy lost due to round-
off arithmetic, e.g.:

||e
r

||
||x̃

h

||  (A)
||b̃

h

� Ã
h

x̃
h

||
b̃
h

,

where (A) is the condition number of A w.r.t. the norm || · ||.
Since A is related to FFT here, we consider (A) to be one,
illustrating the above observation that the relative error in the
output is bounded by the error in the input, since the typical
magnification factor (A) is one. Round-off errors are still
present though from the simple operations in the FFTs (sin,
cos, and dot-product computations). They can be bounded by
1.06(2N)2/3✏ for DFT and 1.06

P
j

(2p
j

)2/3✏ for FFT, where
p
j

are the prime factors of N and ✏ is the working machine
precision [32].

IV. COMPRESSING THE COMMUNICATION

In order to reduce the cost of communication in the FFT
algorithm, we propose compressing the data that will be
exchanged. The choice of compression technique is critical as
it will determine the performance of the collective exchange
as well as the accuracy of the resulting FFT algorithm.

A. Compression techniques
We consider different types of compression techniques, from

lossy to lossless. On one extreme is truncation, a casting-like
operation that is highly efficient due to the hardware support
provided by modern architectures. The truncation corresponds
to a change in the number of bits used for its representation.
For example, let us consider a floating-point value with a 64-
bits representation, i.e., double-precision, namely FP64. When
its representation is truncated so that only 32-bits, i.e., single-
precision, are used, commonly referred to as casting from
FP64 to FP32, we obtain a compression rate of two. The
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Fig. 2. Evolution of the accuracy of the FFT algorithm with respect to the
number of bits in the mantissa.

larger the number of trimmed bits, the greater the compression
rate, but also the larger the potential loss because a larger trun-
cation leads to a smaller range of floating-point representation,
as presented in Table I. Thus, at the end, the choice depends
on the data and algorithmic properties of the target application,
to balance between improved communication performance
provided by a stronger compression, and the desired accuracy.

At the other extreme are techniques that rely on more
sophisticated algorithms to offer more flexibility and a variable
accuracy that allows both lossy and lossless compression [5],
[6], [33]–[35]. However, the absence of hardware support and
a much higher computational complexity compared with trun-
cation leads to lower efficiency. Fortunately, these techniques
offer other advantages. For example, the library ZFP [5], which
provides lossless and lossy compression, offers the possibility
to control either the accuracy, or the compression rate, with
both CPU and/or GPU support. But, a good compression
rate requires special properties for the data to compress. By
properties the authors refer to spatial correlation as to the
relation between groups of values. Therefore, if this condition
is satisfied, it is possible to compress at a fixed compression
rate, say a compression rate of two, and then to decompress
with a maximum error that is lower compared with a trun-
cation of the same compression rate (such as from FP64 to
FP32). Otherwise, in the case of random data, sophisticated
techniques like ZFP would behave similar to as truncation
operations.

B. Impact of truncating the mantissa on the FFT accuracy
In the following, we study the evolution of the accuracy of

the FFT when the mantissa is trimmed. This is a compression
where the error is controlled by the number of bits trimmed.
The accuracy of the FFT is given by the norm of the difference
between the input problem and the inverse of the FFT, i.e.,
kx� IFFT (FFT (x)) k.

We consider as reference 64-bit FP numbers and trim them
down to 32 bits, which is the FP64 trimmed down to FP32
representation. Figure 2 shows the impact of reducing the
number of bits as well as the theoretical acceleration obtained
by reducing the volume of communication. We first note
that the accuracy for 64 bits is around the double-precision



machine precision (⇡ 1e � 16), and, for 32 bits, around the
single-precision machine precision (⇡ 1e � 8), as expected.
We observe that the more the mantissa is trimmed the closer
the accuracy is to the 32 bits accuracy.

Now, if we do the computation in double-precision but
the communication in single-precision as in the proposed
approximate FFT Algorithms 1, referred to as MP 64/32 in the
figure, the accuracy is about an order of magnitude better than
doing everything with 32 bits. This means that, compared with
64 bits, the overall execution will be accelerated twice while,
at the same time, having a better accuracy than executing
everything at the lower 32-bits precision.

