
Parallel Computing 108 (2021) 102853

A
0

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

An international survey on MPI users
Atsushi Hori d,∗, Emmanuel Jeannot b, George Bosilca c, Takahiro Ogura e, Balazs Gerofi a,
Jie Yin d, Yutaka Ishikawa d

a Riken Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan
b INRIA, LaBRI, Univ. Bordeaux, 200, Avenue de la Vielle Tour, Talence, 33405, France
c Innovative Computing Laboratory, University of Tennessee, Suite 203 Claxton, 1122 Volunteer Blvd, Knoxville, 37996, USA
d National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
e Fujitsu Limited, 9-3, Nakase 1-chome, Mihama-ku, Chiba, 261-8588, Japan

A R T I C L E I N F O

MSC:
68-02

Keywords:
Message Passing Interface (MPI)
Survey

A B S T R A C T

The Message Passing Interface (MPI) plays a crucial part in the parallel computing ecosystem, a driving
force behind many of the high-performance computing (HPC) successes. To maintain its relevance to the user
community—and in particular to the growing HPC community at large—the MPI standard needs to identify
and understand the MPI users’ concerns and expectations, and adapt accordingly to continue to efficiently
bridge the gap between users and hardware. This questionnaire survey was conducted using two online
questionnaire frameworks and has gathered more than 850 answers from 42 countries since February 2019.
Some of preceding surveys of MPI uses are questionnaire surveys like ours, while others are conducted either
by analyzing MPI programs to reveal static behavior or by using profiling tools to analyze the dynamic runtime
behavior of MPI jobs. Our survey is different from other questionnaire surveys in terms of its larger number
of participants and wide geographic spread. As a result, it is possible to illustrate the current status of MPI
users more accurately and with a wider geographical distribution. In this report, we will show some interesting
findings, compare the results with preceding studies when possible, and provide some recommendations for
MPI Forum based on the findings.
1. Background

Existing studies on MPI uses are focused on a restricted target
domain, such as the Exascale Computing Project (ECP) [1] study con-
ducted in 2017 [2] that focused on MPI usage in the context of
ECP applications and/or are geographically constrained to a single
laboratory, funding agency or, at best, country. As such, they provide
sporadic, disconnected views on the real uses of MPI across the world.
Simultaneously with the ECP study another survey was conducted
in Japan targeting HPCI [3] users which included several questions
asking about MPI [4]. HPCI is an infrastructure for HPC users in
Japan, which connects major supercomputers owned by universities
and governmental research institutes. If both questionnaire surveys
would have had the same questions, we could have compared the
answers to reveal the differences between US and Japan MPI user
communities. Unfortunately, only a single question was similar in both
studies, limiting the correlations between the two surveys.

These studies highlighted the need to conduct a larger, more com-
prehensive study reaching across many diverse communities of MPI

∗ Corresponding author.
E-mail addresses: ahori@nii.ac.jp (A. Hori), emmanuel.jeannot@inria.fr (E. Jeannot), bosilca@icl.utk.edu (G. Bosilca), t.ogu@fujitsu.com (T. Ogura),

bgerofi@riken.jp (B. Gerofi), yinj@nii.ac.jp (J. Yin), yutaka_ishikawa@nii.ac.jp (Y. Ishikawa).

users. Unlike earlier studies, we shifted the study’s focus from the high-
end HPC community and targeted a wider audience, and involved a
larger spectrum of geographically distinct users. Since MPI has been
a widely used vehicle for high-performance computing for decades,
this larger-scale questionnaire survey is beneficial not only for deciding
the future direction of MPI, but also for understanding the feature
differences of MPI users among countries and/or regions of the world.

Our team started to conduct such a study as a project at JLESC [5]
which is an international research collaboration framework. The inter-
national nature of this survey matches the concept of JLESC, where
most co-authors are active participants. For the design of the question-
naire, we consulted two social scientists, Prof. Marshall Scott Poole at
Illinois Univ., and Prof. Iftekhar Ahmed at Univ. of North Texas

To give an order of comparison with preceding studies, our MPI
International Survey, ECP survey, and HPCI survey are summarized in
Table 1.
vailable online 2 October 2021
167-8191/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2021.102853
Received 19 February 2021; Received in revised form 18 June 2021; Accepted 16 S
eptember 2021

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:ahori@nii.ac.jp
mailto:emmanuel.jeannot@inria.fr
mailto:bosilca@icl.utk.edu
mailto:t.ogu@fujitsu.com
mailto:bgerofi@riken.jp
mailto:yinj@nii.ac.jp
mailto:yutaka_ishikawa@nii.ac.jp
https://doi.org/10.1016/j.parco.2021.102853
https://doi.org/10.1016/j.parco.2021.102853
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2021.102853&domain=pdf


Parallel Computing 108 (2021) 102853A. Hori et al.
Table 1
Comparison of ECP and HPCI surveys.

ECP HPCI ours

Concern MPI usage in Computing MPI
Exascale Environment (w/o MPI-IO)
Computing

Target USA Japan World

#Questions 64 (max) 75 (max) 30

#Participants 77 105 851

2. Related work

The existing MPI-related surveys can be categorized in three survey
classes;

Questionnaire (target: MPI users) Questionnaire surveys asking MPI
users questions specifically crafted toward a target goal and
reflecting more the human understanding or knowledge of MPI
capabilities.

Static Analysis (target: MPI programs) Application-oriented statis-
tical surveys statically analyzing MPI programs and classifying
occurrences of each MPI call.

Runtime Analysis (target: MPI jobs) Application-oriented statistical
surveys analyzing the behavior of MPI applications at runtime
by using a profiling tool.

Our survey and the ECP survey are examples of the Questionnaire
category, and highlight, as mentioned above, the user understanding
of MPI capabilities and knowledge of MPI features. They can more
easily identify what new MPI features are becoming known by the users
community, well before they start appearing in MPI applications.

In the Static Analysis category, Laguna et al. [6] statically investi-
gated 110 open-source MPI programs. Nawrin et al. [7] investigated 14
MPI programs chosen from the ECP Proxy Applications Suite 2.0 [8].
They offered a pragmatic view on the usage patterns of MPI function in
existing applications, and can serve as an indicator of what MPI features
translate into real usages.

In the Runtime Analysis category, Chunduri et al. [9] collected
and analyzed the runtime behavior by running more than 100 K MPI
jobs, with a smaller but still significantly distinct number of different
applications. Klenk et al. [10] took a similar approach, but focuses on
HPC applications and analyzed the behavior of DOE mini-apps based
on the trace data which DOE made public. It is interesting to note that
the target community for these two studies is significantly different,
the second one looking at applications developed by a user community
more inclined to use advanced features of MPI.

In spite of these target differences, we dare to compare some results
of those non-questionnaire-based surveys and ours in the following
sections as appropriate.

3. Survey

Design

Prof. Poole and Ahmed, our consulting social scientists, suggested
that the number of questions must be limited to around 30, to keep
participants engaged and not to lose their concentration and focus. This
number is significantly smaller that those of ECP and HPCI surveys,
forcing us to restrict the scope of the questions, and focus on few,
critical aspects to the future of the MPI effort. As an example, we
deliberately excluded some topics, such as MPI-IO, and instead focused
on MPI communications. We designed the questionnaire so that par-
ticipants can answer questions as easily as possible, and the questions
2

Fig. 1. Time series in first 90 days.

which force participants to do extra work to answer the questions, such
as counting the lines of code of their programs, are eliminated.

Similarly to the ECP questionnaire, we initially started with Google
Forms to develop ours. Later in our project, and mostly for geopolitical
reasons, we replicated the same questionnaire using Microsoft Forms
for those who cannot access Google Forms. All graphs in this paper
were generated using the aggregated data from both forms (Google and
Microsoft) exported using a CSV format, and then manipulated using
statistical tools developed in Python and R.

