
Optimal Checkpointing Strategies
for Iterative Applications

Yishu Du , Loris Marchal , Guillaume Pallez , and Yves Robert , Fellow, IEEE

Abstract—This work provides an optimal checkpointing strategy to protect iterative applications from fail-stop errors. We consider a

general framework, where the application repeats the same execution pattern by executing consecutive iterations, and where each

iteration is composed of several tasks. These tasks have different execution lengths and different checkpoint costs. Assume that there

are n tasks and that task ai, where 0 � i < n, has execution time ti and checkpoint cost ci. A naive strategy would checkpoint after

each task. Another naive strategy would checkpoint at the end of each iteration. A strategy inspired by the Young/Daly formula would

work for
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mcave
p

seconds, where m is the application MTBF and cave is the average checkpoint time, and checkpoint at the end of the

current task (and repeat). Another strategy, also inspired by the Young/Daly formula, would select the task amin with smallest

checkpoint cost cmin and would checkpoint after every pth instance of that task, leading to a checkpointing period pT , where T ¼Pn�1
i¼0 ai is the time per iteration. One would choose the period so that pT � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mcmin

p
to obey the Young/Daly formula. All these naive

and Young/Daly strategies are suboptimal. Our main contribution is to show that the optimal checkpoint strategy is globally periodic,

and to design a dynamic programming algorithm that computes the optimal checkpointing pattern. This pattern may well checkpoint

many different tasks, and this across many different iterations. We show through simulations, both from synthetic and real-life

application scenarios, that the optimal strategy outperforms the naive and Young/Daly strategies.

Index Terms—Iterative application, checkpoint strategy, fail-stop error, resilience

Ç

1 INTRODUCTION

DEPLOYING scientific applications at large scale requires
fault-tolerant mechanisms. State-of-the-art supercom-

puters such as Fugaku, Summit, or Sierra (respectively ranked
1st, 2nd, and 3rd in the TOP500 ranking [1]) are now embed-
ding millions of cores (with a peak at 10.6M for Sunway Tai-
huLight (4th)). These very large systems are prone to failures:
even if each of their cores has a very low probability of failure,
the failure probability of the whole system is much higher.
More precisely, assume that the Mean Time Between Failure
(MTBF) of each computing resource is around 10 years, which
means that such a resource should experience an error only
every ten years on average, and which explains why comput-
ing resources are individually very reliable. When running a
simulation code on 100,000 of these resources in parallel, the
MTBF is reduced to only 50 minutes [2]: on average one node
of the computing platform crashes every 50 minutes. With
one million of such resources, the MTBF gets as small as
five minutes, while codes deployed on such extreme-scale

platforms usually last for hours or days. As the demand for
computing power increases, failures cannot be ignored any-
more, and fault-tolerantmechanismsmust be deployed.

The classical way of dealing with failures in extreme-
scale computing systems consists of Checkpoint/Rollback
mechanisms. A checkpoint of the application is taken peri-
odically, that is, the state of the application (usually the
whole content of its memory) is written onto reliable stor-
age. Whenever one of the computing resources experiences
a failure, the application pauses and restarts from the last
valid checkpoint. Several studies have focused on the cru-
cial question of the optimal checkpointing period, defined
as the time between two consecutive checkpoints. On the
one hand, if checkpoints are taken too often, time is wasted
in costly I/O operations. On the other hand, if checkpoints
are too infrequent, time will be wasted in recomputing
large portions of the application after each failure. Interest-
ingly, reliability was already a question in the early days
of computing: in the 70s, Young has proposed a first-order
approximation of the optimal time between two check-
points that minimizes the expected duration of the whole
computation [3]. Young’s approximation has then be
refined by Daly thirty years later [4]. The Young/Daly
approach assumes that a checkpoint can be taken anytime
during the computation, and that the time needed to take a
checkpoint is constant (which corresponds to a constant
size of the data to save).

When designing checkpoint/restart strategies for task-
based workflows, it is natural to take checkpoint between
the completion of some task and the beginning of its succes-
sor. This way, the checkpoint mechanism can be provided
by the workflow management system without having to
modify the code of each task. However, this restricts the

� Yishu Du is with the Tongji University, Shanghai 200092, China, and also
with the LIP, ENS Lyon, 69342 Lyon, France.
E-mail: yishu.du@ens-lyon.fr.

� Loris Marchal is with the LIP, �Ecole Normale Sup�erieure de Lyon, CNRS
& Inria, 69342 Lyon, France. E-mail: loris.marchal@ens-lyon.fr.

� Guillaume Pallez is with the Inria & Universit�e de Bordeaux, 33405
Talence, France. E-mail: guillaume.pallez@inria.fr.

� Yves Robert is with the LIP, �Ecole Normale Sup�erieure de Lyon, CNRS &
Inria, 69342 Lyon, France, and also with the University of Tennessee
Knoxville, Knoxville, TN 37996 USA. E-mail: yves.robert@ens-lyon.fr.

Manuscript received 27 Oct. 2020; revised 3 July 2021; accepted 12 July 2021.
Date of publication 26 July 2021; date of current version 5 Aug. 2021.
(Corresponding author: Yves Robert.)
Recommended for acceptance by K. Mohror.
Digital Object Identifier no. 10.1109/TPDS.2021.3099440

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022 507

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3872-2685
https://orcid.org/0000-0003-3872-2685
https://orcid.org/0000-0003-3872-2685
https://orcid.org/0000-0003-3872-2685
https://orcid.org/0000-0003-3872-2685
https://orcid.org/0000-0002-5519-9913
https://orcid.org/0000-0002-5519-9913
https://orcid.org/0000-0002-5519-9913
https://orcid.org/0000-0002-5519-9913
https://orcid.org/0000-0002-5519-9913
https://orcid.org/0000-0001-8862-3277
https://orcid.org/0000-0001-8862-3277
https://orcid.org/0000-0001-8862-3277
https://orcid.org/0000-0001-8862-3277
https://orcid.org/0000-0001-8862-3277
https://orcid.org/0000-0003-2361-055X
https://orcid.org/0000-0003-2361-055X
https://orcid.org/0000-0003-2361-055X
https://orcid.org/0000-0003-2361-055X
https://orcid.org/0000-0003-2361-055X
mailto:yishu.du@ens-lyon.fr
mailto:loris.marchal@ens-lyon.fr
mailto:guillaume.pallez@inria.fr
mailto:yves.robert@ens-lyon.fr


time-steps at which checkpoints can be taken and makes the
optimization problem of selecting the best checkpoint times
more difficult. Furthermore, the data to checkpoint, is now
the output of the tasks and may have different sizes for dif-
ferent tasks of the workflow.

In this paper, we focus on designing optimal checkpoint
strategies for iterative workflows expressed as pipelined lin-
ear workflows: we consider workflows made of a large num-
ber of iterations, each iteration being a linear chain of
parallel tasks. The typical example is an application consist-
ing of an outer loop “While convergence is not met,

do”, and where the loop body includes a sequence of large
parallel operations. The objective is to find which task out-
puts should be saved on stable storage in order to minimize
the expected duration of the whole computation. To the
best of our knowledge, this is an open problem, despite the
practical importance and ubiquity of pipelined linear work-
flows in High-Performance Computing (HPC). Indeed, the
simple case of a unique linear chain of tasks (a pipelined lin-
ear workflow with a single iteration) has been solved by
Toueg et al. [5] using a dynamic programming algorithm.
On the contrary, the problem for workflows with general
directed graphs has been shown #P-complete1 [6]. The
study for pipelined linear workflows (a linear chain with
several iterations) is challenging, and the main contribution
of this paper is to provide a complete answer:

� We prove that there exists an optimal checkpointing
strategy which is periodic. It consists in a pattern of
task outputs to checkpoint, where this pattern spans
over a set of iterations of bounded size. This pattern
is repeated over and over throughout the execution.

� We provide a dynamic programming algorithm
which is polynomial in the number of operations
included in the outer loop to compute the optimal
periodic checkpoint pattern. The complexity of the
algorithm does not depend on the number of itera-
tions of the outer loop. This pattern may well check-
point many different tasks, and this across many
different iterations.

� We conduct an extensive set of simulations to com-
pare the optimal strategy to four natural competitor
strategies: the first checkpoints after each task, the
second after each iteration, while the last two are
extensions of the Young/Daly formula for iterative
applications. Our simulations with both synthetic
and real-life workflow instances demonstrate that
our optimal strategy provide improvement over the
simpler competitors.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 presents a detailed model
for the problem and states the objective function. Section 4
outlines the optimal checkpoint strategy. Section 5 reports a
comprehensive set of experimental results, based upon both
synthetic workflows and on workflows arising from two
real-life applications. Finally, Section 6 provides concluding
remarks and directions for future work.

2 RELATED WORK

We survey related work in this section. We start with check-
pointing in Section 2.1. Then we discuss iterative applica-
tions with cyclic tasks in Section 2.2. We end with fault-
tolerance methods for iterative applications in Section 2.3.

2.1 Checkpointing

Checkpoint-restart is one of the most used strategy to deal
with fail-stop errors, and several variants of this policy have
been studied, see [2] for an overview. The natural strategy
is to checkpoint periodically, and one must decide how
often to checkpoint, i.e., must derive the optimal check-
pointing period. An optimal strategy is defined as a strategy
that minimizes the expectation of the execution time of the
application. For a divisible-load application, given the
checkpointing cost C and platform MTBF m, the classical
formula due to Young [3] and Daly [4] states that the opti-
mal checkpointing period is PYD ¼

ffiffiffiffiffiffiffiffiffiffi
2mC
p

.
Going beyond divisible-load applications, some works

have studied linear workflows, i.e., applications that can be
expressed as a linear chain of (parallel) tasks. Checkpointing
is only possible right after the completion of a task, and the
problem is to determine which tasks should be check-
pointed. This problem has been solved by Toueg and Babao-
glu [5] using a dynamic programming algorithm. We stress
that this latter approach is not suited to iterative applica-
tions. Indeed, consider an iterative application with a large
number of iterations, say Niter ¼ 10; 000 iterations, and
assume that n ¼ 10 (10 tasks per iteration). One solution to
find an optimal checkpointing strategy could be: (i) unroll
the loop and build a linear chain of n�Niter ¼ 100; 000
tasks; (ii) apply the algorithm of [5] to this huge chain and
return the optimal solution. However, the cost of this algo-
rithm is quadratic in the value of Niter. Worse, if we re-exe-
cute the same application for Niter ¼ 20; 000 iterations, we
have to recompute the optimal solution from scratch. On
the contrary, our approach provides a generic and compact
solution that does not depend upon the value ofNiter.

Recently, the results of [5] have been extended to deal
with linear chains whose tasks do not have constant execu-
tion times but instead obey some probability distribu-
tions [7]. As pointed out above, for general workflows,
deciding which tasks to checkpoint has been shown #P-
complete [6], but the results of [8] show that if the graph is
scheduled in a sequential manner (linearized), then one can
derive an optimal checkpointing strategy. In this paper, we
focus on pipelined linear workflows, i.e., on applications
expressed as a linear chain of tasks that repeats iteratively.

2.2 Iterative Applications

Iterative methods are popular for solving large sparse linear
systems, which have a wide range of applications in several
scientific and industrial problems. There are many classic
iterative methods including stationary iterative methods
like the Jacobi method [9], the Gauss-Seidel method [9] and
the Successive Overrelaxation method (SOR) [10], [11], and
non-stationary iterative methods like Krylov subspace
methods, including Generalized Minimal Residual method
(GMRES) [12], Bi-conjugate Gradient Stabilized method
(BiCGSTAB) [13], Generalized Conjugate Residual method

1. #P-complete problems are at least as hard as NP-complete
problems.

508 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



(GCR) [14], together with their ABFT (algorithm-based
fault-tolerance) variants [15], [16], [17].

Krylov subspacemethods fit perfectly ourmodel: the outer
iteration corresponds to an iteration of the application in our
model, while the inner iterations in each increasing Krylov
subspace correspond to the tasks in our model. We report
experiments with the GCR algorithm in the Web Supplemen-
tary Material (WSM), which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2021.3099440.

The class of iterative applications goes well beyond sparse
linear solvers. Uncertainty Quantification (UQ) workflows
explore a parameter space in an iterative fashion [18], [19].
This class also encompasses many image and video process-
ing software which operate a chain of computations kernels
(each being a task) on a sequence of data sets (each corre-
sponding to an iteration). Examples include image analy-
sis [20], video processing [21], motion detection [22], signal
processing [23], [24], databases [25], molecular biology [26],
medical imaging [27], and various scientific data analyses,
including particle physics [28], earthquake [29], weather and
environmental data analyses [26].

2.3 Fault-Tolerance Methods for Iterative
Applications

The literature devoted to the study of fault-tolerance meth-
ods for iterative linear solvers can be divided into two cate-
gories, depending upon whether the focus is on soft errors
or on fail-stop errors.

