
DESIGN
Ginkgo1 is a C++ framework for sparse linear algebra. Using a universal 
linear operator abstraction, Ginkgo provides basic building blocks like the 
sparse matrix vector product for a variety of matrix formats, iterative 
solvers, and preconditioners. Ginkgo targets multi- and many-core 
systems, and currently features back-ends for AMD GPUs, Intel GPUs, 
NVIDIA GPUs, and OpenMP-supporting architectures. Core functionality is 
separated from hardware-specific kernels for easy extension to other 
architectures, with runtime polymorphism selecting the proper kernels.

SUSTAINABLE SOFTWARE DEVELOPMENT
Ginkgo is part of the Extreme-scale Scientific Software Stack (E4S) and the 
extreme-scale Software Development Kit (xSDK), and adopts the xSDK 
community policies for sustainable software development and high 
software quality. The source code of the Ginkgo library can be accessed in a 
public git repository on GitHub. Code development in Ginkgo is realized in 
a Continuous Integration / Continuous Benchmarking framework. GitLab 
runners are used on a private server where Docker images are used to 
provide different execution environments. To test the correct execution, 
each functionality is complemented by unit tests. The unit testing is 
realized using the Google Test framework.
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