The draft questionnaire was tested and validated by several ac-
tive members of the MPI standardization body, as well as researchers
from Inria and Riken Center for Computational Science (R-CCS). The
questionnaire was available online and receiving answers beginning
February 17, 2019 and the most recent answer was June, 2020. The
two forms remain open to additional answers, but taking in account the
rate of the contributions, we do not expect the outcome to drastically
change. All questions, their choices, and abbreviations of the choices
used in this report are listed in Appendix A.

Distribution

One of the first challenges we had to consider was how to reach a
largely international community of researchers and users quickly and
efficiently while expecting significant contributions and feedback. The
survey was initially announced via several major mailing lists in the
community (hpc-announce for example), but the contributions were
extremely slow to arrive. In order to improve participation, we decided
to approach the problem more locally and reached out to different
collaborators and asked them to locally distribute the questionnaire
inside their institutions, via their own distribution process (mailing list,
forums, or different form of social platforms). As highlighted in Fig. 1,
more localized means of distribution were highly beneficial, each one
of the steps in the figure corresponding to a new distribution campaign
to a new set of institutions.

This local distribution strategy worked well on some regions but
did not work universally. Table 2 shows the number of participants
in top 11 countries (all countries are listed in Appendix B). The three
major countries in Top500, USA, China and Japan, are not even in the
top four in our survey. China, which, according to Top500, holds the
most compute platforms among all countries, had only 18 participants
including Taiwan (two). We tried to increase the number of participants
from these countries as much as we could, making and distributing fly-
ers at several conferences, with little positive outcome. While the root
cause is still unclear, this pinpoints the need for alternative distribution
schemes, especially in these locations.

Major contributors

For the remaining of this report, geographical regions, either coun-

tries or regions, having more than 50 participants, are called major



Parallel Computing 108 (2021) 102853A. Hori et al.

8

Table 2
Our Contributors and Top500 Performance Share.

Contributor Top 11 contributors in our
survey

Top500 performance
share

Rank #Ans [%] Rank [%]

Germany 1 159 18.7 4 5.4
France 2 125 14.7 5 3.7
Russia 3 94 11.1 18 0.4
UK 4 67 7.9 8 1.4
Japan 5 64 7.5 2 24.4
USA 6 58 6.8 1 27.5
Italy 7 57 6.6 6 3.2

Switzerland 8 40 5.8 10 1.1
South Korea 9 27 3.2 13 0.8
Austria 10 26 3.1 27 0.1
China (+Taiwan) 11 18 2.1 3 23.3

42 contributors, 851 participants (Nov. 2020)

Fig. 2. Q1: Occupations (single). HW :Hardware vendor, Priv:Private research institute,
SW :Software vendor, Gov: Governmental institute, and Univ: College/University.

contributors and are the object of cross-tab analysis. Such major con-
tributors are Germany, France, Russia, UK, Japan, USA, Italy and the
rest of the European countries (denoted as ‘‘Europe others’’. Table B.5
lists all of them.). It should be noted that the information used to
define the major contributor was not the nationality of the individual
participants, but rather the respondents’ workplace in the last five
years. The threshold of 50 participants was selected so that USA and
Japan which have the big performance share in Top500 can be the
major contributors (Table 2).1

The larger number of participants in our survey enables us to
conduct cross-tab analysis between two questions to identify any cor-
relation between the two questions. A number of cross-tab heatmap
graphs of every possible combination of the two questions in our
questionnaire survey are generated by our developed Python program
and analyzed. The cross-tab graphs showing obvious correlations will
be shown in this paper. It was very unfortunate that the number of such
meaningful cross-tab graphs was surprisingly small.

Participants’ profile

Fig. 2 shows the graph of Q1 regarding participants’ occupation.
As shown, the majority, roughly 80% of participants, are working at
universities or governmental research institutes. There are two type of
questions in our survey, single-answer and multiple-answer questions.
This is single-answer question. Hereinafter ‘‘(single)’’ or ‘‘(double)’’ is
denoted to distinguish them.

Fig. 3 shows the major field the participants are involved with;
participants selected the field from a set of provided choices. Roughly
speaking, most participants are working on numerical applications

1 The sampling number of 50 is a little more than that of the case satisfying
0% confident level and 20% error margin.
3

Fig. 3. Q7: Working fields (multiple).

Fig. 4. Q3: Self assessment of MPI skill (single).

and/or libraries, which can either be interpreted as a confirmation
that most of the government sponsored MPI usages are in numerical
applications or libraries, or that it was the most encompassing field
among the proposed choices. It is interesting to note that in two major
contributors, Japan and US, the percentage of parallel languages and
OS/runtimes participants is significantly higher compared with the rest
of major contributors.

4. Comparison with the ECP survey

Although the ECP questionnaire and our questionnaire were de-
signed independently, there are several comparable questions. We are
going to clarify some points about the profiles of the participants in
our survey. Due to overlapping survey propagation means (emails,
HPC-related mailing lists, and word-of-mouth), we can assume that
some of the participants of our survey also participated in the ECP
survey. However, significant differences between the outcome of the
two surveys arise.

First, due to the larger ratio of participants from universities and
national laboratories, it seems likely that the ECP survey contains more
answers from expert MPI users or highly HPC-centered participants.
Fig. 4 shows the results of the self-evaluation of the participants’ MPI
skill in our survey. It is worth raising attention to the US case (right-
most bar), where almost half of participants rate themselves as highly
skilled MPI users (5 or High), significantly ahead of any other major
contributors. Additionally, none of the US participants indicated a low
MPI-related skill.

Fig. 5 shows an interesting result, picturing the answers about
participants’ expertise via the length of the interactions with the MPI
world. The question was How long have you been writing MPI programs?
and the choices are more than 10 years (denoted as >10), between 5
and 10 years (denoted as 5–10), between 2 and 5 years (denoted as 2–
5) and less than 2 years (denoted as <2). Interestingly only 9% of US
participants have less than two years MPI experience, but they do not
rank their MPI expertise the lowest (Fig. 4). Japan followed closely and

has the highest percentage in participants with more than ten years of



Parallel Computing 108 (2021) 102853A. Hori et al.

u

Fig. 5. Q6: MPI experience (single).

Fig. 6. Q21: Layering MPI calls (single).

experience and also the lowest percentage in those with less than two
years experience. Russia, followed by Italy, has the highest percentage
in less than five years experience (including the less than two years
experience case).

A second set of questions (Table 3) with strong similarities between
the ECP and our survey relates to the software stack where the MPI code
is included. We will discuss those results in the following subsections.

4.1. Layering MPI calls

Fig. 6 shows the result of our survey and Table 4 focuses on
the comparison between our survey and the ECP survey. In the ECP
survey, the participants are categorized into two groups; application
development (AD) and system technology (ST). It is interesting that
the percentage of the participants having MPI layer(s) in our survey
is roughly 50%, even in the US, whilst the ratio of yes and no is
approximately 6 ∶ 4 in the ECP survey. Having a closer look at Fig. 6,
the answer, No, my program is too small to do that, dominates in Russia.
In the other major contributors, the participants having a packing layer
occupies 40%–50%.

4.2. Using MPI features

The Q35 in the ECP survey and Q17 in our survey are equivalent
questions, although the answer choices are somewhat different. Fig. 7
shows the result of our survey and Fig. 8 shows the comparison between
ECP’s and ours on the same choices. As shown in Fig. 7, the using
aspects can be categorized in three groups; (A) more frequently used
(point-to-point and collectives), (B) second frequently used (Datatypes,
with OpenMP, Communicator, and One-sided), and (C) less frequently
sed (PMPI, Persistent, and dyn. process (dynamic process). It should

be noted that all these less frequently used features were already
introduced and standardized in MPI 2.2 which was released in 2009.
This is clearly a concerning factor for the popularity of some of the MPI
features as despite the 10-year existence many of the features failed to
4

get any traction outside a small, certainly dedicated crowd.
Fig. 7. Q17: Using MPI aspects (multiple).

Fig. 8. Using MPI aspects.