There are some works dealing with soft errors. Chen pre-
sented online-ABFT in [30], a technique that can detect soft
errors in the specific Krylov subspace iterative methods by
leveraging the orthogonality relationship of two vectors in the
middle of the program execution. For general iterative meth-
ods, Tao et al. [31] presented a new online-ABFT approach to
detect and recover soft errors by combining a novel checksum-
based encoding scheme with a checkpoint/rollback scheme.
According to the specific properties of GMRES algorithm,
Bridges et al. [32] and Elliott et al. [33] proposed the FT-GMRES
algorithm using selective reliability. Similarly, Sao and Vuduc
[34] proposed the self-stabilizing conjugate gradient method
(CG) in view of the special properties of CG algorithm: they
check that orthogonality is preserved by recomputing scalar
products that should be zero and restartingwhenever a thresh-
old is exceeded. Ozturk et al. [35] proposed a decreasing
energy norm based on the mathematical properties to detect
soft errors leading to silent data corruption (SDC) for GMRES,
CG andConjugate Residualmethod (CR).

There are some works dealing with fail-stop errors. To
reduce the fault tolerance overhead incurred by checkpoint-
ing, Chen [36] proposed a recovery method for iterative
methods without checkpointing based on the specific prop-
erties of iterative methods. Tao et al. [37] improved the
checkpointing performance for iterative methods under a
novel lossy checkpointing scheme. Langou et al. [17] pre-
sented a lossy approach which is a checkpoint-free fault tol-
erant scheme for parallel iterative methods. The iterative
method is restarted with a new vector which is a new
approximate solution recovered from a fail-stop error by
using the data of the non-failed processors. Agullo et al.

[15], [16] extended this approach by computing a well-
suited initial guess which is defined by interpolating the
lost entries of the current iterate vector available on surviv-
ing nodes, in order to restart the Krylov method. Pachajoa
et al. [38] compared the exact state reconstruction (ESR)
approach based on the method proposed by Chen [36] with
the heuristic linear interpolation (LI) approach by Langou
et al. [17] and Agullo et al. [15], [16]. They later extended the
ESR approach for protecting the PCG method against multi-
ple and simultaneous node failures [39], [40]. Altogether,
fault-tolerance methods proposed to mitigate the impact of
fail-stop errors in iterative applications are application-spe-
cific, and can only be applied to a particular class of iterative
algorithms. Moreover, their performance highly depends
upon specific properties of the algorithms, and, for instance,
considerably vary from one Krylov method to another.

The main contribution of this work is to provide a gen-
eral-purpose approach to deal with fail-stop errors in itera-
tive applications. Our optimal checkpointing strategy is
agnostic of any specific property of the target iterative appli-
cation. Instead, it abstracts the iterative application as a
chain of cyclic tasks, and provides the optimal periodic
checkpoint pattern based only upon generic information
such as task durations and checkpoint costs.

3 MODEL

In this section, we detail the application and platform mod-
els. Then we define checkpoint strategies and formally state
the optimization objective. See Table 1 for a summary of
main notations.

3.1 Application Model

We consider an iterative application A. Each iteration of the
application consists of n parallel tasks ai, where 0 � i < n,
task ai has length ti and memory footprint Mi. We define
the length of an iteration as T ¼Pn�1

i¼0 ti.
The tasks are executed consecutively: let i½n� denote the

remainder of the integer division of i by n (modulo opera-
tion); then a task ai is always followed by a task aiþ1½n�. We
assume that the application executes for a long time and
consider an unbounded number of iterations (but we use
1,000 iterations in the experiments). For short we write A ¼
ða0; . . .; an�1Þ1. As stated before, we execute tasks one after
the other. The first executed task is a0, followed by a1, and
so on. The nth task is an�1 and the ðnþ 1Þst task is a0 again.
In general, the kth task is ak�1½n�. Note that we index tasks
from 0 to use the modulo operation, hence this shift when
counting executed tasks.

We assume that the tasks of the application can be check-
pointed at the end of their execution. We consider a general
model where the checkpoint time of task ai is ci and its
recovery time is ri. We refer to ci and ri as operations of
type i. We do not assume that ci ¼ ri; instead, we simply
assume monotone I/O costs

for all i; j; ci � cj ) ri � rj: (1)

Essentially this assumption states that if a task is longer to
checkpoint than another one, then restarting from this
checkpoint is also longer. This is coherent with the fact that

DU ET AL.: OPTIMAL CHECKPOINTING STRATEGIES FOR ITERATIVE APPLICATIONS 509

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3099440
http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3099440


checkpoint and recovery costs are often closely related, and
are a function of the volume of data to save. Furthermore,
this assumption is general enough to account for different
read and write bandwidths.

We assume that all task parameters (execution time,
checkpoint, recovery) are known. This is a natural assump-
tion for iterative applications which repeat each task a large
number of times and can determine their characteristics
either through an analytical model or by repetitive sam-
pling. However, to assess the robustness of the approach,
we also report experiments using stochastic execution times
derived from a Normal probability distribution.

3.2 Platform Model

We consider a parallel platform whose nodes are subject to
fail-stop errors, or failures. A failure, such as a node crash,
interrupts the execution of the node and provokes the loss
of its whole memory. Consider a parallel application run-
ning on several nodes: when one of these nodes is struck by
a failure, the state of the application is lost, and execution
must restart from scratch, unless a fault-tolerance mecha-
nism has been deployed.

The classical technique to deal with failures consists of
using a checkpoint-restart mechanism: the state of the appli-
cation is periodically checkpointed, which means that all
participating nodes take a checkpoint simultaneously: this

is the standard coordinated checkpointing protocol which is
routinely used on large-scale platforms [41], where each
node writes its share of application data to stable storage
(checkpoint of duration C). When a failure occurs, the plat-
form is unavailable during a downtime D, which is the time
to enroll a spare processor which will replace the faulty pro-
cessor [2], [4]. Then all application nodes (including the
spare) recover from the last valid checkpoint in a coordi-
nated manner, reading the checkpoint file from stable stor-
age (recovery of duration R). Then the execution is resumed
from that point on, rather than starting again from scratch.

We assume that the iterative application experiences fail-
ures whose inter-arrival times follow an Exponential distri-
bution Expð�Þ of parameter � > 0, whose PDF (Probability
Density Function) is fðxÞ ¼ �e��x for x � 0. The MTBF is
m ¼ 1

� and corresponds to the MTBF of individual process-
ors divided by the total number of processors enrolled in
the application [2]. As stated in the introduction, even if
each node has an MTBF of several years, large-scale parallel
platforms are composed of so many nodes that they will
experience several failures per day [42], [43]. Hence, a paral-
lel applications using a significant fraction of the platform
will typically experience a failure every few days.

The key for an efficient checkpointing policy is to decide
how often to checkpoint. Young [3] and Daly [4] derived the
well-known Young/Daly formula PYD ¼

ffiffiffiffiffiffiffiffiffiffi
2mC
p

for the opti-
mal checkpointing period, where m is the application MTBF
and C is the checkpoint duration, as defined above.

3.3 Schedule

Informally, a schedule defines which tasks are check-
pointed. A priori, there is no reason for a schedule to
enforce a regular pattern of checkpoints that repeats over
time. In other words, a schedule can be aperiodic. However,
one major contribution of this work is to show that periodic
schedules are optimal, and to exhibit the optimal period as
the output of a polynomial-time algorithm. We need a few
definitions before stating the objective function to be mini-
mized by optimal schedules. First we identify a schedule
with the list of the tasks that it checkpoints:

Definition 1 (Schedule). A schedule S is an infinite increas-
ing sequence S ¼ ðm1;m2; . . .Þ which represents the list of
checkpointed tasks: the mth

i task (i.e., task number mi) is check-
pointed, and the tasks whose number does not belong to the list
are not checkpointed.

In other words, checkpoint number i in the schedule
takes place at the end of task number mi. The cost to check-
point that taskmi is cmi�1½n� (because of the index shift noted
above). Without loss of generality, we assume that the
schedule checkpoints infinitely many tasks, i.e., limi!1mi ¼
1. Indeed, consider any task in the application: eventually
there must be a checkpoint after that task, otherwise the
expected execution time from that task on is not bounded,
because the fault-rate � is nonzero.

A schedule S can be viewed as a succession of task
chunks between two consecutive checkpoints. We use the
following notations for the ith chunk between checkpoint
number i� 1 (or the beginning of the execution if i ¼ 1) and
checkpoint number i, see Fig. 1:

TABLE 1
Summary of Main Notations

Application

n number of tasks per iteration
Niter number of iterations
ai task number i, 0 � i < n, in each iteration
ti duration of task ai
ci; ri checkpoint and recovery time for task ai
T length of an iteration

Platform

D downtime
m ¼ 1=� platform MTBF (� is the parameter of the failure

distribution)

Schedule S
mi task numbermi is checkpoint number i in the

schedule
CSi checkpoint cost at end of chunk number i
WS

i length of chunk number i (including tasks number
mi�1 þ 1 tomi)

RSi�1 recovery cost when re-executing chunk number i
SDðSÞ slowdown of schedule S
P checkpoint path or pattern
‘ðP Þ length of checkpoint path P
CðP Þ expected execution time, or cost, of checkpoint

path P
SDðP Þ slowdown of a path P
wci Young/Daly period for checkpoint type ci, where

wci ¼
ffiffiffiffiffi
2ci
�

q
2nM

?
upper bound for length of optimal period, where
M

? ¼ maxiwci þ T
k
?

number of iterations dM?

T e taking place during time
M

?

510 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



� The length of the tasks in the chunk is

WS
i ¼

Xmi

j¼mi�1þ1
tj�1½n�:

� The checkpoint cost at the end of the chunk is the
cost of checkpoint number i, namely

CSi ¼ cmi�1½n�:

� The recovery cost when re-executing the chunk is the
cost of recovering from checkpoint number i� 1,
namely

RSi�1 ¼ rmi�1�1½n�:

When i ¼ 1 (first chunk), we let m0 ¼ 0, and RS0
denotes the cost of reading input data.

3.4 Objective Function

Intuitively, a good schedule will minimize the slowdown
during the execution. This slowdown comes from two sour-
ces of overhead: the checkpoints that are inserted, and the
time lost due to failures. When a failure strikes during exe-
cution, the work executed since the last checkpoint is lost;
there is a downtime, followed by a recovery, and then the
re-execution of the work that has been lost due to the fail-
ure. Altogether, the overhead is not deterministic and varies
from one execution to the other, hence we aim at minimiz-
ing the slowdown in expectation.

Given a schedule S, we rely on a well-known formula to
compute the expected execution time of a chunk. Indeed,
the expected execution time E�ðw; c; rÞ to execute w consecu-
tive seconds of work followed by a checkpoint of size cwith
a recovery of size r is given by [2]

E�ðw; c; rÞ ¼ 1

�
þD

� �
e�r e�ðwþcÞ � 1

� �
: (2)

The expected time to execute the chunk number i is thus
E�ðWS

i ; C
S
i ; R

S
i�1Þ. Hence the expected time to execute the

first i chunks is
Pi

j¼1 E�ðWS
j ; C

S
j ; R

S
j�1Þ, The slowdown

incurred for the first i chunks (i.e., up to checkpoint number
i) is therefore

SDiðSÞ ¼
Pi

j¼1 E�ðWS
j ; C

S
j ; R

S
j�1ÞPmi

j¼1 tj�1½n�
: (3)

In Equation (3), the numerator is the expected time to execute
the first i chunks, while the denominator is the duration of the
tasks up to checkpoint number i, which corresponds to the
resilience-free and failure-free execution.

Unfortunately, there is no reason that limi!1 SDiðSÞ
would exist. However, we can use the upper limit of SDiðSÞ
to define the slowdown of schedule S
Definition 2 (Slowdown). The slowdown SD of a schedule is

SDðSÞ ¼ lim
i!1

SDiðSÞ: (4)

We know that this upper limit is bounded for some
schedules. Consider for instance the schedule S that check-
point all tasks: mi ¼ i for all i � 1. This schedule repeats the
same pattern of checkpoints every iteration, so that its slow-
down is

SDðSÞ ¼ SDnðSÞ
T

¼
Pn�1

j¼0
1
�þD
� �

e�rj�1½n� e�ðtjþcjÞ � 1
� �

T
:

Recall that T is the length of an iteration. We are now ready
to define an optimal schedule:

Definition 3 (Optimal schedule). A schedule is optimal if its
slowdown SDðSÞ is minimal over all possible schedules.

Note that the definition does not assume that there
exists a unique optimal schedule. A major contribution
of this paper is to show that there exists an optimal
schedule which is periodic, i.e., which repeats the same
pattern of checkpoints after some point (see below for
the formal definition). This important result will allow
us to consider only a finite number of candidate sched-
ules, and to design a polynomial-time algorithm to find
an optimal schedule.

3.5 Periodic Schedules

Periodic schedules are natural schedules that can be expressed
in a compact form. As already mentioned, after some possible
initialization phase, a periodic schedule repeats the same
sequence of checkpoints over and over. Here is the formal
definition:

Definition 4 (Periodic schedules). A schedule ðm1;m2; . . .Þ
is periodic if there exists two indices i0 and k0 such that for all
i > i0,mi �mi�1 ¼ miþk0 �miþk0�1.