In the following, we focus on the truncation operations
as this allows us to predict the gain (due to a constant
compression ratio) as well as provides a lower bound on
accuracy. Unless explicitly mentioned, we consider in the
following two truncation operations: double-precision (FP64)
to single-precision (FP32), and double-precision (FP64) to
half-precision (FP16), which gives us a compression rate of
two and four, respectively. Therefore, applying it in the context
of FFT, we expect a compression rate of two to give a speedup
very close to two when communication represent most of the
execution. Thus, our performance model for compression is
that the overall performance increases at the rate of the data
compression. We confirm in the experimental results section
that performance indeed gets very close to these theoretically
modeled results.

V. COMPRESSED ALL-TO-ALL USING ONE-SIDED
SEMANTICS

An all-to-all operation is a collective operation that ex-
changes the same amount of data between each pair of in-
volved processes, and where each process has different data to
send to every other processes. A classic implementation of this
collective communication pattern is the pairwise algorithm,
also known as the ring algorithm. Formally, for p processes
involved, the completion of the all-to-all operation takes p
steps, including the step for the local data transmission, i.e.,
a process sending data to itself. At step j, each process
P
i

, i 2 {1, . . . , p}, sends data to process (P
i

+ j)%p.
Consequently, at each step, each process sends and receives
one message of same size to and from different processes.
The main interest of this algorithm is to ensure a constant,
bi-directional traffic for each process, by saturating network
resources between processes.

As an extension to the classical algorithm for platforms with
hierarchical resources where multiple processes are placed on
the same node, such as multi-GPU nodes, or with specialized
network topologies, such as fat tree or dragonfly, it is possible
to create a permutation of ranks, such that the communications
with ranks distance permute[j] will minimize network con-
gestion and potentially maximize the network utilization. This
means that no two nodes (or the processes placed on them) will
send or expect to receive data from the same remote node (or
processes placed on it), such that all available network in each
direction is, at any moment, only used between two nodes.

From an implementation perspective, the classical way to
implementing this algorithm is to use two-sided communi-
cation. This means a handshake happens for each point-
to-point communication, imposing an unnecessary overhead
for such a synchronous algorithm. It is true that when the
messages are large enough the cost of this handshake will be
insignificant, but our goal in this work is to create a pipeline
between the compression and the data transmission, allowing
us to, simultaneously, take advantage of the compute power
of the processor to compress the next fragment while the
previous fragment is moved through the network. This means
we need to split each message in many smaller fragments,
increasing the impact of this unnecessary handshake. To
remove this overhead, we implement the architecture-aware
ring-based collective by replacing all two-sided point-to-point
communication with their one-sided equivalent as presented in
a simplified form in Algorithm 3.

A. Revisit of the All-to-all algorithm using one-sided
In order to replace the two-sided point-to-point commu-

nication by the one-sided equivalent, each process P
i

needs
to expose its received buffer, named recvbuf , to all other
processes (Line 3). By doing so, it gets a window that con-
tains all information needed for managing RMA operations.
It must be noted that the window creation is a collective
operation and therefore has a high cost. However, when the
all-to-all is performed multiple times on the same memory
fragment, it is possible to cache this window, and thus re-
duce the startup cost of the all-to-all implementation. Then,
after a synchronization phase to make sure all processes are
ready, the ring algorithm starts. For each destination, the
calls to MPI Send (MPI Isend) is replaced by the RMA
operation MPI Win put which starts the communication (Line
8). Similarly to MPI Isend, this operation is asynchronous
and therefore requires to wait the completion of pending
communication, i.e., the sending and reception of the data
for P

i

. Last, each process reaches the global synchronization
(Line 11) needed to ensure all communication in the window
are now completed at both the origin and the target, and thus
the data is available in the user buffer everywhere.