The most notable difference between the two surveys relates to the
use of datatypes (Fig. 8). The percentage of datatype usage in the ECP
was around 23% while in our survey it is significantly higher, at more
than 60% in both overall and USA contributors. Looking at the USA
data, as participants are unlikely to change their minds between the
two surveys, it seems that the datatype usage is more developed outside
national laboratories. At this point, this conclusion is conjectural as
more thorough analysis is needed to gain a better understanding.

Fig. 9 is a heatmap representing the cross-tab analysis between
participants’ MPI skills (Q3) and the knowledge or use of MPI features
(Q16). The darker the color of a cell, the higher the frequency (The
legend combined with a color bar can be found at the bottom of the
figure. The numbers in the legend cells are percentages). Less frequent
rows (one is the lowest skill and six is the highest skill) in this figure
are omitted to increase readability. The result is interesting in the sense
it contradicts the expected outcome, where MPI experts will know and
use more features. What we observe here is that the less used features in
Fig. 7, PMPI, persistent, and dynamic process, are almost independent
from the MPI skill.

A similar situation can be seen in the cross-tab analysis between Q6
and Q16 (Fig. 10). It would be natural to expect that the longer the MPI
experience, the more familiar the participant should be with different
MPI features and encounter fewer unknown features. However, some
major contributors (France, UK and Japan) show that in some cases
there is no relationship between these two, and that a longer experience
could evolve around the same, limited set of MPI features being used.
This may also indicate that experienced MPI users may not easily catch
up the newly introduced MPI features.

This may indicate that the MPI standard is complex, and its un-
derstanding by the general developer population remains limited. Even
the most basic send/receive functions, although their API looks simple
and natural, require deep knowledge of topics such as the possibility of
deadlock, timing of buffer access, blocking/non-blocking, and so.

Fig. 11 represents the answers regarding the MPI features perceived
as unnecessary by the participants (Q27: What MPI feature(s) are NOT



Parallel Computing 108 (2021) 102853A. Hori et al.

u
l
t
c
n
t

m
o
t

Table 3
Comparable questions.
Topic Our Survey ECP Survey

Layering MPI calls (Section 4.1) Q21: In most of your programs,
do you pack MPI function calls
into their own file or files to
have your own abstraction layer
for communication? (single)

Q22: Do you have an abstraction
layer that hides the MPI calls? Or
do most of your developers write
MPI calls directly? (single)

Using MPI Aspects (Section 4.2) Q17: What aspects of the MPI
standard do you use in your
program in its current form?
(multiple)

Q35: What aspects of the MPI
standard do you use in your
application in its current form?
(multiple)

Multi-threading (Section 4.3) Q18: Which MPI thread support
are you using? (multiple)

Q59: Which MPI threading option
are you using? (single)
Fig. 9. Q3–Q16: MPI skill (single) and unknown MPI features (multiple).

Fig. 10. Q6–Q16: MPI experience (single) and unknown MPI features (multiple).

seful for your application?). Although most participants believe MPI has
ittle unnecessary features, a fair amount of participants seem convinced
hat the dynamic process features are not useful. There is certainly a
orrelation between this and the fact that dynamic process features are
ot being used by most participants (Q17, Fig. 7). It should be noted
hat this tendency is also reported in [6].

The dynamic process feature is on the border of process manage-
ent and communication, since the process creation itself is obviously

ut of the scope of the MPI standard, while the communication between
he existing (MPI) processes and newly created (MPI) processes must
5

c

Table 4
Layering MPI calls.

Choice Our Survey [%] ECP [%]

overall USA AD ST AD+ST

Yes – 40 46
no reason 7 7
(sum) 47 53 79 46 62

No too small 15 9
– 33 37
(sum) 48 46 21 54 38

Other – 5 2 – – –

Fig. 11. Q27: Useless features (multiple).

be defined in the standard. Indeed, the implementation of dynamic
process creation involves many parts of a computing system: MPI
library, process manager, job scheduling system and system operation.
We also need to look at applications and their demands. Most of
the scientific applications look at the scientific process on a set of
fixed boundaries and conditions, and thus required a fixed number of
processes in a completely static world, one that does not grow or shrink.
Few applications exit this mold, and the small number of developers
working around these applications seem to not have been reached by
the survey.

4.3. Multi-threading

Similar to dynamic processes, the outcome of the question related
to threading support in MPI has received widely divergent answers
between the two surveys. Fig. 12 shows the result of our survey and
Fig. 13 shows the difference with the ECP survey. Note that our
question is multiple-choice and the ECP question is single-choice. In
both surveys, the percentage of using MULTIPLE is the highest among
the valid choices, but the percentage of the choice No idea remains
the largest. This may sound contradictory because the ECP participants
would be more experienced MPI users.

The usage of MULTIPLE in US is also the highest among the major

ontributors (Fig. 12). France and Germany have the same trend. In



Parallel Computing 108 (2021) 102853A. Hori et al.

I
o
t

F
e
t
o
t
t
a
u
t
(
s
e

I
(
u
a
M
T
i

M

Fig. 12. Q18: Multi-threading (multiple).

Fig. 13. Multi-threading comparison (ECP does not have the choices SINGLE and never
used).

Fig. 14. Multi-threading — Raw answers.

taly, Japan, Russia and the other European countries, the percentages
f No idea are the highest. In UK, the percentage of using SINGLE is
he highest.

Keeping in mind this question was a multiple-answer question
ig. 14 shows the top seven raw answers (combined multiple answers,
xcluding never user and no idea), with a coverage of about 85% of
he total answers. As nearly half of participants answered never used
r no idea, we will ignore these two choices in the remainder of
his analysis. This is reflected in the numbers in parenthesis in this
able which are the percentage of participants excluding those who
nswered never used or no idea. Half of threading-aware participants are
sing SINGLE and/or MULTIPLE. Although many participants ignore
he thread mode, some participants use a particular thread support
SINGLE or MULTIPLE) and some other participants select one of
upported thread capabilities willingly, which might indicate a well
stablished knowledge of the MPI features.

A similarly scattered trend has also been confirmed by other studies.
ndeed, [9] indicates approximately 75% of their target executables
not number of jobs) on Mira (total of 68) are using SINGLE, 15%
se FUNNELED and 4% use MULTIPLE. Similarly, [6] indicate that
pproximately 60% of their target programs use FUNNELED, 30% use
ULTIPLE, 20% use SINGLE and only few percent use SERIALIZED.
hus, the thread support usage varies on each survey, and further

nvestigation is needed to determine a clear result.
6

o

Fig. 15. Q12: Using MPI implementations (multiple).

Fig. 16. Q13: Choosing MPI implementations (single).

5. Other findings

5.1. MPI implementations

Fig. 15 shows the usage of the different MPI implementations, (Q12
asking specifically which MPI implementation(s) the participants are
using regularly). This result presents a coherent picture across the
board, as Open MPI, Intel MPI and MPICH, dominates for all major
contributors followed by MVAPICH. Outside these top contenders, a
large disparity can be seen on the other implementations. Taking a look
at the other choice, there are four (4) answers naming the bullx MPI and
another four (4) using MadMPI [11] in France, and 10 answers raising
ParaStation MPI in Germany. The frequency of using Fujitsu MPI,
ParaStation MPI, bullx MPI and others heavily depend on countries of
participants and the countries where the MPI was developed.

In order to understand how the usage of a particular MPI imple-
mentation came to happen, we specifically asked the participants in
Q13 why did you choose the MPI implementation(s) and the answers are
shown in Fig. 16. One of the interesting outcomes from this question
is the fact that more than half of the participants outside US have
little to no choice in the selection of the MPI implementation, they
have to use what is made available to them with the platform. For the
rest of participants their choice seem to favor their familiarity with a
particular implementation or past experiences with the community sup-
porting their choice MPI implementation. This clearly suggests that MPI
implementors must carefully build and support their user communities
in order to increase their implementation adoption.