An example of periodic schedule is given in Fig. 2. Intui-
tively, the schedule enters its steady state after checkpoint
number i0 (with possibly i0 ¼ 0): the period starts right after
task number mi0 , and then repeats the same sequence of k0
checkpoints: the first checkpoint of the period is taken after
mi0þ1 �mi0 tasks, the second one after mi0þ2 �mi0þ1 tasks,
until the last checkpoint of the period, that of task number
mi0þk0 . Then the period repeats indefinitely.

For a periodic schedule, the limit limi!1 SDiðSÞ always
exists, and is given by the slowdown incurrred during each
(infinitely repeating) period. Specifically, given i0 and k0 in
Definition 4, we see from Equation (3) that this slowdown
becomes

Fig. 2. A periodic schedule where the period is repeated over time.

Fig. 1. Notations drawn in a schedule for an application with n ¼ 3 tasks.

DU ET AL.: OPTIMAL CHECKPOINTING STRATEGIES FOR ITERATIVE APPLICATIONS 511

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



Pi0þk0
i¼i0þ1 E�ðWS

i ; C
S
i ; R

S
i�1ÞPmi0þk0

j¼mi0þ1 tj�1½n�
:

We prove this result formally below. The major results of
this work are the following two theorems, which we prove
in Section 4 below.

Theorem 1. There exists a periodic schedule that is optimal.

Theorem 2. We can compute an optimal periodic schedule in
polynomial time.

Proof Sketch. The proof has several steps. First we prove
that there exists an optimal periodic schedule, i.e., a periodic
schedule whose slowdown is minimal. Then we show how
to bound the length of the period of this schedule. Once this
is done, we have a finite number of periods to look for, and
we exhibit a dynamic programming algorithm that deter-
mines the optimal period in polynomial time, indepen-
dently of the number of iterations.

4 OPTIMAL CHECKPOINT STRATEGY

In this section, we present several theoretical results and prove
Theorems 1 and 2. Specifically, we start by showing that we
can indeed focus on periodic algorithms (Theorem 1) in Sec-
tion 4.3. Then in Section 4.4, we show that we can compute an
optimal periodic schedule in polynomial time (Theorem 2).

Beforehand, we introduce the definition of a pattern which
is at the heart of periodic algorithms (Section 4.1), and we
present several important properties of patterns in Section 4.2.

4.1 Paths and Patterns

Definition 5 (Checkpoint Paths). A Checkpoint Path
(P ¼ ði0; ½m1; . . .;mkP �Þ) is a sequence of mkP tasks b0; . . .;
bmkP

�1 such that

1) for 0 � i � mkP � 1, bi ¼ ai0þi½n�;
2) for 1 � j � kP , bmj�1 is checkpointed.
Thus the path starts at task b0 ¼ ai0 and includes mkP

tasks, up to task bmkP
�1 ¼ ai0þmkP

�1½n�. The path includes kP
checkpoints, including the checkpoint of its last task. The mth

i

task of the pattern is checkpointed, for 1 � i � kP . See
Fig. 3for an illustration.

We use the following notations for a path P : for 1 � i � kP ,

we define WP
i ¼

Pmi�1
j¼mi�1 ti0þj½n� (with the special case m0 ¼

0), CP
i ¼ ci0þmi�1½n�, R

P
i ¼ ri0þmi�1½n� (with the special case:

RP
0 ¼ ri0�1½n�). We define the length (‘) of a checkpoint path

‘ðP Þ ¼PkP
i¼1 W

P
i and its expected execution time, or cost (C )

CðP Þ ¼
XkP
i¼1

E� WP
i ; C

P
i ; R

P
i�1

� �

¼ 1

�
þD

� �XkP
i¼1

e�R
P
i�1 e�ðW

P
i
þCP

i
Þ � 1

� �
:

Definition 6 (Patterns). A Checkpoint Pattern is a checkpoint
path P ¼ ði0; ½m1; . . .;mkP �Þ such that mkP ¼ 0½n�. Note, for
pattern P , its length is ‘ðP Þ ¼ mkP

n T , where T ¼Pn�1
i¼0 ti.

Such patterns are basic blocks to define periodic schedules.
We detail this relation below in Section 4.3.

Definition 7 (Slowdown of a path (or pattern)). The slow-

down of a path is defined as: SDðP Þ ¼ CðP Þ‘ðP Þ .

4.2 Pattern Properties

Using these definitions, we show the following result:

Theorem 3. Given a schedule S of slowdown SDðSÞ, there exists
a pattern P such that SDðPÞ � SDðSÞ.

Following the Proof. Theorem 3 aims at showing the exis-
tence of a pattern whose slowdown is at most that of any
algorithm (hence including optimal algorithms). To do
so, we construct a sequence of patterns whose slowdown
converges to the requested slowdown (Lemma 1) based
on sequences taken from the algorithm S. In addition,
we impose that this sequence satisfies a size property, i.e.,
that each element of this sequence contains at most n
checkpoints (Corollary 1). This then helps to find a pat-
tern whose slowdown is exactly that of S.

We start by proving a series of results.

Lemma 1. Given a schedule S, there exists a sequence of patterns
ðPrÞ such that, for all r 2 N, SDðPrÞ � SDðSÞ þ 1=r.

Proof. Consider a schedule S ¼ ðmiÞi2N of finite slowdown
SDðSÞ. There exists a checkpoint type i0 which is taken an
infinite number of times. We denote by si0 the function
such that, for all i, si0ðiÞ is the ith occurence of checkpoint
ci0 in the schedule S (we set si0ð0Þ ¼ 0).

In the following, we partition the schedule into paths:

M1 ¼ ð0; ½m1; . . .;msi0 ð1Þ�ÞMi ¼ ði0 þ 1½n�; ½ðmsi0 ði�1Þþ1 �msi0 ði�1ÞÞ; . . .;ðmsi0 ðiÞ �msi0 ði�1ÞÞ�Þ ð8i > 1Þ

8<
: :

Intuitively,M1 is the beginning of the schedule until the
first checkpoint of type i0. ThenM2 is the pattern starting
right after and extending up to the second checkpoint of
type i0, and so on. In the definition of Mi, checkpoint
indices are shifted to account for the location where the
path starts. See Fig. 4 for an illustration. By construction,
each Mi is indeed a pattern, except for M1, which is
only a path if i0 6¼ n� 1.

We now study the slowdown SDsi0 ðiÞ up to the ith

checkpoint of type i0, i.e., the slowdown of the first i seg-
ments. We have

Fig. 3. Sequence of operations of a checkpoint path P ¼
ði0; ½m1; . . .;mkP �Þ. Its length is the sum of its useful work (white boxes).
Its cost corresponds to its expected execution time if a checkpoint was
taken right before its start.

512 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



SDsi0 ðiÞ ¼
Pi

k¼1
Psi0 ðkÞ

j¼si0 ðk�1Þþ1
E�ðWS

j ; C
S
j ; R

S
j�1ÞPi

k¼1
Pmsi0

ðkÞ
j¼msi0

ðk�1Þþ1 tj�1½n�

¼
Pi

k¼1 CðMkÞPi
k¼1 ‘ðMkÞ

¼
Xi

k¼1
ai;k 	 SDðMkÞ;

(5)

where ai;k ¼ ‘ðMkÞPi

j¼1 ‘ðMjÞ
. Hence

Pi
k¼1 ai;k ¼ 1, and we

have expressed SDsi0 ðiÞ as a weighted average of the path

slowdowns SDðMkÞ.
By definition of limwe have

� limi!1SDsi0 ðiÞðSÞ � limi!1SDiðSÞ ¼ SDðSÞ;
� For all r, there exists ir such that 8i > ir,

SDsi0 ðiÞðSÞ � lim
i!1

SDsi0 ðiÞðSÞ þ
1

r
� SDðSÞ þ 1

r
:

Using Equation (5), we obtain

Xi

k¼1
ai;kSDðMkÞ � SDðSÞ þ 1

r
:

Since this is a weighted average, it means that there exists
kr, where 1 � kr � i such that SDðMkrÞ � SDðSÞ þ 1

r . If
kr 6¼ 1, or if kr ¼ 1 and i0 ¼ n� 1, we have found the
desired pattern by letting Pr ¼Mkr . Otherwise, we redo
the same proof using the truncated schedule eS where we
delete the first i0 þ 1 tasks. Then eS is a valid schedule for
a rotation of the original application, namely for the
application eA ¼ ðai0þ1½n�; . . .; ai0Þ1, and it has same slow-
down as S. The path fMi of eS is the same as the path
Miþ1 of S for all i, hence all the paths of eS are patterns.
We then derive the result just as above. tu

Lemma 2. For all pattern P , there exists a pattern ~P such that:

1) SDð~PÞ � SDðPÞ;
2) ~P contains at most n checkpoints.

Proof. We show this result by induction on the number of
checkpoints in P . Assume P ¼ ði0; ½m1; . . .;mk�Þ, with k >
n. Then there exists i1 < i2 such that: i0 þmi1 ½n� ¼
i0 þmi2 ½n� (i.e., the mth

i1
and mth

i2
tasks of the pattern are

identical and equal to ai0þmi1�1½n�).
We now consider the two patterns

P1 ¼ ði0 þmi1 ½n�; ½mi1þ1 �mi1 ; . . .;mi2 �mi1 �Þ;
P2 ¼ ði0 þmi2 ½n�; ½mi2þ1 �mi2 ; . . .;mk �mi2 ;

m1 þ ðmk �mi2Þ; . . .;mi1 þ ðmk �mi2Þ�Þ:

Here, we have decomposed the original pattern into
three paths, Pbegin (up to the mth

i1
task), P1 (from the next

task up to the mth
i2
task) and Pend (from the next task up to

the end of the pattern). Now, P2 is simply the concatena-
tion ofPend followed byPbegin. See Fig. 5 for an illustration.

We immediately have

SDðPÞ ¼ ‘ðP1Þ
‘ðP1Þ þ ‘ðP2Þ SDðP1Þ þ ‘ðP2Þ

‘ðP1Þ þ ‘ðP2Þ 	 SDðP2Þ:

Because this is a weighted average, then minðSDðP1Þ;
SDðP2ÞÞ � SDðPÞ. Each of these patterns has fewer check-
points than the initial pattern,which concludes the proof.tu

Corollary 1. Given a schedule S, there exists a sequence of pat-
terns ð~PrÞ for all r � 1 such that:

1) For all r, ~Pr contains at most n checkpoints;
2) SDð ~PrÞ � SDðSÞ þ 1=r.

This corollary is a direct consequence of Lemma 1, for the
existence of a sequence that satisfies the slowdown con-
straint, and of Lemma 2, for transforming this sequence into
a sequence of patterns that include at most n checkpoints.

Following the Proof: At this point, we have constructed a
sequence of patterns, whose slowdown converges
towards SDðSÞ. It remains to show the existence of a pat-
tern that reaches the limit. In order to do so, we show
that if the number of checkpoints in a pattern is
bounded, then the length of the pattern has to be
bounded too, otherwise its slowdown would diverge.
This is the result shown in Lemma 3.

Lemma 3. GivenM and k, if P is a pattern with at most k check-
points and SDðPÞ �M, then there exists a constantWM;k such
that ‘ðPÞ �WM;k.

Proof. Given a pattern P with k checkpoints, and of length
‘ðPÞ ¼W , we let WP

1 ;W
P
2 ; . . .;W

P
k denote the work

between its checkpoints. By definition,
Pk

i¼1 W
P
i ¼ ‘ðPÞ.

Hence there exists i1 such thatWP
i1
� 1

k ‘ðPÞ.
We are now interested in the slowdown of the pattern

SDðPÞ ¼
Pk

i¼1 E�ðWP
i ; C

P
i ; R

P
i�1Þ

‘ðPÞ

� E�ðWP
i1
; CPi1 ; R

P
i1�1Þ

‘ðPÞ

� E�ðWP
i1
; 0; 0Þ

‘ðPÞ ¼ 1

�
þD

� �
e
�WP

i1 � 1

‘ðPÞ

� 1

�
þD

� �
e
�
k‘ðPÞ � 1

‘ðPÞ :

Fig. 4. Partitioning the schedule into patterns around the checkpoints c2
(yellow).

Fig. 5. From a pattern P with two identical checkpoints, ci, to its decom-
position into P1 and P2.

DU ET AL.: OPTIMAL CHECKPOINTING STRATEGIES FOR ITERATIVE APPLICATIONS 513

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



But e
�
k
x�1
x tends to infinity when x tends to infinity;

hence, because SDðPÞ �M, we have that ‘ðPÞ is
bounded by a function ofM and k. Hence the result. tu

Proof of Theorem 3. We now conclude the proof of Theo-
rem 3. From Corollary 1, we have a sequence of patterns
ð~PrÞ with at most n checkpoints and of slowdown
SDð ~PrÞ � SDðSÞ þ 1=r � 2SDðSÞ.

From Lemma 3, there exists an upper bound such that,
for all r, ‘ð~PrÞ � ~W . We show that there is only a
bounded number of patterns that satisfy this property:

� Since the length of a pattern is a multiple of T ¼Pn�1
i¼0 ti, there are at mostK ¼ b ~W

T c possible lengths.
� For a length kT , 1 � k � K, there are kn possible

checkpoint locations and at most n checkpoints,
hence at most kn

n

� �
patterns.

