
DESIGN
Ginkgo1 is a C++ framework for sparse linear algebra. Using a universal
linear operator abstraction, Ginkgo provides basic building blocks like the
sparse matrix vector product for a variety of matrix formats, iterative
solvers, and preconditioners. Ginkgo targets multi- and many-core
systems, and currently features back-ends for AMD GPUs, Intel GPUs,
NVIDIA GPUs, and OpenMP-supporting architectures. Core functionality is
separated from hardware-specific kernels for easy extension to other
architectures, with runtime polymorphism selecting the proper kernels.

SUSTAINABLE SOFTWARE DEVELOPMENT
Ginkgo is part of the Extreme-scale Scientific Software Stack (E4S) and the
extreme-scale Software Development Kit (xSDK), and adopts the xSDK
community policies for sustainable software development and high
software quality. The source code of the Ginkgo library can be accessed in a
public git repository on GitHub. Code development in Ginkgo is realized in
a Continuous Integration / Continuous Benchmarking framework. GitLab
runners are used on a private server where Docker images are used to
provide different execution environments. To test the correct execution,
each functionality is complemented by unit tests. The unit testing is
realized using the Google Test framework.

COMPONENTS

 A SPARSE LINEAR ALGEBRA LIBRARY FOR HPC
Hartwig Anzt, Natalie Beams, Terry Cojean, Fritz Göbel, Thomas Grützmacher, Aditya Kashi, Pratik Nayak, Tobias Ribizel, Yuhsiang M. Tsai

 https://ginkgo-project.github.io

DPC++ GPU kernels
• SpMV
• Solver kernels
• Precond kernels
• …

DPC++

Library core contains architecture-
agnostic algorithm implementation

Runtime polymorphism selects the right kernel
depending on the target architecture

Architecture-specific kernels execute the
algorithm on target architecture

Reference kernels are
sequential kernels to
check correctness of
algorithm design and
optimized kernels

Optimized architecture-specific kernels

CORE
Library Infrastructure
Algorithm Implementations

• Iterative Solvers
• Preconditioners
• …

REFERENCE
Reference kernels

• SpMV
• Solver kernels
• Precond kernels
• …

OpenMP
OpenMP kernels

• SpMV
• Solver kernels
• Precond kernels
• …

CUDA
CUDA GPU kernels

• SpMV
• Solver kernels
• Precond kernels
• …

HIP
HIP GPU kernels

• SpMV
• Solver kernels
• Precond kernels
• …

DPC++
DPC++ GPU kernels

• SpMV
• Solver kernels
• Precond kernels
• …

USAGE EXAMPLE NVIDIA A100 GPU AMD MI100 GPU INTEL GEN.9 GPU

This research was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

https://ginkgo-project.github.io/