5.2. MPI+X and alternatives

Fig. 17 shows the result of Q22 asking Have you ever written
MPI+’’X’’ programs?. As a constant across the board, most participants
have experience with writing MPI+OpenMP programs. An interesting
highlight, in US CUDA is the second largest and the percentage of pure

PI applications is the lowest. Considering the low percentage of No in

verall (approx. 25%), 3/4 participants are using MPI in combination



Parallel Computing 108 (2021) 102853A. Hori et al.

w
A
t
M

c
p
t
a
y
b
a
n
r
M

c
c
i

5

c
M
s
o
o
c

c

Fig. 17. Q22: MPI+X (multiple).

Fig. 18. Q24: MPI alternatives (multiple).

Fig. 19. Q22–Q24: MPI+X (multiple) and MPI alternatives (multiple).

ith another node-level or accelerator-focused programming paradigm.
similar finding was highlighted in [6], where it has been reported that

he approximately 3/4 of the target programs use the hybrid model of
PI+OpenMP.

Without going in details about the features provided by MPI, it
ould be natural to assume that all types of data movements can be
rovided by other message passing paradigms. We specifically asked
he participants to indicate if they have investigated any of these
lternative message passing libraries (Q24 What, if any, alternatives are
ou investigating to indirectly call MPI or another communication layer
y using another parallel language library?). The Fig. 18 highlights that
lmost half of the participants are totally satisfied with MPI and have
ot investigated any replacement message passing paradigm. Out of the
emaining participants, PGAS seems to be the most used alternative to
7

PI, a result that is similar across all major contributors.
Fig. 20. Q29: Performance vs. Compatibility (single).

Fig. 21. Q28: Backward compatibility (single).

Fig. 19 shows the cross-tab analysis of Q22 and Q24. A certain per-
entage of participants of Germany, Italy, Russia and other European
ountries are using hybrid programming (MPI+ OpenMP) but without
nvestigating an MPI alternative (upper right corners of the heatmaps).

.3. Compatibility vs. Performance

From the MPI standard point of view, the backward compatibility
an also be an obstacle to the introduction of new features to enhance
PI capabilities, and to the deprecation of features that proved incon-

istent or were replaced by a better alternative. Fig. 20 shows the result
f the question asking which is more important on a scale, performance
r compatibility, while Fig. 21 shows the expressed need for backward
ompatibility (Q28).

In Fig. 20, let us consider three groups; ‘‘performance group’’ fo-
used on Performance or 4, ‘‘compatibility group’’ focused on Portability

or 2), and ‘‘middle group’’ that chose 3. While the middle group,
striking a balance between performance and compatibility dominates
in most major contributors (except Russia), the performance group tend
to occupy a larger percentage. Regarding Russia, a large percentage of
Russian participants answered my program is too small in Q21 (Fig. 6),
in which case the loss of compatibility does not cause a considerable
burden.

As shown in Fig. 21, around 40% of participants answered that
the compatibility is very important, while the rest of participants may
accept the incompatibilities conditionally. The incompatibility forces
users to update their programs. The result of Q28 may suggest that
users would accept incompatibility in exchange for a substantiated
benefit, either in terms of performance or productivity.

5.4. Learning MPI

Fig. 22 shows the percentages of how participants learned MPI.
In this graph, Other lec. indicates the choice Other lectures or tutorials
(workplace, conference). The UK and Russia participants preferred to
learn from online sources. The participants of Germany and other



Parallel Computing 108 (2021) 102853A. Hori et al.

t
p
a
a
i
M

i
w
o
t
h
r
t
i
p
t

i
i
a
p
w
c
o
q
i

Fig. 22. Q10: Learning MPI (multiple).

Fig. 23. Q9: Reading MPI standard (single).

Fig. 24. Q14: Checking specification (multiple).

European countries preferred to have other form of lectures. The per-
centage of reading Books in US is the highest. Taking a look at the
other answers, 18 participants learned by reading existing code and 8
participants learned by writing MPI applications.

Fig. 23 shows the familiarity of the participants with the official MPI
standard document by asking if participants have read the MPI stan-
dard document. Not necessarily surprising, around 60% of participants,
independent from contributors, have partially read the MPI standard.
Interestingly in UK, the percentage of participants having read the
entirety of the MPI standard and the percentage of users having never
read the standard are the highest among the major contributors. At the
same time, UK participants overwhelmingly learned MPI from online
sources, which usually translates via practical examples.

While the MPI standard is certainly not the best document for
learning MPI, it is the most valid and trusted source for checking the
specification of the MPI API. Fig. 24 shows the percentages of Q14
asking How do you check MPI specifications when your are writing MPI
programs? Most users are checking MPI specifications by reading online
documentations (e.g., man pages), searching the Internet, and reading
the standard. As shown in the previous figure (Fig. 23), users are
reading the standard partly because of checking the MPI specifications.
8

p

Fig. 25. Q3–Q14: MPI skill (single) and regular checking of the MPI Specification
(single).

Fig. 26. Q2: Rate your overall programming skill (non-MPI programs).

It would have been interesting to have the cross-tab analysis be-
ween Q3 (MPI skill) and Q9 (reading MPI standard). Unfortunately the
articipants partly reading the standard dominates and the cross-tab
nalysis would not give us any clear evidence. Instead, Fig. 25 presents
cross-tab analysis between Q3 and Q14. There is a weak correlation

n those who check the MPI standard more regularly and have higher
PI skills in some major contributors (France, Germany, and Japan).

Another interesting result can be seen in Fig. 26, which asks partic-
pants to Rate your overall programming skill (non-MPI programs). People
ho auto-evaluate their programming skills higher (those who chose 4
r more on the skills grade) account for more than 90%. This indicates
hat MPI users are seasoned developers or at least programmers with
igh programming skills. This might indicate that MPI programming
equires specific skills which many developers do not necessarily mas-
er or that before starting to write parallel applications (where MPI
s necessary), most developers have already become acquainted with
rogramming. By contributor comparison, Russia shows a different
endency from other contributors.

Generally speaking, allowing participants to freely answer questions
n text boxes leads to a large variety of disparate answers, making
t difficult to find commonality between mostly subjective answers
nd to put forward a consistent answer. Despite this, we had one
articular question in our survey, where we felt that predefined answers
ould have led to unsatisfactory results; more diverse information

ould be gathered with a combination of preselected answers and the
pportunity to enter a different answer in a text box. This particular
uestion, Q19, relates to What are your obstacles to mastering MPI, and
s represented in Fig. 27. Although the largest answer was one of the
rovided choices, No obstacles, we got an exceptional 111 other inputs.



Parallel Computing 108 (2021) 102853A. Hori et al.
Fig. 27. Q19: Learning Obstacles (multiple)

Fig. 28. Q19: Learning obstacles — Text mining of the Other free text.

Fig. 29. Q6–Q3: MPI experience (single) and MPI skill single.

After post-analysis, we can report that out of these, more than 20 partic-
ipants, 18%, answered pinpointing to how time consuming mastering
MPI is. Many other participants pointed out the need for more clear
MPI programming guidelines (clear doc., internal doc., implementation
doc., performance guideline, and so on, in their words), while some par-
ticipants complained about MPI implementations and the performance
or specification differences among implementations. Fig. 28 shows the
text mining result of the free text inputs (using WordCloud2 [12]). As
shown, ‘‘lack (of) time’’ is most highlighted. Many other participants
pointed out the need for more clear MPI programming guideline (clear
doc., internal doc., implementation doc., performance guideline, and so
on, in their words). Some participants complaint about MPI imple-
mentations and the (performance or specification) differences among
implementations.

As shown in Fig. 29, the cross-tab heatmap graphs between Q6
(Fig. 5) and Q3 (Fig. 4) highlight a strong correlation, from lower-
left to higher-right, between those two questions regardless of major
contributors. In fact, these graphs confirm a prior answer regarding
mastering MPI, indicating that it takes more than somewhere between
5 and 10 years of MPI programming experience to reach a high MPI

2 WordCloud parameters: stopwords=None, min_word_length=4,
collocations=True, collocation_threshold=5, max_words=30
9

Fig. 30. Q15: MPI programming difficulty (single).