Hence in total, the number of possible patterns is
upper bounded byK Kn

n

� �
. The set fSDð~PrÞjr � 1g is finite

and admits a minimum Smin. Let r0 be one index achiev-
ing the minimum: Smin ¼ SDð~Pr0Þ.

Finally, we show that Smin � SDðSÞ: indeed, otherwise
there would exist r such that Smin > SDðSÞ þ 1

r and we
would have SDð~Pr0Þ > SDð~PrÞ, thereby contradicting
the minimality. Hence the result. tu

4.3 Periodic Schedules

Using the properties of patterns, we are ready to derive The-
orem 1. We start by rewriting the definition of periodic
schedules using patterns. Indeed, the values i0 and k0 from
Definition 4 allow us to define a pattern that is repeated all
throughout the execution. We then select the pattern of min-
imal length that occurs as early as possible:

Definition 8 (Pattern of a periodic schedule). Given a
periodic schedule S ¼ ðm1;m2; . . .Þ. Let ðk0; i0Þ be the smallest
pair (for the lexicographic order) that satisfies: for all i > i0,
mi �mi�1 ¼ miþk0 �miþk0�1, and mi0þk0 �mi0 ¼ 0½n�. We
say that

PS ¼ ðmi0 ½n�; ½mi0þ1 �mi0 ; . . .;mi0þk0 �mi0 �Þ;

is the pattern of the schedule.

The lexicographic order means that we select first a pat-
tern of minimal length, and in case of a tie, the pattern that
starts as early as possible.

Theorem 4 (Slowdown of a periodic schedule). Given a
periodic schedule S, its slowdown is equal to the slowdown of
its pattern.

Proof. Given a periodic schedule S, let

PS ¼ ðmi0 ½n�; ½mi0þ1 �mi0 ; . . .;mi0þk0 �mi0 �Þ;

be its pattern. We study the function SDiðSÞ by decom-
posing the schedule up to its ith checkpoint into three
parts: a first part, up to the beginning of the pattern, i.e.,
up to checkpoint number i0, then a number k ¼ bi�mi0

k0
c of

repeating patterns, then a final part (whose length is
smaller than ‘ðPSÞ. The first and final part become negli-
gible as i tends to infinity, hence

SDðSÞ ¼ lim
i!1

SDiðSÞ ¼ CðPSÞ
‘ðPSÞ ¼ SDðPSÞ:

tu
Proof of Theorem 1. Finally, putting everything together,

we obtain the final result: Theorem 3 states that there
exists a pattern P whose slowdown is smaller or equal to
that of an optimal schedule. In addition, Theorem 4 states
that a periodic schedule whose pattern is P has a slow-
down equal to that of P , hence it is optimal. tu

4.4 Finding the Optimal Pattern

In this section, we show how to compute the pattern of an
optimal periodic algorithm. In the following, we say that a
pattern P ¼ ði0; ½m1;m2; . . .;mk0 �Þ is an optimal pattern, if it
has minimal slowdown.

4.4.1 Bounding the Length

Following the Proof: In Lemma 3, we have shown that it
was possible to bound the length of an optimal pattern,
which was helpful to prove the existence of an optimal
pattern. In order to derive an optimal solution, we want
to use a dynamic program whose complexity depends
on the number of tasks in a pattern. Unfortunately, the
previous bound may lead to a number of tasks in the pat-
tern which is not polynomially bounded. We now show
how one can get a tighter bound (Theorem 5). At the end
of this section, we discuss the size of this bound as a
function of the problem instance.

In this section we make intensive use of the following slow-
down function:

fðw; c; rÞ ¼ E�ðw; c; rÞ
w

¼ 1

�
þD

� �
e�r

e�ðwþcÞ � 1

w

� �
: (6)

Note that we implicitly used the slowdown function when
we defined the slowdown of a schedule. We have the fol-
lowing properties:

Lemma 4. We have the following properties of the slowdown
function:

1) w 7! fðw; c; rÞ has a unique minimum wc , is decreas-
ing in the interval ½0; wc� and is increasing in the inter-
val ½wc;1Þ

2) c 7! fðw; c; rÞ (resp. r 7! fðw; c; rÞ) are increasing
functions of c (resp. r).

Proof. 2) is obvious. 1) is the result of [44, Theorem 1]. Note
that a first-order approximation of wc is the well-known

Young/Daly formula wc ¼
ffiffiffiffi
2c
�

q
[3], [4]. tu

While one might want to use wc to minimize f , this is
only possible for divisible applications. Here, we can check-
point only at the end of a task, and the amount of work w
can only be the sum of some task durations.

Consider a path starting after a checkpoint ci (hence with
a recovery ri), and ending in a checkpoint cj. The amount of

514 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



computation w between these two checkpoints is necessarily
of the form

Wi;jðkÞ ¼Wi;j þ k� T; for some k 2 N;

where

(i) T is the length of the iterations (T ¼Pn�1
‘¼0 t‘), and

(ii) Wi;j is the length between the end of task ai and the
end of task aj (possibly of the next iteration), i.e.:
Wi;j ¼

Pj
‘¼iþ1 t‘ (case j > i), or Wi;j ¼ T �Wj;i (case

j < i), orWi;j ¼ T (case j ¼ i).
Additionally, k 7!Wi;jðkÞ is an increasing function, hence

for all pairs ðri; cjÞ, there exists k
?

i;j that minimizes the func-
tion k 7! fðWi;jðkÞ; cj; riÞ. Let W

?

i;j ¼Wi;jðk?

i;jÞ. Because
fðw; cj; riÞ is decreasing for w < wcj , we have W

?

i;j � T <
wcj (otherwise W

?

i;j � T would be a better solution). Finally,
we denote

M
? ¼ max

i
wci þ T:

Then, M
? � maxi;jW

?

i;j, and by construction, we have the
following property forM

?
:

Lemma 5. For all i; j; k1; k2 such that Wi;j þ k1 	 T �
Wi;j þ k2 	 T �M

?
,

fðWi;j þ k1 	 T; cj; riÞ > fðWi;j þ k2 	 T; cj; riÞ:

Finally, we let

k
? ¼ bM?

=Tc; (7)

denote the number of iterations that take place during time
M

?
. We are ready to bound the length between two succes-

sive checkpoints within an optimal pattern:

Lemma 6. Given an optimal pattern, ði0; ½m1;m2; . . .;mk0 �Þ,
then for all 1 � i � k0,mi �mi�1 � 2M

?
(usingm0 ¼ 0).

Following the Proof: In order to show this result, we show
that if the length between two consecutive checkpoints
was larger than the bound, then we could add an inter-
mediate checkpoint and create a pattern of smaller slow-
down.

Proof.We start by a preliminary property that we use in the
following: we show that if the length between two check-
points is too high, then we can create a pattern of better
slowdown by incorporating a checkpoint in the oversized
interval.

Given a pattern P ¼ ði0; ½m1;m2; . . .;mk0 �Þ, and given a
transformation of this pattern into a pattern P 0 of equal
length with an extra checkpoint of cost C (and recovery
R) located between the ði� 1Þth and the ith checkpoint of
P , afterW units of work, one can verify that

SDðP Þ � SDðP 0Þ ¼
E� WP

i ; C
P
i ; R

P
i�1

� �� E� W;C;RP
i�1

� �� E� WP
i �W;CP

i ; R
� �

‘ðP Þ

¼ WP
i

‘ðP Þ f WP
i ; C

P
i ; R

P
i�1

� �� W

‘ðP Þ f W;C;RP
i�1

� �
�WP

i �W

‘ðP Þ f WP
i �W;CP

i ; R
� �

: (8)

Indeed, ‘ðP Þ ¼ ‘ðP 0Þ, and all inter-checkpoint intervals
are identical (and have an equal cost) in P and P 0, except
for the interval inside which the extra checkpoint has
been added.

We can now prove the result. We show the result by
contradiction: assume there exists i � k0 such that mi �
mi�1 > 2M

?
. We denote by i1 ¼ i0 þmi�1 � 1½n� and i2 ¼

i0 þmi � 1½n�
� Assume first that ci2 � ci1 . By monotony, ri2 � ri1 .

We create the pattern P 0 such that we add to P an addi-
tional checkpoint after the task of type i1 at the location
mi�1 þ n 	 k?

(which indeed corresponds to a task of type
i1). Then, using the properties of the slowdown function
f , and becauseWP

i > T 	 k?
, we know that

f T 	 k?
; CP

i�1; R
P
i�1

� � � f T 	 k?
; CP

i ; R
P
i�1

� �
(growth)

< f WP
i ; C

P
i ; R

P
i�1

� � ðshape of fÞ:

Similarly,WP
i > WP

i � T 	 k? �M
?
, then we have

f WP
i � T 	 k?

; CP
i ; R

P
i�1

� � � f WP
i ; C

P
i ; R

P
i�1

� �
:

Finally, plugging back these values into Equation (8), we
obtain that P 0 has a better slowdown than P , contradict-
ing the optimality.
� Assume now that ci2 � ci1 . By monotony, ri2 � ri1 .

With a similar demonstration, we show that by including
a checkpoint of size ci2 at location mi � n 	 k?

(which
indeed corresponds to a task of type i2), leads to the
same result. tu

Theorem 5. There exists an optimal pattern P whose length sat-
isfies ‘ðP Þ � 2nM

?
, and which includes at most 2n2ðk? þ 1Þ

tasks.

Proof. From Lemma 2, we know that there exists an optimal
pattern with at most n checkpoints. Using Lemma 6
which gives a bound on the inter-checkpoint time, we
obtain the bound on the length. Thanks to Equation (7),
we know that a length of M

?
corresponds to at most k

? þ
1 iterations (of n tasks each), which leads to the bound on
the number of tasks. tu
We now need to check that k

?
is polynomial in the size of

the input. The size of the input is Oðnmaxilog tiÞ, or equiva-
lently OðnlogT Þ, because the n values ti are encoded in
binary. Here we make the natural assumption that ci ¼
OðT Þ and ri ¼ OðT Þ for 0 � i � n, meaning that the largest
checkpoint/recovery is not longer than a whole iteration.2

Recall that wci �
ffiffiffiffiffi
2ci
�

q
[3], [4], hence M

? ¼ Oð
ffiffiffiffiffiffiffiffiffiffiffi
maxici

�

q
þ T Þ

and k
? ¼ O 1ffiffiffiffiffi

�T
p þ 1

� �
. We obtain a polynomial value k

? ¼

2. Technically, we can relax the assumption to ci; ri ¼ OðTnÞwithout
increasing the problem size.

DU ET AL.: OPTIMAL CHECKPOINTING STRATEGIES FOR ITERATIVE APPLICATIONS 515

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



OðnlogT Þ as soon as m ¼ 1
� ¼ OðT ðnlogT Þ2Þ. This requires

that the application MTBF is not too large in front of the iter-
ation length, which makes full sense because otherwise we
would not checkpoint more than very rarely, once every
many iterations. In Section 4.4.2, we present a dynamic pro-
gramming algorithm to compute an optimal pattern, whose
complexity is polynomial in n and k

?
. This complexity is

indeed polynomial in the size of the instance under the very
natural assumptions that we made.

Algorithm 1. Finding the Minimum Slowdown of a
Pattern of Size at Most 2n2ðk? þ 1Þ
1: procedure Patternk

?
, n

2: maxK  2nðk? þ 1Þ
3: for i0 ¼ 0 to n� 1 do ⊳ Initialization of ProgDyn
4: for ‘ ¼ 0 to 2n2ðk? þ 1Þ do
5: for b ¼ 1 to n do
6: if ‘ ¼ 0 then
7: Cminði0; ‘þ 1; ‘; bÞ  0
8: else
9: Cminði0;minðmaxK; ‘þ 1Þ; ‘; bÞ  1
10: for k ¼ 1 tominðmaxK; ‘Þ do
11: Cminði0; k; ‘; 0Þ  1
12: for i0 ¼ 0 to n� 1 do ⊳ Precompute

Pk
i¼1 ti0þi½n�

13: W ½i0; 1�  ti0þ1½n�
14: for k ¼ 2 to 2n2ðk? þ 1Þ do
15: W ½i0; k�  W ½i0; k� 1� þ ti0þk½n�
16: for ‘ ¼ 1 to 2n2ðk? þ 1Þ do ⊳ Computing the ProgDyn
17: for i0 ¼ 0 to n� 1 do
18: for k ¼ minðmaxK � 1; ‘Þ downto 1 do
19: for b ¼ 1 to n do
20: Cminði0; k; ‘; bÞ  minðCminði0; kþ 1; ‘; bÞ; E�ðW ½i0;

k�; Ci0þk½n�; Ri0Þ þ Cminði0 þ k½n�; 1; ‘� k; b� 1ÞÞ
21: SD ¼ 1 ⊳ Computing the minimal slowdown.
22: T ¼Pn

i¼1 ti
23: for i0 ¼ 0 to n� 1 do
24: form ¼ 1 to 2nðk? þ 1Þ do
25: SDtemp ¼ Cminðio; 1;mn; nÞ=mT
26: if SDtemp < SD then
27: SD SDtemp

28: return SD

4.4.2 Computing an Optimal Pattern

In the previous section, we have shown the existence of an
optimal pattern of polynomial length. Here, we show how
one can compute an optimal pattern through a dynamic
programming algorithm. This dynamic programming algo-
rithm relies upon the previous results:

� We study patterns P of length at most 2nM
?
(thanks

to Theorem 5), and we know that an optimal pattern
of this length contains a polynomial number of tasks;

� We consider different initial tasks in the pattern
(i0 2 f0; . . .; n� 1g);

� We use the fact that there can be at most n check-
points in the optimal pattern (thanks to Lemma 2).