It must be noted that because the put operation is asyn-
chronous, Algorithm 3 behaves as if all communication have
been posted upfront, using non-blocking communication, and
they were all completed right before returning from the
function. This might not be the best implementation on real
platforms, as it will insert, almost in same time, a storm
of messages in the network increasing the opportunity for
collisions, and rerouting, and thus decreasing the achievable
network bandwidth.

B. Integration of the compression
To accelerate our all-to-all, we propose to compress the

data put in the network. The integration of the compression in
Algorithm 3 corresponds to add two steps. The first step is the
compression of the data to be sent to dest just before the put
into the destination memory (Line 8). As a consequence, the



Algorithm 3 Classical ring version of the OSC Alltoall
Require: Same parameters as classical MPI Alltoall
Ensure: recvbuf the buffer that contains the result of the data

exchange
1: Let n be the number of nodes
2: Let k be the node id of the current rank
3: Let win be the window that exposes recvbuf
4: for j = 1 to n do
5: n

j

= (j + k)%n
6: for i = 1 to #processes of node n

j

do
7: Let dest = permute[n

j

][i] be the next target
// Pipelining between compression and transfer

8: Put the data into dest memory using win
9: end for

10: Wait the completion of all data movements
11: end for

call to MPI Win put is made on the compressed data and
so the target memory is filled with compressed data. This
introduces the second step after the global synchronization
(Line 11) which decompresses the received data.

However, to comply with the general requirements of MPI
API, the compression of the data cannot be done inplace,
because the send buffer of the all-to-all is constant. Thus,
our algorithm needs two internal buffers: one to store the
result of the compression for a destination, and the second
to receive the compressed data, both buffers size depending
on the compression technique used. Therefore, the memory
exposed to the other processors is now the second internal
buffer and not recvbuf .

We want to emphasize that the compression plays a similar
role as packing and unpacking operation in MPI in the case
where the data are not contiguous in memory. Indeed, the
resulted compressed data residing in the internal buffer are
contiguous and so MPI will not use another internal buffer.
Note that communication relies on the GPU-direct for better
performance.

In order to hide the cost of compression, we pipeline it
with the communication, by carefully taking advantage of the
sequential order of operations in a CUDA stream. To do so, the
routine starts by splitting the data into chunks and submits a
kernel for each chunk on the same stream. However, instead of
using CUDA events to track the completed kernels, we simply
call a second kernel on the same stream to update a memory
location that indicates the current status of the compression.
Thus the communication of the compressed chunks can be
triggered by the CPU by watching the updates of the shared
counter. The sequentiality of the execution of the kernels
ensures that the value of the counter corresponds to the number
of chunks compressed and that can be safely put into the target
memory. On the target side, since we are using the one-sided
communication scheme, no action is needed for the reception
of the data. However, on the target side we could have also
created a pipeline between the decompression operation and
the next put, but the RMA API lacks efficient constructs

for this. Thus instead of a pipeline on the target side, we
will decompress the entire buffer later, once communications
complete.

Our implementation leads to a total cost of the compressed
transfer equals to the cost of the compression of the first chunk
plus the communication of the compressed data. We observed
in practice, with truncation operation, that this execution cost
is very close to the upper bound given by the communication
cost of uncompressed data divided by the compression rate.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate our approach: i) by compar-
ing the performance of our OSC Alltoall with the classical
MPI Alltoall routine; ii) by comparing the accuracy and
performance of our approximate FFT with two executions of
heFFTe in FP64 and FP32, respectively.

Given that in general, the compression technique used is
application dependent [], we consider random data which
validates our approach as well as offers a good estimate of how
our method performs. As stated in Section IV-A, with random
data, sophisticated compression techniques are not relevant.
We therefore use truncation operation in the remaining of
the work presented in this technical report. It allows us to
show the performance of our approach in the case where the
compression technique is cheap (compared with sophisticated
techniques) as well as offers the possibility to control the
compression rate.