Fig. 31. Q23: performance tuning (single).

skill (4 to High). The answer is confirmed across the entire spectrum
and in most major contributors. Considering this fact and the nature
and size of the MPI specification (Section 4.2), it is apparent that there
is a widely spread belief that MPI could be said to be a very difficult
specification to master and that the standardization body would need
to put forward significant efforts to facilitate the adoption process and
help MPI become mainstream.

5.5. MPI programming difficulty and tuning

Fig. 30 shows the result of Q15 asking What is the most difficult
part of writing an MPI program? and Fig. 31 shows the result of Q23
asking Is there any room for performance tuning in your MPI programs?
The largest part of US and UK participants chose algorithm design whilst
the participants of the other contributors chose Debugging. In US, the
second largest choice was Domain Decomposition. In Japan, the second
largest is Tuning.

Fig. 31 has more divergence than Fig. 30. The participants having
selected my MPI programs are well-tuned account for only around 10%,
with the exception of Japan and Russia. There seems to be lots of
potential for tuning MPI programs in general, however, around 40% of
participants said they do not have the necessary resources to do that.
In Japan, the percentage of well-tuned programs is only a few percent,
highlighting the fact that as parallel machines become more complex,
users are feeling that increasing performance becomes unobtainable.

5.6. Missing features and semantics

It is a general concern how MPI provides optimization opportunities
in terms of hardware capabilities such as being able to handle the
various topologies of hardware components more efficiently. To answer
this, Q25 asked If there were one communication aspect which is not enough
in the current MPI that could improve the performance of your application,
what would you prioritize? Or … (Fig. 32), and Q26 asks, Is MPI providing
all the communication semantics required by your application? If not, what
is missing? (Fig. 33).



Parallel Computing 108 (2021) 102853A. Hori et al.

w
p
c
O
d

a
a
a
M
a
h
w
o
l
a
t
t
m
d
l
f
t
r
t

a
a
c
a

5

u

M
a
u

R

w
(
b
t
p
(
(

t
h

J

r
l
d
w
a

e
m
a
l
f
i
t
s

6

6

a
a
r
d

p
i

Fig. 32. Q25: Features to improve (single).

Fig. 33. Q26: MPI missing semantics (multiple).

Fig. 32 indicates that only 23% of overall MPI users are satisfied
ith the current situation. Interestingly enough the second largest
ercentage is Additional optimization opportunities in terms of communi-
ation (network topology awareness, etc.), followed by Multi-thread and
ptimization opportunities except communication (architecture awareness,
ynamic processing, accelerator support, etc.).

Q26 is somewhat similar to Q25 but looking for more precise
nswers. This question addresses the issue on which semantic features
re missing from MPI. Overall a picture very similar to Q25 emerges,
s almost one third of the participants are satisfied with the existing
PI features. There is a high discrepancy between Japan, where users

re the least satisfied with the current situation, and Russia, which
osts the most satisfied MPI users. The situation here is similar to
hat we have seen in Q25 with the highest answer being Additional
ptimization opportunities in terms of communication (topology awareness,
ocality, etc.). Thus, it appears that efficiently managing the topology
nd the locality seem to be a major concern to many users. Then comes
he concerns about the lack of resilience, a concern shared by more
han 20% of the participants. It is very interesting to note that most
ajor contributors have expressed concerns about resilience, but we
o not have enough information to understand the root cause. Hiding
atency through generalization of asynchrony over the whole set of
unctions is another point raised repeatedly. 16% of the users think
hat a simpler and easier API would be desirable. Although there are
elatively big disparities in the satisfaction (answering MPI provides all),
he disparities among the other answers are smaller.

Finally, the least desired feature concerns the notion of endpoints,
s discussed in the MPI standardization effort. However, taking into
ccount the extremely technical aspect of this question and its intri-
ate evolution in the standard, it might be possible that most people
nswering this question know little about this feature.

.7. Notes on Contributors

In this subsection, we summarize our findings where some contrib-
10

tors have showed somewhat different results than the others. t
Fig. 34. Page sizes of MPI standards.

USA
US has the highest percentages: (a) of high MPI skill (Fig. 4); (b) of

seasoned users, with more than 10 years of MPI experience (Fig. 5); (c)
using the MULTIPLE threading support (Fig. 13); (d) choosing familiar

PI implementations (Fig. 16); and (e) reading MPI books (Fig. 22)
mong the major contributors. All these results indicates that the MPI
sers in US are, in a sense, the most advanced.

ussia
Russia is: (a) having the second largest percentage of MPI users

ith less than 5 years of MPI experience, a position it shares with Italy
Fig. 5); (b) having the largest percentage of (non-MPI) programming
eginners (Fig. 26); (c) having the highest percentage of users assessing
heir MPI programs are well-tuned (Fig. 30); (d) having the highest
ercentage not knowing which thread level they are using (Fig. 13); and
e) the second highest contributor, next to US, choosing the MPI+CUDA
Fig. 17).

These findings may indicate that Russia is relatively younger in
erms of MPI usage compared with the other major contributors. The
igh focus on MPI+CUDA, however, is very interesting.

apan
In this survey, Japan shows the most unique results (this is already

eported in [13]). Despite a high level of MPI skill (Fig. 4) and a
ong MPI experience (Fig. 5), many Japanese MPI users seem to be
ispleased with the current status of debugging and tuning (Fig. 30),
hilst many participants of the other contributors are more concerned
bout Algorithm.

Most notably, more than 50% of Japanese MPI users have an
xtensive MPI experience, with more than 10 years. Having such a large
ass of well seasoned MPI users sounds promising, however, it might

lso point to an imbalance in generations of users, and to a potential
ack of younger MPI developers that will continue the work in the
uture. Indeed, the percentage of 5-to-10-year MPI experience in Japan
s the smallest among the contributors. If this lack of mid-level is true,
hen the future of the Japanese HPC community might be in a difficult
pot over the next decade.

. Discussion

.1. A constantly increasing standardization document

This survey reveals that some MPI features, which by most standards
re not new, being introduced almost a decade ago, are not yet widely
dopted by MPI users (Section 4.2). An interesting question may be
aised regarding the evolution of the gap between the MPI features
efined by the standard and the acceptance of the features.

Fig. 34 shows the number of pages (in terms of PDF, not the content)
lotted over the released dates. Not surprisingly, the number of pages
ncreases with every new version of the standard. It is a natural thinking
hat the number of pages and the number of features are proportional.



Parallel Computing 108 (2021) 102853A. Hori et al.

6

D

R

O

7

t
a
f
f
u
M
a
r
M
h
t
b
d
d
b
f
t

t
h
a

C

t
t
o
t
d
O
v
a

D

c
i

In many cases, the higher functionalities introduced by newer MPI
standard yield a higher degree of implementation freedom. An MPI
implementation can be optimized by exploiting hardware resources
without imposing significant effort on the MPI users. If only the most
basic communication functions, send and receive, were provided by
the MPI standard users would have to write their own higher-level
capabilities to cover other useful parallel constructs, such as collec-
tive functions, a difficult and challenging task even for experienced
developers.

Another reason for the inflation is that MPI standard is the standard
as a library. There is no way for the implementation of low-level
communication procedures to know whether they are employed as part
of a higher-level data exchange pattern. The higher abstracted functions
can give a library more information of the higher-level information
and thus the higher-level functions can be optimized. Träff, et al.
gives a formal analysis on this point [14]. This situation, to introduce
higher-level capabilities into the standard, will keep increasing the
standard.

Hoefler et al. reported their idea to extract collective operation pat-
terns from a series of communication primitives, send and receive [15],
at run time. Applying this technique, a communication library will
be able to optimize various communication patterns without introduc-
ing higher-level functions. Although their idea is at the experimental
stage, however, this seems to be a good solution not to introduce new
functions but to narrow the capabilities gap.