The following lemma characterizes the minimal cost of a
checkpoint path.

Lemma 7 (Minimum cost of a path). The minimal expected
execution time (or cost) of a checkpoint path (i) of ‘ tasks, (ii)

whose first task is ai0þ1½n�, (iii) with at most b checkpoints, (iv)
where the k� 1 first tasks are not checkpointed and, (v) where
the last task is checkpointed, is given by;

Cminði0; k; ‘; bÞ ¼ min

Cminði0; kþ 1; ‘; bÞ;
E�ð

Pk
i¼1 ti0þi½n�; Ci0þk½n�; Ri0Þ

þ Cminði0 þ k½n�; 1; ‘� k; b� 1Þ

8><
>: ;

(9)

when ‘ > 0 and b > 0, and where we consider the following
initialisation cases:

ðaÞ Cminði0; ‘þ 1; ‘; bÞ ¼ 0 if ‘ ¼ 0

1 otherwise

	
ðbÞ Cði0; k; ‘ > 0; 0Þ ¼ 1:

Please refer to Fig. 6 for a graphical representation of
Cði0; k; ‘; bÞ.
Proof. The result is proven recursively. We start with the

initialisation cases. When no checkpoint is allowed (b ¼ 0,
case ðbÞ), it is not even possible to checkpoint the last task
(as required by condition (v), so the cost is infinite. The
case k ¼ ‘þ 1 leads to ‘ tasks not being checkpointed
(condition (iv)), which contradicts the fact that the last
task is checkpointed (condition (v)), except when the
number of tasks is zero: in this case, we assume that no
task is performed in this path and no checkpoint is taken.

We now move to the general case. Considering a path
that verifies the condition of the lemma, we distinguish
two cases:

(i) The kth task is not checkpointed, which leads to
the first k tasks not being checkpointed, hence the
minimum cost is Cminði0; kþ 1; ‘; b);

(ii) The kth task is checkpointed. The cost of the first part
k� 1 tasks not checkpointed followed by this kth

task and its checkpoint is given by E�ð
Pk

i¼1 ti0þi½n�;
Ci0þk½n�;Ri0Þ. The cost of the rest of the path is recur-
sively expressed as the minimal cost of a path of
length ‘� k that starts after task i0 þ k½n�with b� 1
checkpoints.

We then select the case that leads to the minimal
expected execution time.

Thanks to Lemma 6, we know that in an optimal pat-
tern, there are at most 2nðk? þ 1Þ tasks between two
checkpoints. So we can safely restrict our search space to
k ¼ 1 . . . 2nðk? þ 1Þ and consider that the cost for larger
values of k is infinite. Hence, the previous recursive

Fig. 6. Illustration of the minimum expected execution time Cminði0; k; ‘; bÞ
of a series of ‘ tasks as characterized by Lemma 7.

516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



definition of the cost is applied to the design of the
dynamic programming algorithm (Algorithm 1). tu

Theorem 6. PATTERNðk?
; nÞ (Algorithm 1) returns the slowdown

of the pattern of an optimal periodic schedule with time com-
plexity Oððk? Þ2n5Þ.

Proof. We use the fact that there exists an optimal periodic
schedule whose pattern includes a number m� n of tasks
with m � 2nðk? þ 1Þ and uses at most n checkpoints (see
Theorem 5). Algorithm 1 computes the minimum cost of
all patterns including at most this number of tasks, then
computes the minimum cost of a pattern whose number
of tasks is a multiple of n. The slowdown that we look for
is indeed this cost. The complexity of the algorithm
derives from the loop nest necessary to recursively com-
pute Cmin. tu

5 SIMULATION RESULTS

In this section, we describe the experiments conducted to
compare the proposed optimal checkpointing strategy with
simpler heuristics. We perform simulations on three appli-
cation scenarios: two from real-life applications (neurosci-
ence and sparse linear solver), and one using synthetic
parameters. However, due to lack of space, the description
of the sparse linear solver (a Krylov Subspace method called
GCR [14]), together with the corresponding results, are
available in the Web Supplementary Material (WSM), avail-
able online.

The experimental methodology is presented in Sec-
tion 5.1. The results for the neuroscience application are
detailed in Section 5.2 . The results for the synthetic applica-
tion are detailed in Section 5.3.

5.1 Experimental Methodology

We detail here the applications, the algorithms used in the
simulations and the various settings. All algorithms have
been implemented in MATLAB and R. The corresponding
code is publicly available at [45].

5.1.1 Neuroscience Application

For the first application scenario, we extracted data from a
representative neuroscience application, Spatially Localized
Atlas Network Tiles (SLANT) [46]. This is an iterative appli-
cation composed of N ¼ 103 iterations, and each iteration
has n ¼ 7 tasks. These tasks are described in Table 2, with
parameters taken from [47]. Table 2 reports the mean and
standard deviation of the task execution times, which obey
a Normal probability distribution. The Pearson correlation

of the different tasks was studied in [47], which showed
that the tasks are not correlated except for tasks a0 and a1
which are proportional. For the first set of experiments in
Section 5.2.1, we consider that the tasks are deterministic (as
assumed throughout this work) and use mean values as
execution times (ti ¼ mi). However, for the second set of
experiments in Section 5.2.4, we assess the robustness of our
approach and independently draw execution times from
the Normal distributions for tasks a0; a2; a3; a4; a5; a6, while
a1 is set to be equal to 3:4� a0 due to its high correlation
with a0. We use a downtimeD ¼ 5.

5.1.2 Synthetic Application

The second application scenario is randomly generated. We
consider an iterative application composed of N ¼ 103 itera-
tions, each iteration has n ¼ 10 or 20 cyclic tasks. We assume
that the execution time ti of each task ai follows a probability
distributionD, whereD isUniform½a; b�. The default instantia-
tion for this distribution ismD ¼ 550 forUniform½100; 1000�.

For this application scenario, we set checkpoint times as
ci ¼ hti, where h is the proportion of checkpoint time to the
execution time of each task. We use r ¼ c for the recovery
time and a fixed downtime D ¼ 5, and we conduct experi-
ments with h ¼ 0:1. In theWSM, we report results for another
instantiation of checkpoint times, which are then taken in
Uniform½10; 100�, independently of the task running times.

5.1.3 Failure Scenarios

We consider a wide range of failure rates. To allow for consis-
tent comparisons of results across different iterative pro-
cesses, we fix the probability that a failure occurs during each
iteration,whichwe denote as pfail, and then simulate the corre-
sponding failure rate. Formally, for a given pfail value, we
compute the failure rate � such that pfail ¼ 1� e��T , where T
is the execution time per iteration with n tasks. We conduct
experiments for five pfail values: 10

�3; 10�2; 10�1; 10�0:5 and
10�0:1. For each application, these different values of pfail allow
us to quantify the risk faced during execution. For example,
pfail ¼ 10�2 means one failure will occur every 100 iterations
on average. The risk is highest for pfail ¼ 10�0:1 which corre-
sponds to 1 failure per 1.26 iterations on average, while the
risk is lowest for pfail ¼ 10�3 which corresponds to 1 failure
per 1,000 iterations on average.

Table 3 provides the correspondence between pfail and
actual MTBF values for the neuroscience application. The
base time (without checkpoint nor failure) for one iteration of
the neuroscience application is 7,157 seconds, or almost 2
hours. Thus 1,000 iterations will last 83 days approximately.
For instance we observe that pfail ¼ 10�1 corresponds to one
failure every 19.9 hours, which is typical of several large-scale
HPC machines that experience around one failure per day.
Smaller values of pfail correspond to platforms with fewer fail-
ures, one per week or less. Larger values of pfail represent
more failure-prone platforms, with a failure every few hours.

TABLE 2
Tasks of the Neuroscience Application

Task a0 a1 a2 a3 a4 a5 a6

Mean mi (sec) 255 871 588 459 3050 804 1130

Stdev si (sec) 96.7 322 76.8 48.1 263 393 568

Checkpoint time ci (sec) 22.22 61.11 33.33 50 283.33 16.67 61.11

Recovery time ri (sec) 8.89 24.44 13.33 20 113.33 6.67 24.44

TABLE 3
MTBF for the Neuroscience Application

pfail 10�3 10�2 10�1 10�0:5 10�0:1

MTBF 82.8 days 8.3 days 19.9 hours 6.3 hours 2.5 hours

DU ET AL.: OPTIMAL CHECKPOINTING STRATEGIES FOR ITERATIVE APPLICATIONS 517

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



Altogether, varying the value of pfail enables to explore a wide
range of scenarios.

For the synthetic application, task execution times are
defined up to a constant factor: we can envision an arbitrary
unit of length, ranging from seconds to hours. Then the
value of pfail is more representative of the failure rate than
the MTBF, whose calculation would need to fix the execu-
tion unit. On the contrary, using pfail enables to directly
quantify the risk faced by the application in terms of a fail-
ure probability per iteration.

For each experiment, the simulations are performed on 100
randomly generated instances fI1; . . .; I 100g. For all i, an
instance I i is a pair ðSi;F iÞ, where Si (resp.F i) is the applica-
tion (resp. failure) scenario associated to the instance. For the
neuro-science application, Si corresponds to the values pre-
sented in the previous tables, while for the synthetic applica-
tion scenario, Si is randomly generated as described above.

5.1.4 Reference Strategies

We consider four reference strategies. The first two strategies
are quite natural: (i) CKPTEACHITER consists in checkpointing at
the end of each iteration, that is, a checkpoint is taken after the
last task an�1 of each iteration; and (ii) CKPTEACHTASK consists
in checkpointing after every task ai of every iteration.

The other two strategies are extensions of the Young/Daly
approach for divisible applications where one can checkpoint
at any time-step with constant cost c: then the optimal period
is to checkpoint every wc ¼

ffiffiffiffi
2c
�

q
seconds (see Lemma 4). For

an iterative application, the corresponding approach is to
work for wc seconds and to checkpoint at the end of the cur-
rent task (and repeat). The difficulty is that c is not well-
defined here, because the tasks have different checkpoint
costs. With n tasks of checkpoint costs ci, 0 � i < n, we take

the average cost cave ¼
P

0�i <n
ci

n anddenote the previous strat-
egy using c ¼ cave as CKPTYDAVE.3 Finally, the fourth strategy
CKPTYDPER is a periodic extension of Young/Daly approach:
it chooses the task of an iteration with minimum checkpoint
size cmin. Only the result of this task will (possibly) be check-
pointed. Then it uses the Young-Daly formula to compute
how many iterations to include in between two checkpoints,
namelymax 1; round

wcmin

T

� �� �
.

5.1.5 Presenting Results

We report median values in all experiments, and in the scal-
ability analysis we use boxplots. The color chart is the fol-
lowing: red for CKPTEACHITER, green for CKPTEACHTASK, blue
for CKPTYDAVE and purple for CKPTYDPER.

5.2 Results for the Neuroscience Application

5.2.1 Comparison of the Strategies

In Fig. 7, the makespan of each reference strategy is normal-
ized by the optimal makespan (obtained with Algorithm 1,
hence the lower the better. This presentation allows us to
directly quantify the performance overhead incurred by each
strategy with respect to the optimal approach. Checkpointing
after each task, as done by CKPTEACHTASK, gives worst

performance when pfail is small (very few failures). Its perfor-
mance improves significantly when the number of failures
increases. This behavior is expected as it is a consequence of
the very high number of checkpoints that are taken.

On the contrary, the Young-Daly inspired heuristics
(CKPTYDPER and CKPTYDAVE) gives almost optimal results
when there are very few failures, and they getworsewhen the
number of failures increases. Again, this behavior is expected:
with very few failures, if the frequency of checkpointing is of
the same order of magnitude as in the optimal solution, the
fact that the checkpointing decision that is taken is not optimal
has little impact, because the checkpoint overhead is very low.
With numerous failures, CKPTYDPER, which is limited to at
most one checkpoint per iteration, does not checkpoint often
enough, and the loss in work when there is a failure gets too
expensive; but CKPTYDAVE can checkpoint more frequently,
and its performance degrades less severely, only because it
happens to checkpoint some tasks of high checkpoint cost.

Finally CKPTEACHITER is probably the less interesting strat-
egy as its performance is always worse than CKPTYDPER and
CKPTYDAVE. As pfail increases, its performance first improves
and then gets worse: when pfail is very small, (i) it does not
choose the task with smallest checkpoint size and (ii) it check-
points too often compared to CKPTYDPER and CKPTYDAVE

which would allow to checkpoint after several iterations and
not just one; conversely, when pfail is very large, checkpointing
once after each iteration is not enough, thus the relative cost of
the CKPTEACHITER strategy increases. It is still interesting to
see that the difference with CKPTYDPER remains always small,
while the difference with CKPTYDAVE gets large for frequent
failures. It seems that finding the smallest checkpoint size is
not critical, while finding the best checkpoint frequency is
more important.