We did all our experiment on the Summit supercomputer,
located at Oak Ridge National Laboratory. The machine con-
sists of 4 608 dual-socket nodes, with each socket having three
GPUs and 21 cores. Each node has two Infiniband lanes for
a total theoretical bandwidth of 25GB/s. We evenly map one
MPI process per GPU, which means six MPI processes per
node. We use the following software stack: GCC 8.3.1, Open
UCX 1.10, CUDA 10.1.234, and Open MPI 5.0 master1.

A. Performance comparison of the OSC Alltoall
In order to understand the quality of OSC Alltoall we want

to compare its performance with the classical all-to-all imple-
mentation. However, to the best of our knowledge confirmed
by our experiments, the latest Spectrum-MPI 10.4 doesn’t have
support of one-sided communication to/from GPU memory.
Therefore, we only test OSC Alltoall using Open MPI, and
use Open UCX as the communication engine. Hence, this
section compares OSC Alltoall with the default Open MPI
MPI Alltoall. Note that because of Summit supercomputer
has two lanes per node, we select for each socket the closest
network device to handle communication, which is mlx5 3:1
and mlx5 0:1 for socket 0 and 1, respectively.

1SHA:fafbb3702



Fig. 3. Average node bandwidth usage for the different all-to-all implemen-
tations with an increasing number of GPUs, with the fixed message size per
process of 80KB.

Figure 3 compares the network bandwidth per node for the
two implementations. In this experiment, each process sends to
each other process 80KB of data. Thus, when there are 1536
GPUs involved, the total amount of data sent, and therefore
received, by each process is 1536 ⇤ 80 = 122880 KB. We
note that for a small number of GPUs, both implementations
achieve similar bandwidth. But when the number of GPUs
increases, the performance of the default all-to-all decreases
rapidly to reach around 5GB/s. Indeed, the bandwidth for
the intra-node communication (50GB/s) being higher than
the bandwidth of the inter-node communication (25GB/s), the
overall bandwidth of the all-to-all decreases as the proportion
of data sent outside of the node becomes dominant. For exam-
ple, for 24 processes, the volume of intra-node communication
is a quarter of the overall volume of communication, and
thus artificially increases the perceived average bandwidth.
However, when the number of GPUs increases, the fraction of
the volume of intra-node communication decreases and so the
average bandwidth decreases to its inter-node average band-
width. On the other hand, OSC Alltoall benefits as expected
from the use of one-sided communication and offers twice the
bandwidth compared with the reference on the large number
of GPUs.

B. Speedup and accuracy of heFFTe using compression
We compare the performance of heFFTe where the data

is compressed during the communication with the original
code. We perform a strong scaling experiment from two
nodes, six GPUs per node, to 256 nodes, and a problem size
of 10243. We consider as reference FP64 and FP32, both
doing the computation and the communication using their
unique working-precision. For the compression, we truncate
the data either from FP64 to FP32 or from FP64 to FP16,
respectively. Figure 4 shows the evolution of the performance
(Gflops/s) when the number of GPUs increases. The solid lines
correspond to the references while the dashed lines represent
the performance with compression.

As expected, since FP32 involves twice fewer bits, the
volume of communication is divided by two, resulting in a
performance around 2⇥ better. The FP64 ! FP32 curve
shows a greater speedup than the FP32, with the same volume
of communication. This indicates that our implementation does

#GPU FP64 FP32 FP64 ! FP32
12 6.00e-15 4.96e-06 1.94e-07
24 6.17e-15 4.91e-06 2.20e-07
48 5.92e-15 4.49e-06 3.01e-07
96 6.00e-15 3.47e-06 3.90e-07

192 5.11e-15 3.54e-06 3.99e-07
384 5.25e-15 4.44e-06 5.09e-07
768 5.29e-15 3.13e-06 5.44e-07

1536 5.38e-15 3.06e-06 5.57e-07
TABLE II

COMPARISON OF THE FFT ACCURACY WHEN USING CASTING OPERATION
FROM FP64 TO FP32 IN THE COMMUNICATION WITH THE TWO

REFERENCES. EACH REFERENCE CORRESPONDS TO AN EXECUTION USING
A UNIQUE PRECISION WHICH IS EITHER FP64 OR FP32.

not suffer from the overhead of compressing the data. More-
over, the use of the One-Sided Communication improves the
overall performance, reaching up to 2.5⇥ speedup compared
to FP64.

