Publications

Export 1274 results:
Filters: 10.1109 is TPDS.2021.3131657  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Haidar, A., K. Kabir, D. Fayad, S. Tomov, and J. Dongarra, Out of Memory SVD Solver for Big Data,” 2017 IEEE High Performance Extreme Computing Conference (HPEC'17), Waltham, MA, IEEE, September 2017.  (1.33 MB)
Haidar, A., A. Abdelfattah, M. Zounon, S. Tomov, and J. Dongarra, A Guide for Achieving High Performance with Very Small Matrices on GPUs: A Case Study of Batched LU and Cholesky Factorizations,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 5, pp. 973–984, May 2018.  (832.92 KB)
Haidar, A., H. Ltaeif, and J. Dongarra, Parallel Reduction to Condensed Forms for Symmetric Eigenvalue Problems using Aggregated Fine-Grained and Memory-Aware Kernels,” Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC11), Seattle, WA, November 2011.  (636.01 KB)
Haidar, A., T. Dong, P. Luszczek, S. Tomov, and J. Dongarra, Batched matrix computations on hardware accelerators based on GPUs,” International Journal of High Performance Computing Applications, February 2015.  (2.16 MB)
Haidar, A., S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers,” The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), Dallas, TX, IEEE, November 2018.  (642.51 KB)
Haidar, A., J. Dongarra, K. Kabir, M. Gates, P. Luszczek, S. Tomov, and Y. Jia, HPC Programming on Intel Many-Integrated-Core Hardware with MAGMA Port to Xeon Phi,” Scientific Programming, vol. 23, issue 1, January 2015.  (553.94 KB)
Haidar, A., S. Tomov, K. Arturov, M. Guney, S. Story, and J. Dongarra, LU, QR, and Cholesky Factorizations: Programming Model, Performance Analysis and Optimization Techniques for the Intel Knights Landing Xeon Phi,” IEEE High Performance Extreme Computing Conference (HPEC'16), Waltham, MA, IEEE, September 2016.  (943.23 KB)
Haidar, A., P. Luszczek, S. Tomov, and J. Dongarra, Heterogeneous Acceleration for Linear Algebra in Mulit-Coprocessor Environments,” VECPAR 2014, Eugene, OR, June 2014.  (276.52 KB)
Haidar, A., S. Tomov, P. Luszczek, and J. Dongarra, MAGMA Embedded: Towards a Dense Linear Algebra Library for Energy Efficient Extreme Computing,” 2015 IEEE High Performance Extreme Computing Conference (HPEC ’15), (Best Paper Award), Waltham, MA, IEEE, September 2015.  (678.86 KB)
Haidar, A., A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. Tomov, and J. Dongarra, The Design of Fast and Energy-Efficient Linear Solvers: On the Potential of Half-Precision Arithmetic and Iterative Refinement Techniques,” International Conference on Computational Science (ICCS 2018), vol. 10860, Wuxi, China, Springer, pp. 586–600, June 2018.  (487.88 KB)
Haidar, A., A. Abdelfattah, S. Tomov, and J. Dongarra, Harnessing GPU's Tensor Cores Fast FP16 Arithmetic to Speedup Mixed-Precision Iterative Refinement Solvers and Achieve 74 Gflops/Watt on Nvidia V100 , San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.  (2.96 MB)
Haidar, A., J. Kurzak, G. Pichon, and M. Faverge, A Data Flow Divide and Conquer Algorithm for Multicore Architecture,” 29th IEEE International Parallel & Distributed Processing Symposium (IPDPS), Hyderabad, India, IEEE, May 2015.  (535.44 KB)
Haidar, A., P. Wu, S. Tomov, and J. Dongarra, Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers,” ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, Denver, CO, ACM.  (766.35 KB)
Haidar, A., L. Giraud, H. Ben-Hadj-Ali, F. Sourbier, S. Operto, and J. Virieux, 3-D parallel frequency-domain visco-acoustic wave modelling based on a hybrid direct/iterative solver,” 73rd EAGE Conference & Exhibition incorporating SPE EUROPEC 2011, Vienna, Austria, 23-26 May, 00 2011.
Haidar, A., H. Ltaeif, A. YarKhan, and J. Dongarra, Analysis of Dynamically Scheduled Tile Algorithms for Dense Linear Algebra on Multicore Architectures,” Submitted to Concurrency and Computations: Practice and Experience, November 2010.  (1.65 MB)
Haidar, A., C. Cao, I. Yamazaki, J. Dongarra, M. Gates, P. Luszczek, and S. Tomov, Performance and Portability with OpenCL for Throughput-Oriented HPC Workloads Across Accelerators, Coprocessors, and Multicore Processors,” 5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA '14), New Orleans, LA, IEEE, November 2014.  (407.5 KB)
Hadri, B., E. Agullo, and J. Dongarra, Tile QR Factorization with Parallel Panel Processing for Multicore Architectures,” 24th IEEE International Parallel and Distributed Processing Symposium (submitted), 00 2010.  (313.98 KB)
Hadri, B., H. Ltaeif, E. Agullo, and J. Dongarra, Enhancing Parallelism of Tile QR Factorization for Multicore Architectures,” Submitted to Transaction on Parallel and Distributed Systems, December 2009.  (464.23 KB)
Hadri, B., H. Ltaeif, E. Agullo, and J. Dongarra, Tile QR Factorization with Parallel Panel Processing for Multicore Architectures,” accepted in 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2010), Atlanta, GA, December 2009.