For all strategies, when the frequency of failures reaches its
maximal value pfail ¼ 10�0:1 (approximately 4 failures every 5
iterations), then all greedy heuristics perform poorly, and the
optimal solution provides significant gains, even over CKPTY-
DAVEwhich is the best competitor overall.

5.2.2 Absolute Overhead

In Fig. 8, we provide absolute values for the overhead of the
strategies of Fig. 7, for two values of pfail. The time spent for
regular periodic checkpointing, or failure-free overhead, is
represented in green; it is highest for CKPTEACHTASK, as

Fig. 7. Normalized performance overhead with different failure probabili-
ties (neuroscience).

3. We have also experimented with two variants using c ¼ cmin ¼
min0�i<nci, and c ¼ cmax ¼ max0�i<nci. Results are quite similar.

518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



expected. The failure-induced overhead (downtime, recov-
ery and re-execution) is represented in red; it is higher for
CKPTEACHITER and CKPTYDPER. The details of the overheads
are interesting: the optimal strategy is really able to trade-
off checkpointing and failures; it spends roughly three times
less checkpointing than the second best strategy CKPTY-
DAVE, for a similar failure-induced time. As observed in
Fig. 8, with pfail ¼ 10�1, the cumulated overhead (green and
red) ranges from 3.37 to 8.25 percent, while for pfail ¼ 10�0:5,
it ranges from 8.64 to 18.73 percent .

5.2.3 Scalability

In Fig. 9, we study the scalability of the approach by varying
the number of iterations from 10 to 1,000. We see that the
variance is high at first but the performance of each strategy
stabilizes from 100 iterations on.

5.2.4 Robustness

In Fig. 10, we study the robustness of the approach in front
of variations in task execution times, which we draw from
their Normal distributions as stated in Section 5.1.1. The
results of CKPTEACHITER, CKPTEACHTASK and CKPTYDPER are

similar with those in Fig. 7, with deterministic execution
times. However, the results of CKPTYDAVE, which decides
on the fly when to checkpoint, become better and close to
the optimal strategy when pfail gets smaller.

5.3 Results for the Synthetic Application

Results for the synthetic application scenario are reported in
Figs. 11 and 12, with two values of n. When n increases
from 10 to 20, CKPTEACHITER and CKPTYDPER are closer to
the optimal strategy when pfail is small (for 10�3 and 10�2),
but further away when pfail is large (for 10�1, 10�0:5 and
10�0:1); on the contrary, CKPTYDAVE is closer to the optimal
strategy for all pfail values. Altogether, the results are quite
similar to those obtained with the neuroscience application.

5.3.1 Impact of the Checkpoint Time

In the above experiment, we set checkpoint times as ci ¼ hti,
where h is the coefficient of proportionality of checkpoint
time over execution time for each task, and we conducted
experiments with fixed h ¼ 0:1. Here, we vary the value of h
to study the impact of the checkpoint cost on the results. We
conduct experiments with h 2 f0:01; 0:05; 0:10; 0:15; 0:20g,
thereby covering a wide range of scenarios (respectively low,
balanced and high checkpointing cost). Lower checkpoint
costs can be achieved with state-of-the-art in-memory or hier-
archical checkpoint protocols [48], while larger checkpoint
costs correspond to traditional protocols that save application
data on remote disks. In Fig. 13, we provide performance

Fig. 8. Bar plots for absolute overhead (neuroscience).

Fig. 11. Normalized performance overhead with different failure probabil-
ities (synthetic, n ¼ 10).

Fig. 9. Box plots for normalized performance overhead: varying the num-
ber of iterations (neuroscience, pfail ¼ 10�0:5).

Fig. 10. Normalized performance overhead with stochastic execution
times (neuroscience).

DU ET AL.: OPTIMAL CHECKPOINTING STRATEGIES FOR ITERATIVE APPLICATIONS 519

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



overhead with different values of h for the synthetic applica-
tion with n ¼ 10 when pfail ¼ 10�0:5. This figure shows that
CKPTEACHTASK andCKPTYDAVE heuristics benefits froma small
h: their performance gets close to optimalwhen the checkpoint
cost becomes negligible. On the contrary, CKPTEACHITER and
CKPTYDPER heuristics have slightly worse performance com-
pared to the optimal when h is reduced. For more details,
please refer to theWSM.

5.4 Execution Time of the Dynamic Programming
Algorithm

In Table 4, we report the execution time of the dynamic pro-
gramming algorithm for all application scenarios. For the neu-
roscience application, the execution time is always below one
minute. For the synthetic application, the execution time
sharply increases when n doubles from 10 to 20, and reaches
up to 10 minutes for pfail ¼ 10�3. Table 5, explains why: the
number of tasks in the optimal period, estimated by the upper
bound of Theorem 5, becomes huge, while the actual number
of tasks actually occurring in the optimal pattern is much
lower. The bound of Theorem 5 is overly pessimistic, which
increases the execution time of the dynamic programming
algorithm. While 10 minutes for the algorithm is negligible in
front of the 83 days of the application base time, one could eas-
ily decide to use CKPTYDPER, the best reference strategy,
instead of the optimal approach. Indeed, for pfail � 10�2, their
overheads are of the same order.

5.5 Summary

Bar plots of the absolute overheads for all six applications var-
iants and five values of pfail are provided in theWSM. In sum-
mary, no reference heuristic is able to give close-to-optimal
makespan for every value of pfail : CKPTYDPER is better with
very few failures, while CKPTEACHTASK and CKPTYDAVE are
better when there aremany failures. For these extreme scenar-
ios, using the ad-hoc greedy heuristic is a good solution to
trade-off the complexity of finding the solution with the gain
in performance. However, in intermediary scenarios, the best
reference heuristic can still increase the time to solution by 10
percent compared to the optimal one, showing the importance
of computing the correct solution! Finally, when checkpoint
costs can be kept very low, e.g., owing to checkpoint libraries
such as VeloC [48], our experiments show that it is safe to use
any heuristic that checkpoints sufficiently often, such as
CKPTEACHTASK or CKPTYDAVE, because their performance gets
close to the optimal solution. Altogether, the best competitors
are CKPTYDPER and CKPTYDAVE, but none of them is always
superior to the other, while our proposed optimal scheme
enables us to carefully optimize the checkpoint pattern for all
problem instances.

As for the relevance to exascale HPC scenarios, consider
for instance the synthetic application (see Figs. 22 and 23
of the WSM), available online. When pfail is low (10�3 to
10�1), all methods are good, except CKPTEACHTASK whose
checkpoint overhead is prohibitive. When pfail increases to
10�0:5, the overheads of CKPTEACHITER and CKPTYDPER are
twice larger than that of CKPTYDAVE, while CKPTEACHTASK

achieves intermediate results. Finally, for the highest value
pfail ¼ 10�0:1, the best competitor is CKPTEACHTASK, followed
by CKPTYDAVE, but the difference with the optimal solution
gets much larger for all methods. How realistic is the latter
value pfail ¼ 10�0:1 for a future exascale HPC application
running on 1 million cores, each with individual MTBF of
10 years? the application will experience a crash every 5

Fig. 12. Normalized performance overhead with different failure probabil-
ities (synthetic, n ¼ 20).

Fig. 13. Performance overhead with different values of h for the synthetic
application with n ¼ 10, ci ¼ hti and pfail ¼ 10�0:5.

TABLE 4
Execution Time (seconds) of the Dynamic

Programming Algorithm

pfail 10�3 10�2 10�1 10�0:5 10�0:1

Neuroscience 5.46 0.88 0.21 0.21 0.22

Synthetic, n ¼ 10 27.49 5.16 1.27 1.25 1.33

Synthetic, n ¼ 20 550.89 95.49 46.75 43.37 46.07

TABLE 5
Number of Tasks From the Bound of Theorem 5 and in the

Optimal Pattern for the Neuroscience Application

pfail 10�3 10�2 10�1 10�0:5 10�0:1

Neuroscience: Bound 980 392 196 196 196
Neuroscience: Optimal pattern 14 7 7 7 7

Synthetic, n ¼ 10: Bound 1,800 800 400 400 400
Synthetic, n ¼ 10: Optimal pattern 150 50 50 20 10

Synthetic, n ¼ 20: Bound 5,600 2,400 1,600 1,600 1,600
Synthetic, n ¼ 20: Optimal pattern 200 180 20 20 20

520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



minutes; if an iteration lasts 4 minutes, this corresponds pre-
cisely to pfail ¼ 10�0:1.

6 CONCLUSION

In this work, we have investigated checkpointing strategies
for iterative applications. Each iteration is composed of a
chain of tasks, and these tasks have different lengths and
different checkpoint costs. Simple approaches would check-
point either every task, or the last task at the end of each
iteration. An approach inspired by the Young/Daly formula
works for PYD seconds, where PYD comes from the Young/
Daly formula with a checkpoint cost averaged over all tasks,
and then checkpoints as soon as possible (and repeats).
Another approach inspired by the Young/Daly formula
selects the task with lowest checkpoint cost and checkpoints
every pth instance of that task, where p is computed so that
the period length approximately obeys the formula. But
what is the optimal strategy? The main contributions of this
paper are threefold: (i) we have shown that there exists a
periodic strategy that is optimal; (ii) we have provided a
dynamic-programming algorithm that computes the opti-
mal period; and (iii) we have shown through a set of experi-
ments that the gains over the other approaches are
significant, and that the optimal strategy is the only one
achieving a robust solution for all problem instances cases.
Given the importance of iterative applications in HPC, we
expect that these contributions will greatly improve the
deployment of resilient solutions at scale.

Future work will be devoted to dealing with iterative
applications whose iterations are composed of a Directed
Acyclic Graph (DAG) of tasks, not just a linear chain. Such
applications are ubiquitous in real-time systems. However,
the mere fact that several tasks may execute concurrently on
the platform raises very complicated challenges [6], [49],
and most likely only heuristic (suboptimal) algorithms will
be obtained.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their com-
ments and suggestions, which greatly helped improve the
final version of the article.

REFERENCES

[1] Top500, “Top 500 supercomputer sites,” Nov. 2020. [Online].
Available: https://www.top500.org/lists/2020/11/

[2] T. Herault and Y. Robert, Fault-Tolerance Techniques for High-Perfor-
mance Computing, Cham, Switzerland: Springer, 2015.

[3] J. W. Young, “A first order approximation to the optimum check-
point interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, Sep.
1974.

[4] J. T. Daly, “A higher order estimate of the optimum checkpoint
interval for restart dumps,” Future Gener. Comput. Syst., vol. 22,
no. 3, pp. 303–312, Feb. 2006.

[5] S. Toueg and O. Babao�glu, “On the optimum checkpoint selection
problem,” SIAM J. Comput., vol. 13, no. 3, pp. 630–649, Aug. 1984.

[6] L. Han, L.-C. Canon, H. Casanova, Y. Robert, and F. Vivien,
“Checkpointing workflows for fail-stop errors,” IEEE Trans.
Comput., vol. 67, no. 8, pp. 1105–1120, Aug. 2018.

[7] Y. Du, L. Marchal, G. Pallez, and Y. Robert, “Robustness of the
Young/Daly formula for stochastic iterative applications,” in 49th
Int. Conf. Parallel Process., 2020, 1–11.

[8] G. Aupy, A. Benoit, H. Casanova, and Y. Robert, “Checkpointing
strategies for scheduling computational workflows,” Int. J. Netw.
Comput., vol. 6, no. 1, pp. 2–26, Jan. 2016.

[9] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.,
Philadelphia, PA, USA: Soc. Ind. Appl. Math., 2003.

[10] S. P. Frankel, “Convergence rates of iterative treatments of partial
differential equations,” Math. Tables Other Aids Comput., vol. 4,
no. 30, pp. 65–75, Apr. 1950.

[11] D. Young, “Iterative methods for solving partial difference equa-
tions of elliptic type,” Trans. Amer. Math. Soc., vol. 76, no. 1,
pp. 92–111, Jan. 1954.

[12] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
SIAM J. Sci. Statist. Comput., vol. 7, no. 3, pp. 856–869, Mar. 1986.

[13] M. H. Gutknecht, “Variants of BICGSTAB for matrices with com-
plex spectrum,” SIAM J. Sci. Comput., vol. 14, no. 5, pp. 1020–1033,
May 1993.

[14] S. C. Eisenstat, H. C. Elman, and M. H. Schultz, “Variational
iterative methods for nonsymmetric systems of linear equa-
tions,” SIAM J. Numer. Anal., vol. 20, no. 2, pp. 345–357, Feb.
1983.

[15] E. Agullo, L. Giraud, A. Guermouche, J. Roman, and M. Zounon,
“Towards resilient parallel linear Krylov solvers: Recover-restart
strategies,” Ph.D. dissertation, INRIA, Rocquencourt, France, 2013.

[16] E. Agullo, L. Giraud, A. Guermouche, J. Roman, and M. Zounon,
“Numerical recovery strategies for parallel resilient Krylov linear
solvers,”Numer. Linear Algebra Appl., vol. 23, no. 5, pp. 888–905, May
2016.