6.2. Recommendations for MPI forum

Currently the MPI standard documents are available in PDF format
and hardcover books [16]. There are some MPI tutorial web sites ([17]
as an example). [18] pointed out most of such web pages are out-dated
and not kept in sync with today’s web standards.

As already shown in Section 4.2, some rather old MPI features have
failed to gain traction and be widely adopted by the users. Furthermore,
as indicated in Section 5.4, many MPI users complain of a lack of
time to hone or master MPI and of a lack of clear and understandable
documentation. These findings suggest that there is a real difficulty for
people to learn MPI and to write, efficient and error-free MPI programs.

However, this can be addressed with a stronger educational effort
from the MPI standardization body. Indeed, it is very important to nar-
row the gap described in the previous subsection by helping MPI users
to learn and write MPI programs. We believe this is the responsibility
of MPI Forum, since the other, volunteer-based approach would not be
efficient nor sufficient. To narrow the adoption gap, the MPI Forum
should

• raise the bar on potential user adoption for all new features in order
to slow the pace of introducing new features, and to make sure these
new additions are needed by the majority of MPI user community,
and

• create a new working group focused on educational resources and
tasked to prepare and maintain web pages for tutorials, guidelines
for MPI programming, and good (and certainly bad) MPI examples.

.3. Lessons learned

esign Strategy Striking a balance between the number of questions
and their coverage. We followed the advice of social scientists
to maintain only 30 easy-to-answer questions, a number much
smaller than prior surveys (Section 1). The ‘‘no answer’’ rate of
each question varies from zero (Q2) to 22% (Q11, asking read-
ing MPI books), and is only 2% for the last question. This may
indicate that the questionnaire design was successful in main-
taining the participants involved. The drawback is a reduced
coverage of the wide spectrum of the MPI topics.
11
Questionnaire Design In general, when designing a good question-
naire, designer must have some insights beforehand how the
participants will react. However, this is very difficult in most
cases and this survey is no exception. In retrospect, Q11 asking
reading MPI books was the most useless, since we could not con-
clude any meaningful results from it. Conversely we should have
had a question asking age ranges of participants. This would
have revealed the generation distributions of contributors.

eaching Target Community First, the means (mailing lists, MLs)
for announcing a survey must be selected in such a way that
the target community must be in reach. In many cases, major
mailing lists, must be complemented with more local, as an
example university based, where the traffic is more limited and
users more attentive to the content of the messages.

nline Forms Unfortunately, even scientific surveys are subject to
geopolitical restrictions. Surveys with a worldwide scope must
ensure the hosting platform can be accessed freely without dif-
ficulties or restrictions from all locations. Otherwise the number
of answers might be biased.

. Summary

We have conducted a questionnaire survey and gathered more
han 850 participants from more than 40 countries and regions. By
nalyzing the collected data, we have put forward few interesting
indings regarding the current status of MPI adoption. As for the MPI
eatures, the dynamic process feature is considered not only as a less-
sed feature but also mostly as a useless feature highlighting that the
PI programming model is seen as static. By asking several questions

bout how participants obtain MPI knowledge and experiences, it is
evealed that MPI is, at least perceived as a very difficult-to-use library.
any MPI users point to a lack of documentation and would prefer to

ave a practical programming guideline, online documents in hyper-
ext form, and useful sample programs, put forward and maintained
y the MPI standardization committee. The most important (and most
ifficult) thing is maintaining thorough and up-to-date supplemental
ocuments. Regarding backward compatibility, many MPI users may
e willing to accept to sacrifice some level of portability in exchange
or more performance, an outcome at odds with the current thinking in
he MPI Forum.

All collected answers, the programs to analyze the survey data and
o generate graphs, and all published reports are freely available at
ttps://github.com/bosilca/MPIsurvey.git. These questionnaire forms
re still open and we will be able to compare results over time.

RediT authorship contribution statement

Atsushi Hori: Conceptualization, Methodology, Software, Valida-
ion, Formal analysis, Investigation, Writing – original draft, Visualiza-
ion, Supervision. Emmanuel Jeannot: Conceptualization, Methodol-
gy, Validation, Investigation, Writing – review & editing, Visualiza-
ion. George Bosilca: Conceptualization, Methodology, Software, Vali-
ation, Investigation, Resources, Writing – review & editing. Takahiro
gura: Methodology. Balazs Gerofi: Formal analysis, Writing – re-
iew & editing. Jie Yin: Data curation. Yutaka Ishikawa: Funding
cquisition, Project administration, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

https://github.com/bosilca/MPIsurvey.git


Parallel Computing 108 (2021) 102853A. Hori et al.

C

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Acknowledgments

We thank those who participated in this survey and those who
helped us to distribute the questionnaire to their local communities. We
especially thank the MPI Forum members who gave us many significant
comments on the draft questionnaire. This research is partially sup-
ported by the NCSA-Inria-ANL-BSC-JSC-Riken-UTK Joint-Laboratory
for Extreme Scale Computing [5], with additional funding from differ-
ent national science agencies.

Appendix A. List of questions and choices

The followings are the list of all questions associated with choices.
The question numbers suffixed by asterisks (*) are multiple-choice
questions. The choices are followed by corresponding abbreviations in
square brackets, if any.

Q1: What is your main occupation (C1) College/University [Univ], (C2)
Governmental institute [Gov], (C3) Hardware vendor [HW], (C4) Software
vendor [SW], (C5) Private research institute [priv], and (C6) Other
ountry: Select main country or region of your workplace in past 5 years.
Choose one from the country list.
2: Rate your overall programming skill (non-MPI programs). Choose one in
the range of 1 to 6. [Low-High]
3: Rate your MPI programming skill. Choose one in the range of 1 to 6.
[Low-High]
4*: What programming language(s) do you use most often? (C1) C/C++
[C(++)], (C2) Fortran 90 or newer [>=F90], (C3) Fortran (older one than
Fortran 90) [<F90], (C4) Python [Py], (C5) Java [Java], and (C6) Other
5: How long have you been writing computer programs (incl. non-MPI
programs)? (C1) more than 10 years [>10], (C2) between 5 and 10 years
[5–10], (C3) between 2 and 5 years [2–5], and (C4) less than 2 years [<2]
6: How long have you been writing MPI programs? (C1) more than 10 years
[>10], (C2) between 5 and 10 years [5-10], (C3) between 2 and 5 years
[2-5], and (C4) less than 2 years [<2]
7*: Which fields are you mostly working in? (C1) System software devel-
opment (OS, runtime library, communication library, etc.) [OS/R], (C2)
Parallel language (incl. domain specific language) [Lang], (C3) Numerical
application and/or library [Num-App/Lib], (C4) AI (Deep Learning) [AI],
(C5) Image processing [Image Proc], (C6) Big data [Bg Data], (C7) Work-
flow and/or In-situ [Workfflow], (C8) Visualization [Visualization], (C9)
Tool development (performance tuning, debugging, etc.) [Tool], and (C10)
Other
8*: What is your major role at your place of work? (C1) Research and devel-
opment of application(s) [Apps], (C2) Research and development software
tool(s) [Tools], (C3) Parallelization of sequential program(s) [parallelize],
(C4) Performance tuning of MPI program(s) [Tuning], (C5) Debugging MPI
programs [Debug], (C6) Research and development on system software (OS
and/or runtime library) [OS/R], and (C7) Other
9: Have you ever read the MPI standard specification document? (C1) I read
all. [All], (C2) I read most of it. [Mostly], (C3) I read only the chapters of
interest for my work. [Partly], (C4) I have not read it, but I plan to. [Wish],
and (C5) No, and I will not read it. [No]
10*: How did you learn MPI? (C1) I read the MPI standard document.
[Standard], (C2) I had lecture(s) at school. [School], (C3) I read articles
found on Internet. [Internet], (C4) I read book(s). [Books], (C5) Other
lectures or tutorials (workplace, conference). [Other lec.], (C6) I have not
learned MPI. [Never learned], and (C7) Other
11*: Which MPI book(s) have you read? (C1) Beginning MPI (An Introduc-
tion in C) [Beginning MPI], (C2) Parallel Programming with MPI [Parallel
Programming], (C3) Using MPI [Using MPI], (C4) Parallel Programming
in C with MPI and OpenMP [Parallel Programming in C], (C5) MPI: The
Complete Reference [MPI: Complete Ref], (C6) I have never read any MPI
books [(no book)], and (C7) Other
12*: Which MPI implementations do you use? (C1) MPICH, (C2) Open MPI
[OMPI], (C3) Intel MPI [Intel], (C4) MVAPICH [MVA], (C5) Cray MPI
[Cray], (C6) IBM MPI (BG/Q, PE, Spectrum) [IBM], (C7) HPE MPI [HPE],
(C8) Tianhe MPI [Tianhe], (C9) Sunway MPI [Sunway], (C10) Fujitsu MPI
[Fujitsu], (C11) NEC MPI [NEC], (C12) MS MPI [MS], (C13) MPC MPI
12