With a compression rate of four (FP64 ! FP16), heFFTe
is able to reach 14 Tflops/s on 1 536 GPUs. When looking at
the speedup with respect to the blue curve, we note that we
exceed a 4⇥ speedup up to 384 GPUs. Then, when the number
of GPUs continue to increase, the volume of communication,
which is divided by 4, becomes too small and the latency starts
becoming dominant.

Accuracy remains paramount for this application, thus the
impact on the accuracy of doing the communication in lower
precision and the computation in higher precision must be
well understood. Table II shows the comparison between the
reference and the casting operation from FP64 to FP32. We
observe that the mixed-precision gives one order of magnitude
better accuracy compared with a unique working-precision of
FP32. Furthermore, our approach allows us to consider lower
precision without having the computational kernel usually
needed with a unique working-precision.

VII. CONCLUSION

The Fast Fourier Transform, a critical algorithm for many
scientific applications, makes heavy use of the MPI Alltoallv
routine, up to the point where most time is spent in commu-
nication. Surprisingly, the efforts from the FFT community
focusing on improving the computational aspects were not
met with a similar effort to improve upon the communication
aspects. We addressed this issue, by taking advantage of
the FFT capability to deal with accuracy loss, in order to
compress, using several lossy methods, the data pertaining to
the reshape operation.

By redesigning the MPI Alltoallv routine using the One-
Sided Communication and integrating a compression tech-
nique, we showed that the performance of heFFTe increases
with the compression rate, even exceeding the 4⇥ speedup
expected for a compression rate of four. In addition, we
demonstrated that the use of a lower precision in the commu-
nication and a higher precision in the computation improves
the accuracy of the FFT by one order of magnitude, compared
with the execution of heFFTe in the lower precision.



Fig. 4. Strong scaling of heFFTe for a problem of size 10243. The solid lines correspond to the use of the classical MPI Alltoallv, while the dotted ones
use our OSC Alltoallv with compression. The FP64 and FP32 curves represent execution in double and single-precision, respectively. The FP64 ! FP32
and the FP64 ! FP16 curves correspond to the use of truncation operations with a compression rate of two and four, respectively. The left figure presents
the performance while the figure on the right the speedup compared with the FP64 version.

This hints that compression techniques more accurate than
truncation, such as those provided by ZFP, which take ad-
vantage of the spatial distribution of the data, could simulta-
neously give us better compression rate or possibly a better
accuracy.

This work has shown the potential of our approach and leads
to future works. First, the approximate FFT implemented in
heFFTe should be integrated into existing applications and the
choice of the compression technique investigated thoroughly.
Second, we mainly presented results using lossy compression
like truncation operations. This work can be easily extended
to lossless compression so that we fallback to the classical 3D
FFT with a potential speedup. Third, the use of One-Sided
Communication gives our all-to-all freedom and flexibility.
However, implementation requires careful use of the network
to avoid congestion for instance. Therefore, further investiga-
tion are needed to improve the performance.
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VIII. APPENDIX

For reproducing the results in this technical report, a list of
the settings used is given as follows:

export PAMI_ENABLE_STRIPING=1
export PAMI_IBV_ADAPTER_AFFINITY=1
export PAMI_IBV_DEVICE_NAME="mlx5_0:1,mlx5_3:1"
export PAMI_IBV_DEVICE_NAME_1="mlx5_3:1,mlx5_0:1"

mpirun --np $NUM_PROC$ --map-by node:NOLOCAL
-x UCX_TLS=ib,cuda_copy,cuda_ipc
-x LD_LIBRARY_PATH
-x UCX_MEMTYPE_CACHE=n
-x UCX_NET_DEVICES=mlx5_3:1,mlx5_0:1
-x UCX_LOG_LEVEL=error
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