[17] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra, “Recovery pat-
terns for iterative methods in a parallel unstable environment,”
SIAM J. Sci. Comput., vol. 30, no. 1, pp. 102–116, Jan. 2008.

[18] W. L. Oberkampf and C. J. Roy, Verification and Validation in Scien-
tific Computing. Cambridge, U.K.: Cambridge Univ. Press, 2010.

[19] C. J. Roy and W. L. Oberkampf, “A comprehensive framework for
verification, validation, and uncertainty quantification in scientific
computing,” Comput. Methods in Appl. Mech. Eng., vol. 200, no. 25–
28, pp. 2131–2144, 2011.

[20] O. Sertel, J. Kong, H. Shimada, €U. V. Çataly€urek, J. H. Saltz,
and M. N. Gurcan, “Computer-aided prognosis of neuroblastoma
on whole-slide images: Classification of stromal development,”
Pattern Recognit., vol. 42, no. 6, pp. 1093–1103, 2009.

[21] F. Guirado, A. Ripoll, C. Roig, and E. Luque, “Optimizing latency
under throughput requirements for streaming applications on
cluster execution,” in Proc. Cluster Comput., Sep. 2005, pp. 1–10.

[22] K. Knobe, J. M. Rehg, A. Chauhan, R. S. Nikhil, and U. Ramachan-
dran, “Scheduling constrained dynamic applications on clusters,”
in Proc. ACM/IEEE Conf. Supercomput., New York, NY, USA, 1999,
pp. 46–es.

[23] A. Choudhary et al., “Design, implementation and evaluation of
parallel pipelined STAP on parallel computers,” IEEE Trans.
Aerosp. Electron. Syst., vol. 36, no. 2, pp. 655–662, Apr. 2000.

[24] T. D. R. Hartley, A. R. Fasih, C. A. Berdanier, F. Ozguner, and €U.
V. Çataly€urek, “Investigating the use of GPU-accelerated nodes
for SAR image formation,” in Proc. IEEE Int. Conf. Cluster Comput.
Workshops, 2009, pp. 1–8.

[25] C. Chekuri, W. Hasan, and R. Motwani, “Scheduling problems in
parallel query optimization,” in Proc. 14th ACM SIGACT-
SIGMOD-SIGART Symp. Princ. Database Syst., New York, NY,
USA: 1995, pp. 255–265.

[26] A. Rowe, D. Kalaitzopoulos, M. Osmond, M. Ghanem, and
Y. Guo, “The discovery net system for high throughput bio-
informatics,” Bioinformatics, vol. 19, no. Suppl 1, pp. i225–i231,
2003.

[27] F. Guirado, A. Ripoll, C. Roig, A. Hernandez, and E. Luque,
“Exploiting throughput for pipeline execution in streaming image
processing applications,” in Proc. Euro-Par Parallel Process., 2006,
pp. 1095–1105.

[28] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman, “Workflow man-
agement in GriPhyN,” Grid Resource Management: State of the Art
and Future Trends, pp. 99–116, 2004.

[29] J. Kim, Y. Gil, and M. Spraragen, “A knowledge-based approach
to interactive workflow composition,” in Proc. 14th Int. Conf.
Automat. Planning Scheduling, 2004.

[30] Z. Chen, “Online-ABFT: An online algorithm based fault tolerance
scheme for soft error detection in iterative methods,” ACM
SIGPLAN Notices, vol. 48, no. 8, pp. 167–176, 2013.

DU ET AL.: OPTIMAL CHECKPOINTING STRATEGIES FOR ITERATIVE APPLICATIONS 521

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 

https://www.top500.org/lists/2020/11/


[31] D. Tao et al., “New-sum: A novel online ABFT scheme for general
iterative methods,” in Proc. 25th ACM Int. Symp. High-Perform.
Parallel Distrib. Comput., 2016, pp. 43–55.

[32] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen,
“Fault-tolerant linear solvers via selective reliability,” 2012,
arXiv:1206.1390.

[33] J. Elliott, M. Hoemmen, and F. Mueller, “Evaluating the impact of
SDC on the GMRES iterative solver,” in Proc. IEEE 28th Int. Parallel
Distrib. Process. Symp., 2014, pp. 1193–1202.

[34] P. Sao and R. Vuduc, “Self-stabilizing iterative solvers,” in Proc.
Workshop Latest Adv. Scalable Algorithms Large-Scale Syst., 2013,
pp. 1–8.

[35] M. E. Ozturk, G. Agrawal, Y. Li, and C.-S. Chou, “Handling soft
errors in Krylov subspace methods by exploiting their numerical
properties,” 2020. [Online]. Available: https://easychair.org/
publications/preprint/BmZG

[36] Z. Chen, “Algorithm-based recovery for iterative methods with-
out checkpointing,” in Proc. 20th Int. Symp. High Perform. Distrib.
Comput., 2011, pp. 73–84.

[37] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Improving per-
formance of iterative methods by lossy checkponting,” in Proc.
27th Int. Symp. High-Perform. Parallel Distrib. Comput., 2018,
pp. 52–65.

[38] C. Pachajoa, M. Levonyak, and W. N. Gansterer, “Extending and
evaluating fault-tolerant preconditioned conjugate gradient meth-
ods,” in Proc. IEEE/ACM 8th Workshop Fault Tolerance for HPC at
eXtreme Scale, 2018, pp. 49–58.

[39] C. Pachajoa, M. Levonyak, W. N. Gansterer, and J. L. Tr€aff, “How
to make the preconditioned conjugate gradient method resilient
against multiple node failures,” in Proc. 48th Int. Conf. Parallel
Process., 2019, pp. 1–10.

[40] C. Pachajoa, C. Pacher, M. Levonyak, and W. N. Gansterer,
“Algorithm-based checkpoint-recovery for the conjugate gradient
method,” in Proc. 49th Int. Conf. Parallel Process., 2020, pp. 1–11.

[41] K. M. Chandy and L. Lamport, “Distributed snapshots: Determin-
ing global states of distributed systems,” ACM Trans. Comput.
Syst., vol. 3, no. 1, pp. 63–75, Jan. 1985.

[42] K. Ferreira et al., “Evaluating the Viability of Process Replication
Reliability for Exascale Systems,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2011, pp. 1–12.

[43] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomput. Front.
Innov., vol. 1, no. 1, pp. 5–18, 2014.

[44] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien,
“Checkpointing strategies for parallel jobs,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2011, pp. 1–11.

[45] Y. Du, “Code for simulations,” 2020. [Online]. Available: https://
github.com/Yishu0604/Optimal-Checkpointing-Strategies-for-
Itera tive-Applications

[46] Y. Huo et al., “3D whole brain segmentation using spatially local-
ized atlas network tiles,” NeuroImage, vol. 194, pp. 105–119, Jul.
2019.

[47] A. Gainaru, B. Goglin, V.Honor�e, andG. Pallez, “Profiles of upcom-
ing HPC applications and their impact on reservation strategies,”
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 5, pp. 1178–1190,
May 2021.

[48] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and
F. Cappello, “VeloC: Towards high performance adaptive asyn-
chronous checkpointing at large scale,” in Proc. Int. Parallel Distrib.
Process. Symp., 2019, pp. 911–920.

[49] L. Han, V. Le F �evre, L.-C. Canon, Y. Robert, and F. Vivien, “A
generic approach to scheduling and checkpointing workflows,”
Int. J. High Perform. Comput. Appl., vol. 33, no. 6, pp. 1255–1274,
Aug. 2019.

Yishu Du is currently working toward the dual
PhD degrees with Computer Science Laboratory
LIP, ENS Lyon and the School of Mathematics
Sciences, Tongji University, Shanghai, China. His
research interests include resilience and schedul-
ing problems for large-scale platforms.

Loris Marchal graduated in computer sciences
and the PhD from the �Ecole Normale Sup�erieure
de Lyon, ENS Lyon, France, in 2006. He is cur-
rently a CNRS researcher with the LIP Laboratory
of ENS Lyon. His research interests include par-
allel computing and scheduling for modern com-
puting platforms, memory-aware and data-aware
scheduling.

Guillaume Pallez is currently a tenured researcher
with Inria Bordeaux–Sud-Ouest. His research inter-
ests include algorithmdesign and scheduling techni-
ques for parallel and distributed platforms, such as
data-aware scheduling and stochastic scheduling.
He was the Technical Program vice-chair of SC’17,
workshop chair of SC’18, and algorithm track vice-
chair of ICPP’18. He was the recipient of 2019 IEEE
TCHPCEarly Career Researcher Award.

Yves Robert (Fellow, IEEE) is currently a full pro-
fessor with Computer Science Laboratory LIP,
ENS Lyon. He is a Senior Member of Institut Uni-
versitaire de France. He has been awarded the
2014 IEEE TCSCAward for Excellence in Scalable
Computing, 2016 IEEE TCPPOutstanding Service
Award, and 2020 IEEE CS Charles Babbage
Award. He holds a Visiting Scientist position at the
Innovative Computing Laboratory at University of
Tennessee, Knoxville, since 2011. His research
interests include scheduling techniques, parallel

algorithms and resilient approaches for large-scale platforms. For more
information please visit http://graal.ens-lyon.fr/
yrobert/

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Glasgow. Downloaded on August 19,2021 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 

https://easychair.org/publications/preprint/BmZG
https://easychair.org/publications/preprint/BmZG
https://github.com/Yishu0604/Optimal-Checkpointing-Strategies-for-Itera tive-Applications
https://github.com/Yishu0604/Optimal-Checkpointing-Strategies-for-Itera tive-Applications
https://github.com/Yishu0604/Optimal-Checkpointing-Strategies-for-Itera tive-Applications
http://graal.ens-lyon.fr/~yrobert/
http://graal.ens-lyon.fr/~yrobert/


1

WEB SUPPLEMENTARY MATERIAL
Optimal Checkpointing Strategies

for Iterative Applications
Yishu Du, Loris Marchal, Guillaume Pallez (Aupy) and Yves Robert

F

1 THE GCR APPLICATION

The second real-life application scenario is GCR, a Krylov
Subspace method [?EES83] solving the m-dimensional
sparse linear system Ax = b. Each iteration of the method
is divided into n sub-iterations, whose computational and
memory requirements increase from one sub-iteration to the
next. The common way to control the number of iterative
steps within an acceptable range is to adopt a restart strat-
egy [?Young1980,?Simoncini2000,?Saad2003], that is,
to fix a small value n (usually much less than m, such as
10, 20, etc.). If the last n-th sub-iteration does not lead to
convergence, then the approximate solution xn is used as
the initial value of a new iteration, and the GCR method
is restarted. The process is repeated until a satisfactory
approximate solution is found, as detailed in Algorithm 1.

Algorithm 1 GCR(n)

1: x0, r0 = Ax0 − b, p0 = P−1r0, q0 = Ap0

2: for k = 1, 2, . . . , until convergence do
3: for i = 0, 1, . . . , n− 1 do

4: β=
(ri,qi)
(qi,qi) . 4m− 1

5: xi+1 = xi + βpi . 2m
6: ri+1 = ri + βqi . 2m
7: if

∥∥ri+1
∥∥ ≤ ε then

8: exit
9: e = P−1ri+1 . 3m− 1

10: ẽ = Ae . 2nz(A)− 1
11: for l = 0, 1, . . . , i do

12: αl =
(ẽ,ql)
(ql,ql)

. (i+ 1)(4m− 1)

13: pi+1 = e+
i∑

l=0
αlp

l . m+ (i+ 1)m

14: qi+1 = ẽ+
i∑

l=0
αlq

l . m+ (i+ 1)m

15: [x0, r0,p0, q0]← [xn, rn,pn, qn]

• Yishu Du is with Tongji University, Shanghai, China. Loris Marchal and
Yves Robert are with LIP, École Normale Supérieure de Lyon, CNRS
& Inria, France. Guillaume Pallez (Aupy) is with Inria & Université
de Bordeaux, France. Yishu Du is also with LIP, ENS Lyon. Yves
Robert is also with University of Tennessee Knoxville, USA. Contact:
Yves.Robert@ens-lyon.fr.

We consider an iterative application composed of N =
103 iterations, and each iteration (outer loop k) has either
n = 10 or n = 20 tasks. Each task corresponds to one
sub-iteration of the loop on i. The number of non-zero
elements of sparse matrix A is denoted as nz(A). We assume
that m = 100000, nz(A) = 27m, and the preconditioner
matrix P is a diagonal matrix in the simulation. We pick
(somewhat arbitrarily) 27 because it is the size of a 3× 3× 3
cube for a neighborhood of interactions, so the matrix has
27 diagonals (3D-stencil for Jacobi or Gauss-Seidel, typi-
cally). The number of floating-point operations for task i
is fi = (6m− 1)i+ 19m− 4 + 2nz(A), see Table 1.

We use incremental checkpointing [?Agarwal04,
?Naksinehaboon08] for GCR(n). The vectors that need to
be saved if we checkpoint after task i and the corresponding
size ci of the checkpoint are detailed in Table 1. Similarly, the
vectors that need to be recovered if we experiment a failure
task ai and the corresponding size ri of the recovery are also
detailed in Table 1. We observe that ci remains constant and
small for all i, owing to the incremental checkpointing tech-
nique. Of course, the larger i, the more vectors to recover,
and ri is increasing. Since the checkpoint cost of each task
is constant, the CKPTYDPER heuristic chooses the task with
minimum recovery size rmin. Only the result of this task
will (possibly) be checkpointed. Then it also uses the Young-
Daly formula to compute how many iterations to include in
between two checkpoints, namely max

(
1, round

(
wc

T

))
.