[MPC], (C14) I do not know [No idea], and (C15) Other
13: Why did you choose the MPI implementation(s)? (C1) I like to use it.
[I like], (C2) I was said to use it. [Said to use], (C3) I could not have any
choice (the one provided by a vendor). [No choice], (C4) I am familiar with
it. [Familiar], and (C5) I have no special reason. [No reason]
14*: How do you check MPI specifications when you are writing MPI
programs? (C1) I read the MPI Standard document (web/book). [MPI
standard], (C2) I read online documents (such as man pages). [Online docs],
(C3) I search the Internet (Google/Stack Overflow). [Internet], (C4) I ask
colleagues. [Colleagues], (C5) I read book(s) (except the MPI standard).
[Books], (C6) I know almost all MPI routines. [I know all], and (C7) Other
15: What is the most difficult part of writing an MPI program? (C1) Algo-
rithm design [Algorithm], (C2) Debugging [Debugging], (C3) Domain de-
composition [Decomposition], (C4) Finding appropriate MPI routines [Find-
ing MPI routines], (C5) Implementation issue workaround [Workaround],
(C6) Performance tuning [Tuning], and (C7) Other
16*: Which MPI features have you never heard of? (C1) Point-to-point com-
munications [Point-to-point], (C2) Collective communications [Collectives],
(C3) Communicator operations (split, duplicate, and so on) [Communi-
cator], (C4) MPI datatypes [Datatypes], (C5) One-sided communications
[One-sided], (C6) Dynamic process creation [Dyn. process], (C7) Persistent
communication [Persistent], (C8) PMPI interface [PMPI], (C9) MPI with
OpenMP (or multithread) [with OpenMP], and (C10) Other
17*: What aspects of the MPI standard do you use in your program
in its current form? (C1) Point-to-point communications [Point-to-point],
(C2) Collective communications [Collectives], (C3) Communicator opera-
tions (split, duplicate, and so on) [Communicator], (C4) MPI datatypes
[Datatypes], (C5) One-sided communications [One-sides], (C6) Dynamic
process creation [Dyn. process], (C7) Persistent communications [Persis-
tent], (C8) MPI with OpenMP (or multithread) [with OpenMP], (C9) PMPI
interface [PMPI], and (C10) Other
18*: Which MPI thread support are you using? (C1) MPI_THREAD_SINGLE
[SINGLE], (C2) MPI_THREAD_FUNNELED [FUNNELED], (C3) MPI_THREAD_
SERIALIZED [SERIALIZED], (C4) MPI_THREAD_MULTIPLE [MULTIPLE],
(C5) I have never called MPI_INIT_THREAD [never used], (C6) I do not
know or I do not care. [No idea], and (C7) Other
19*: What are your obstacles to mastering MPI? (C1) I have no obstacles.
[No obstacles], (C2) Too many routines. [Too many routines], (C3) No ap-
propriate lecture/book / info. [No appropriate one], (C4) Too complicated
and hard to understand. [Complicated], (C5) I have nobody to ask. [Nobody
to ask], (C6) I do not like the API. [Dislike API], and (C7) Other
20: When you call an MPI routine, how often do you check the error code
of the MPI routine (excepting MPI-IO)? (C1) I rely on the default ‘Errors
abort’ error handling [Default], (C2) Always, (C3) Mostly, (C4) Sometimes,
(C5) Never, and (C6) Other
21: In most of your programs, do you pack MPI function calls into their
own file or files to have your own abstraction layer for communication?
(C1) Yes, to minimize the changes of communication API. [Yes], (C2) Yes,
but I have no special reason for doing that. [Yes, but no reason], (C3) No,
my program is too small to do that. [No, too small], (C4) No, MPI calls are
scattered in my programs. [No, scattered], and (C5) Other
22*: Have you ever written MPI+’’X’’ programs? (C1) OpenMP [OMP], (C2)
Pthread, (C3) OpenACC [OACC], (C4) OpenCL [OCL], (C5) CUDA, (C6) No,
and (C7) Other
23: Is there any room for performance tuning in your MPI programs? (C1)
No, my MPI programs are well-tuned. [Well-tuned], (C2) Yes, I know there
is room for tuning but I should re-write large part of my program to do
that. [Hard to rewrite], (C3) Yes, I know there is room for tuning but I do
not have enough resources to do that. [No resource], (C4) I think there is
room but I do not know how to tune it. [No idea to tune], (C5) I do not
have (know) tools to find performance bottlenecks. [Not having the tools],
(C6) I have no chance to investigate. [No chance to investigate], (C7) I do
not know how to find bottlenecks. [No idea to find bottlenecks], (C8) I do
not know if there is room for performance tuning. [No idea to improve],
and (C9) Other
24*: What, if any, alternatives are you investigating to indirectly call MPI
or another communication layer by using another parallel language/library?
(C1) A framework or library using MPI. [Framework], (C2) A PGAS lan-
guage (UPC, Coarray Fortran, OpenSHMEM, XcalableMP, ...). [PGAS], (C3)
A Domain Specific Language (DSL). [DSL], (C4) Low-level communication
layer provided by vendor (Verbs, DCMF, ...). [LL comm], (C5) I am not
investigating any alternatives. [No investigation], and (C6) Other



Parallel Computing 108 (2021) 102853A. Hori et al.

Q

Q

Q

Q

A

R

Table B.5
Contributors.

Contributor #Ans Contributor #Ans

1 Germany† 159 22 Finland ‡ 3
2 France† 125 23 Argentina 3
3 Russia 94 24 Australia 3
4 UK† 67 25 Taiwan 2
5 Japan 64 26 Serbia‡ 2
6 USA 58 27 Pakistan 2
7 Italy† 57 28 Egypt 2
8 Switzerland ‡ 40 29 Greece‡ 2
9 Korea, South 27 30 Belgium‡ 2
10 Austria‡ 26 31 Tunisia 1
11 China 16 32 Peru 1
12 Sweden‡ 15 33 Singapore 1
13 Spain‡ 14 34 Norway‡ 1
14 India 12 35 Mexico 1
15 Poland ‡ 10 36 Denmark, Austria‡ 1
16 Netherlands‡ 8 37 Croatia‡ 1
17 Brazil 6 38 Portugal‡ 1
18 Denmark‡ 6 39 Estonia‡ 1
19 Czech Republic‡ 5 40 Saudi Arabia 1
20 Luxembourg‡ 5 41 UAE 1
21 Canada 4 42 Ukraine‡ 1