We consider here that the computing platform has unit
speed s = 1, so that ti = fi/s = fi. In order to
test different scenarios for the relative cost of checkpoint
compared to computations, we define the Communication-
to-Computation Ratio (CCR) as ratio between the cost of
communicating one byte to the cost of computing one flop.
With the choice s = 1, the CCR is exactly the inverse
of the bandwidth. Hence, from the size of the memory
to checkpoint Mi, we compute the time for a checkpoint:
ci =Mi×CCR. Similarly, we let ri =M ′i ×CCR, where the
size of the memory to recover is M ′i .

We conducted experiments with CCR ∈
{0.1, 0.2, 1, 5, 10}, thereby covering a wide range
of scenarios (respectively low, balanced and high
communication cost).

Results for the GCR application are reported in Figures 1
to 10, with two values of n and five values of CCR.



2

Task Floating point operations fi Vectors to checkpoint Mi Vectors to recover M ′i
a0 19m− 4 + 2nz(A) p1, q1, r1,x1 4m p0,p1, q0, q1, r1,x1 6m
a1 (6m− 1) + 19m− 4 + 2nz(A) p2, q2, r2,x2 4m p0,p1,p2, q0, q1, q2, r2,x2 8m
. . . . . . . . . . . . . . . . . .
an−2 (6m− 1)(n− 2) + 19m− 4 + 2nz(A) pn−1, qn−1, rn−1,xn−1 4m p0, . . . ,pn−1, q0, . . . , qn−1, rn−1,xn−1 (2n+ 2)m
an−1 (6m− 1)(n− 1) + 19m− 4 + 2nz(A) p0, q0, r0,x0 4m p0, q0, r0,x0 4m

Table 1: Tasks composing the GCR application.

1.0

1.2

1.4

1.6

1.8

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 1: Performance overhead with different failure prob-
abilities for GCR(n), with n=10 and CCR = 0.1.

1.0

1.2

1.4

1.6

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 2: Performance overhead with different failure prob-
abilities for GCR(n), with n=10 and CCR = 0.2.

When the CCR increases, CKPTEACHITER and CKPTY-
DPER are further away from the optimal strategy when pfail
is small (for 10−3 and 10−2), while both strategies are closer
to the optimal strategy when pfail is large (for 10−1, 10−0.5

and 10−0.1); CKPTEACHTASK and CKPTYDAVE are further
away from the optimal strategy for all pfail values.

In addition, when n increases from 10 to 20, CKPTEA-
CHITER, CKPTYDPER and CKPTYDAVE are closer to the
optimal strategy, while CKPTEACHTASK keeps a high over-
head (with a ratio up to 1.5 to the optimal.

1.0

1.2

1.4

1.6

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 3: Performance overhead with different failure prob-
abilities for GCR(n), with n=10 and CCR = 1.

1.0

1.1

1.2

1.3

1.4

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 4: Performance overhead with different failure prob-
abilities for GCR(n), with n=10 and CCR = 5.



3

1.0

1.2

1.4

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al
strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 5: Performance overhead with different failure prob-
abilities for GCR(n), with n=10 and CCR = 10.

1.0

1.2

1.4

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 6: Performance overhead with different failure prob-
abilities for GCR(n), with n=20 and CCR = 0.1.

1.0

1.2

1.4

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 7: Performance overhead with different failure prob-
abilities for GCR(n), with n=20 and CCR = 0.2.

1.0

1.1

1.2

1.3

1.4

1.5

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 8: Performance overhead with different failure prob-
abilities for GCR(n), with n=20 and CCR = 1.

1.0

1.1

1.2

1.3

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 9: Performance overhead with different failure prob-
abilities for GCR(n), with n=20 and CCR = 5.

1.0

1.2

1.4

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 10: Performance overhead with different failure prob-
abilities for GCR(n), with n=20 and CCR = 10.



4

2 ADDITIONAL EXPERIMENTS WITH SYNTHETIC
APPLICATIONS

2.1 Impact of Communication-to-Computation Ratio
(CCR)

An important factor that influences the performance of
checkpointing strategies, and more precisely of the check-
pointing and recovery overheads, is the data-intensiveness
of the application. For the synthetic application, in order
to test the impact of the correlation between checkpoint
costs and task running times on the strategies, we let the
checkpoint time move from dependent to independent of
the task running time (see Figures 11 and 12).

1.0

1.2

1.4

1.6

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 11: Performance overhead with different failure prob-
abilities for the synthetic application with n = 10 and ci
drawn in UNIFORM[10, 100].

1.0

1.2

1.4

1.6

1.8

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 12: Performance overhead with different failure prob-
abilities for the synthetic application with n = 20 and ci
drawn in UNIFORM[10, 100].

2.2 Impact of checkpoint time
In this section, we vary the checkpointing cost of each task
in order to study its influence on the results. We have two
settings for the checkpointing cost. First, we consider that
the checkpointing time is proportional to the task execu-
tion time, as assumed in the main paper: Ci = ηti. We
have previously considered η = 0.1, and we conduct here
experiments with η ∈ {0.01, 0.05, 0.10, 0.15, 0.20} thereby
covering a wide range of scenarios (respectively low, bal-
anced and high checkpointing cost). Lower checkpoint costs
can be achieved with state-of-the-art in-memory or hier-
archical checkpoint protocols [?veloc2019], while larger
checkpoint costs correspond to traditional protocols that
save application data on remote disks.

Second, as in the previous section of this supplemen-
tary material, we set checkpoint times taken uniformly at
random in some interval. We now set checkpoint times
taken in UNIFORM[100η, 1000η] to also cover wider range of
scenarios (recall that the average task length is 550 seconds).

Results for varying the value of η are reported in Fig-
ures 13 to 17 with the five pfail values and the two checkpoint
settings (proportional or uniform).

We first observe that the distribution of checkpoint times
(proportional to the task execution time or uniform) has
very little impact of the results. However, the heuristics do
behave very differently when varying checkpoint time, and
their behavior also depends on the failure probability.

When pfail is small (10−3 or 10−2), we note that the
CKPTEACHITER heuristic (in red) performs worse and fur-
ther away from the optimal strategy when η gets larger; for
larger values of pfail, its performance is slightly improved
when η gets larger.

The performance of the CKPTEACHTASK (in green)
heuristic becomes worse and further away from the optimal
strategy when η gets larger for all pfail values.

When pfail is very small (10−3), the performance CKP-
TYDAVE heuristic (in blue) is quite close with the optimal
strategy for all values of η; when pfail is small (10−2 or 10−1),
it is improved when η gets smaller. Finally, when pfail is large
(10−0.5 or 10−0.1), the performance of CKPTYDAVE slightly
varies with η, but it is almost optimal for small values of η.

The performance of the CKPTYDPER heuristic (in pur-
ple) is very close to the optimal strategy when pfail is
small (10−3 or 10−2). For larger failure probabilities, its
performance is improved when η gets larger.

Overall, heuristics CKPTEACHTASK and CKPTYDAVE
benefits from a very small checkpoint time: when the over-
head due to checkpointing is negligible, these heuristics
reach an optimal makespan.



5

1.00

1.05

1.10

1.15

1.20

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(a) Proportional checkpoint time: ci = ηti

1.00

1.05

1.10

1.15

1.20

1.25

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(b) Uniform checkpoint time: ci ∈ UNIFORM(100η, 1000η)

Figure 13: Performance overhead with different values of η for the synthetic application with n = 10 and pfail = 10−3.

1.00

1.05

1.10

1.15

1.20

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(a) Proportional checkpoint time: ci = ηti

1.00

1.05

1.10

1.15

1.20

1.25

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al
strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(b) Uniform checkpoint time: ci ∈ UNIFORM(100η, 1000η)

Figure 14: Performance overhead with different values of η for the synthetic application with n = 10 and pfail = 10−2.

1.00

1.05

1.10

1.15

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(a) Proportional checkpoint time: ci = ηti

1.00

1.05

1.10

1.15

1.20

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(b) Uniform checkpoint time: ci ∈ UNIFORM(100η, 1000η)

Figure 15: Performance overhead with different values of η for the synthetic application with n = 10 and pfail = 10−1.



6

1.000

1.025

1.050

1.075

1.100

1.125

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(a) Proportional checkpoint time: ci = ηti

1.00

1.05

1.10

1.15

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(b) Uniform checkpoint time: ci ∈ UNIFORM(100η, 1000η)

Figure 16: Performance overhead with different values of η for the synthetic application with n = 10 and pfail = 10−0.5.

1.0

1.2

1.4

1.6

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(a) Proportional checkpoint time: ci = ηti

1.0

1.2

1.4

1.6

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(b) Uniform checkpoint time: ci ∈ UNIFORM(100η, 1000η)

Figure 17: Performance overhead with different values of η for the synthetic application with n = 10 and pfail = 10−0.1.



7

3 ABSOLUTE OVERHEAD FOR ALL SCENARIOS

p
fail

=
1
0
−
3

p
fail

=
1
0
−
2

p
fail

=
1
0
−
1

p
fail

=
1
0
−
0
.5

p
fail

=
1
0
−
0
.1

CKPTEACHITER CKPTEACHTASK CKPTYDPER CKPTYDAVE CKPTOPT

0.0e+00

5.0e+06

1.0e+07

1.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

strategy

m
ak

es
pa

n

group Failure RegCkpt Basetime

Figure 18: Bar plots for absolute overhead (neuroscience).



8

p
fail

=
1
0
−
3

p
fail

=
1
0
−
2

p
fail

=
1
0
−
1

p
fail

=
1
0
−
0
.5

p
fail

=
1
0
−
0
.1

CKPTEACHITER CKPTEACHTASK CKPTYDPER CKPTYDAVE CKPTOPT

0e+00

5e+10

1e+11

0e+00

5e+10

1e+11

0e+00

5e+10

1e+11

0e+00

5e+10

1e+11

0e+00

5e+10

1e+11

strategy

m
ak

es
pa

n

group Failure RegCkpt Basetime

Figure 19: Bar plots for absolute overhead (GCR, n = 10 and
CCR = 0.1).

p
fail

=
1
0
−
3

p
fail

=
1
0
−
2

p
fail

=
1
0
−
1

p
fail

=
1
0
−
0
.5

p
fail

=
1
0
−
0
.1

CKPTEACHITER CKPTEACHTASK CKPTYDPER CKPTYDAVE CKPTOPT

0e+00

5e+10

1e+11

0e+00

5e+10

1e+11

0e+00

5e+10

1e+11

0e+00

5e+10

1e+11

0e+00

5e+10

1e+11

strategy

m
ak

es
pa

n

group Failure RegCkpt Basetime

Figure 20: Bar plots for absolute overhead (GCR, n = 10 and
CCR = 1).



9

p
fail

=
1
0
−
3

p
fail

=
1
0
−
2

p
fail

=
1
0
−
1

p
fail

=
1
0
−
0
.5

p
fail

=
1
0
−
0
.1

CKPTEACHITER CKPTEACHTASK CKPTYDPER CKPTYDAVE CKPTOPT

0.0e+00

5.0e+10

1.0e+11

1.5e+11

0.0e+00

5.0e+10

1.0e+11

1.5e+11

0.0e+00

5.0e+10

1.0e+11

1.5e+11

0.0e+00

5.0e+10

1.0e+11

1.5e+11

0.0e+00

5.0e+10

1.0e+11

1.5e+11

strategy

m
ak

es
pa

n

group Failure RegCkpt Basetime

Figure 21: Bar plots for absolute overhead (GCR, n = 10 and
CCR = 10).

p
fail

=
1
0
−
3

p
fail

=
1
0
−
2

p
fail

=
1
0
−
1

p
fail

=
1
0
−
0
.5

p
fail

=
1
0
−
0
.1

CKPTEACHITER CKPTEACHTASK CKPTYDPER CKPTYDAVE CKPTOPT

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

strategy

m
ak

es
pa

n

group Failure RegCkpt Basetime

Figure 22: Bar plots for absolute overhead (synthetic, n = 10
and ci = 0.1 ∗ ti).



10

p
fail

=
1
0
−
3

p
fail

=
1
0
−
2

p
fail

=
1
0
−
1

p
fail

=
1
0
−
0
.5

p
fail

=
1
0
−
0
.1

CKPTEACHITER CKPTEACHTASK CKPTYDPER CKPTYDAVE CKPTOPT

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

strategy

m
ak

es
pa

n

group Failure RegCkpt Basetime

Figure 23: Bar plots for absolute overhead (synthetic, n = 10
and ci drawn in UNIFORM[10, 100].


	TPDS
	supplemental-tpds-third_round
	The GCR application
	Additional experiments with synthetic applications
	Impact of Communication-to-Computation Ratio (CCR)
	Impact of checkpoint time

	Absolute overhead for all scenarios

	TPDS

	页面提取自－TPDS


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