†: Europe, ‡: Europe:others 42 contributors, 851 answers

Q25: If there were one communication aspect which is not enough in the
current MPI could improve the performance of your application, what would
you prioritize? Or is MPI providing all the communication semantics re-
quired by your application? If not, what is missing? (C1) Latency [Latency],
(C2) Message injection rate [Injection rate], (C3) Bandwidth [Bandwidth],
(C4) Additional optimization opportunities in terms of communication (net-
work topology awareness, etc.) [Additional comm. opt.], (C5) Optimization
opportunities except communication (architecture awareness, dynamic pro-
cessing, accelerator support, etc.) [Other opt.], (C6) Multi-threading support
[Multi-thread], (C7) Asynchronous progress [Asynch progress], (C8) MPI
provides all semantics I need [Satisfied], and (C9) Other
26*: Is MPI providing all the communication semantics required by your
application? If not, what is missing? (C1) Latency hiding (including asyn-
chronous completion) [Latency hiding], (C2) Endpoints (multi-thread, ses-
sions) [End-points], (C3) Resilience (fault tolerance) [Resilience], (C4)
Additional optimization opportunities in terms of communication (topology
awareness, locality, etc.) [Additional opt], (C5) Another API which is
easier and/or simpler to use [Another API], (C6) MPI is providing all the
communication semantics required by my application [MPI provides all],
and (C7) Other
27*: What MPI feature(s) are NOT useful for your application? (C1) One-
sided communication [One-sided], (C2) Datatypes [Datatypes], (C3) Com-
municator and group management [Communicator], (C4) Collective oper-
ations [Collectives], (C5) Process topologies [Topologies], (C6) Dynamic
process creation [Dyn. process], (C7) Error handlers [Error], (C8) There are
no unnecessary features [No], and (C9) Other
28: Do you think the MPI standard should maintain backward compatibil-
ity? (C1) Yes, compatibility is very important for me. [Very important],
(C2) API should be clearly versioned. [Versioned API], (C3) I prefer to
have new API for better performance. [New API for performance], (C4) I
prefer to have new API which is simpler and/or easier-to-use. [New API for
easier-to-use], (C5) I do not know or I do not care. [No idea], and (C6)
Other
29: In the tradeoff between code portability and performance, which is more
or less important for you to write MPI programs? Choose one in the range
of 1 to 6. [Portability-Performance]
13
ppendix B. Contributors

See Table B.5.

eferences

[1] Exascale Computing Project, Exascale computing project, 2021, https://
exascaleproject.org.

[2] D.E. Bernholdt, S. Boehm, G. Bosilca, M. Gorentla Venkata, R.E. Grant, T.
Naughton, H.P. Pritchard, M. Schulz, G.R. Vallee, A survey of MPI usage in the
US exascale computing project, Concurr. Comput.: Pract. Exper. 32 (3) (2020)
e4851, e4851 cpe.4851. http://dx.doi.org/10.1002/cpe.4851.

[3] Research Organization for Information Science and Technology (RIST), High-
performance computing infrastructure, 2018, http://www.hpci-office.jp/folders/
english.

[4] RIST, Report of the fourth survey on the K computer and the other HPCI systems,
2018, (in Japanese). http://www.hpci-office.jp/materials/k_chosa_4th.

[5] JLESC, Joint laboratories for extreme-scale computing, 2021, https://jlesc.github.
io/.

[6] I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, N. Sultana, A
large-scale study of MPI usage in open-source HPC applications, in: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’19, Association for Computing Machinery, New York,
NY, USA, 2019, http://dx.doi.org/10.1145/3295500.3356176.

[7] N. Sultana, M. Ruefenacht, A. Skjellum, P. Bangalore, I. Laguna, K. Mohror, Un-
derstanding the use of message passing interface in exascale proxy applications,
Concurr. Comput.: Pract. Exper. (2020) e5901, http://dx.doi.org/10.1002/cpe.
5901.

[8] D.F. Richards, O. Aaziz, J. Cook, H. Finkel, B. Homerding, P. McCorquodale,
T. Mintz, S. Moore, A. Bhatele, R. Pavel, FY18 Proxy App Suite Release.
Milestone Report for the ECP Proxy App Project, 2018, http://dx.doi.org/10.
2172/1482870.

[9] S. Chunduri, S. Parker, P. Balaji, K. Harms, K. Kumaran, Characterization of
MPI usage on a production supercomputer, in: SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis, 2018, pp.
386–400, http://dx.doi.org/10.1109/SC.2018.00033.

[10] B. Klenk, H. Fröning, An overview of MPI characteristics of exascale proxy
applications, in: J.M. Kunkel, R. Yokota, P. Balaji, D. Keyes (Eds.), High
Performance Computing, Springer International Publishing, Cham, 2017, pp.
217–236.

[11] A. Denis, NewMadelein, 2021, http://pm2.gforge.inria.fr/newmadeleine.
[12] A. Mueller, Wordcloud for python documentation, 2020, https://amueller.github.

io/word_cloud.
[13] A. Hori, G. Bosilca, E. Jeannot, T. Ogura, Y. Ishikawa, Is Japanese HPC another

Galapagos? - Interim Report of MPI International Survey -, Technical Report 34,
Information Processing Society of Japan, SIGHPC, 2019.

[14] J. Larsson Träff, W. Gropp, R. Thakur, Self-consistent MPI performance guide-
lines, IEEE Trans. Parallel Distrib. Syst. 21 (5) (2010) 698–709, http://dx.doi.
org/10.1109/TPDS.2009.120.

[15] T. Hoefler, T. Schneider, Runtime detection and optimization of collective
communication patterns, in: 2012 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2012, pp. 263–272.

[16] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
Version 3.1, High Performance Computing Center Stuttgart (HLRS), 2015.

[17] W. Kendall, D. Nath, W. Bland, A comprehensive MPI tutorial resource, 2021,
https://mpitutorial.com.

[18] W. Kendall, MPI Tutorial introduction, 2021, https://mpitutorial.com/tutorials/
mpi-introduction/.

https://exascaleproject.org
https://exascaleproject.org
https://exascaleproject.org
http://dx.doi.org/10.1002/cpe.4851
http://www.hpci-office.jp/folders/english
http://www.hpci-office.jp/folders/english
http://www.hpci-office.jp/folders/english
http://www.hpci-office.jp/materials/k_chosa_4th
https://jlesc.github.io/
https://jlesc.github.io/
https://jlesc.github.io/
http://dx.doi.org/10.1145/3295500.3356176
http://dx.doi.org/10.1002/cpe.5901
http://dx.doi.org/10.1002/cpe.5901
http://dx.doi.org/10.1002/cpe.5901
http://dx.doi.org/10.2172/1482870
http://dx.doi.org/10.2172/1482870
http://dx.doi.org/10.2172/1482870
http://dx.doi.org/10.1109/SC.2018.00033
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb10
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb10
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb10
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb10
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb10
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb10
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb10
http://pm2.gforge.inria.fr/newmadeleine
https://amueller.github.io/word_cloud
https://amueller.github.io/word_cloud
https://amueller.github.io/word_cloud
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb13
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb13
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb13
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb13
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb13
http://dx.doi.org/10.1109/TPDS.2009.120
http://dx.doi.org/10.1109/TPDS.2009.120
http://dx.doi.org/10.1109/TPDS.2009.120
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb15
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb15
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb15
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb15
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb15
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb16
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb16
http://refhub.elsevier.com/S0167-8191(21)00098-3/sb16
https://mpitutorial.com
https://mpitutorial.com/tutorials/mpi-introduction/
https://mpitutorial.com/tutorials/mpi-introduction/
https://mpitutorial.com/tutorials/mpi-introduction/

	An international survey on MPI users
	Background
	Related work
	Survey
	Design
	Distribution
	Major contributors
	Participants' profile

	Comparison with the ECP survey
	Layering MPI calls
	Using MPI features
	Multi-threading

	Other findings
	MPI implementations
	MPI+X and alternatives
	Compatibility vs. Performance
	Learning MPI
	MPI programming difficulty and tuning
	Missing features and semantics
	Notes on Contributors
	USA
	Russia
	Japan


	Discussion
	A constantly increasing standardization document
	Recommendations for MPI forum
	Lessons learned

	Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. List of Questions and Choices
	Appendix B. Contributors
	References