Hadri, B., H. Ltaeif, E. Agullo, and J. Dongarra, Tall and Skinny QR Matrix Factorization Using Tile Algorithms on Multicore Architectures,” Innovative Computing Laboratory Technical Report (also LAPACK Working Note 222 and CS Tech Report UT-CS-09-645), no. ICL-UT-09-03, September 2009.  (464.23 KB)
G
Gustavson, F. G., J. Wasniewski, J. Dongarra, and J. Langou, Rectangular Full Packed Format for Cholesky’s Algorithm: Factorization, Solution, and Inversion,” ACM Transactions on Mathematical Software (TOMS), vol. 37, no. 2, Atlanta, GA, April 2010.  (896.03 KB)
Gustavson, F. G., J. Wasniewski, and J. Dongarra, Level-3 Cholesky Kernel Subroutine of a Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm,” ACM TOMS (submitted), also LAPACK Working Note (LAWN) 211, 00 2010.  (190.2 KB)
Gustavson, F. G., J. Wasniewski, J. Dongarra, and J. Langou, Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution and Inversion,” ACM TOMS (to appear), 00 2009.  (896.03 KB)
Gustavson, F. G., J. Wasniewski, J. Dongarra, J. Herrero, and J. Langou, Level-3 Cholesky Factorization Routines Improve Performance of Many Cholesky Algorithms,” ACM Transactions on Mathematical Software (TOMS), vol. 39, issue 2, February 2013.  (439.46 KB)
Gustavson, F. G., J. Wasniewski, and J. Dongarra, Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution and Inversion,” University of Tennessee Computer Science Technical Report, UT-CS-08-614 (also LAPACK Working Note 199), April 2008.  (896.03 KB)
Gustavson, F. G., J. Wasniewski, J. Dongarra, and J. Langou, Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution and Inversion,” ACM Transactions on Mathematical Software (TOMS), vol. 37, no. 2, April 2010.  (896.03 KB)
Guidry, M., and A. Haidar, On the Design, Autotuning, and Optimization of GPU Kernels for Kinetic Network Simulations Using Fast Explicit Integration and GPU Batched Computation , Oak Ridge, TN, Joint Institute for Computational Sciences Seminar Series, Presentation, September 2015.  (17.25 MB)
Grützmacher, T., H. Anzt, and E. S. Quintana‐Ortí, Using Ginkgo's memory accessor for improving the accuracy of memory‐bound low precision BLAS,” Software: Practice and Experience, vol. 532, issue 1, pp. 81 - 98, January Jan.
Gruetzmacher, T., T. Cojean, G. Flegar, F. Göbel, and H. Anzt, A Customized Precision Format Based on Mantissa Segmentation for Accelerating Sparse Linear Algebra,” Concurrency and Computation: Practice and Experience, vol. 40319, issue 262, January 2019.
Abdelfattah, A., S. Tomov, and J. Dongarra, Batch QR Factorization on GPUs: Design, Optimization, and Tuning,” Lecture Notes in Computer Science, vol. 13350, Cham, Springer International Publishing, June 2022.
Graham, R. L., G. M. Shipman, B. Barrett, R. Castain, G. Bosilca, and A. Lumsdaine, A High-Performance, Heterogeneous MPI,” HeteroPar 2006, Barcelona, Spain, September 2006.  (193.73 KB)
Graham, R. L., G. Bosilca, and J. Pjesivac–Grbovic, A Comparison of Application Performance Using Open MPI and Cray MPI,” Cray User Group, CUG 2007, May 2007.  (248.83 KB)
Graham, R. L., R. Brightwell, B. Barrett, G. Bosilca, and J. Pjesivac–Grbovic, An Evaluation of Open MPI's Matching Transport Layer on the Cray XT,” EuroPVM/MPI 2007, September 2007.  (369.01 KB)
Goebel, F., H. Anzt, T. Cojean, G. Flegar, and E. S. Quintana-Orti, Multiprecision Block-Jacobi for Iterative Triangular Solves,” European Conference on Parallel Processing (Euro-Par 2020): Springer, August 2020.
Giraud, L., A. Haidar, and Y. Saad, Sparse approximations of the Schur complement for parallel algebraic hybrid solvers in 3D,” Numerical Mathematics: Theory, Methods and Applications, vol. 3, no. 3, Beijing, Golbal Science Press, pp. 64-82, 00 2010.
Giraud, L., A. Haidar, and S. Pralet, Using multiple levels of parallelism to enhance the performance of domain decomposition solvers,” Parallel Computing, vol. 36, no. 5-6: Elsevier journals, pp. 285-296, 00 2010.  (418.57 KB)
Giraud, L., J. Langou, and G.. Sylvand, On the Parallel Solution of Large Industrial Wave Propagation Problems,” Journal of Computational Acoustics (to appear), January 2005.  (1.08 MB)
Giraud, L., J. Langou, M. Rozložník, and J. van den Eshof, Rounding Error Analysis of the Classical Gram-Schmidt Orthogonalization Process,” Numerische Mathematik, vol. 101, no. 1, pp. 87-100, January 2005.  (157.48 KB)
Ghysels, P., S. Li, A. YarKhan, and J. Dongarra, Initial Integration and Evaluation of SLATE and STRUMPACK,” Innovative Computing Laboratory Technical Report, no. ICL-UT-18-11: University of Tennessee, December 2018.  (249.78 KB)
Gerndt, M., and K. Fürlinger, Specification and detection of performance problems with ASL,” Concurrency and Computation: Practice and Experience, vol. 19, no. 11: John Wiley and Sons Ltd., pp. 1451-1464, January 2007.
Genet, D., A. Guermouche, and G. Bosilca, Assembly Operations for Multicore Architectures using Task-Based Runtime Systems,” Euro-Par 2014, Porto, Portugal, Springer International Publishing, August 2014.  (481.52 KB)
Gates, M., P. Luszczek, A. Abdelfattah, J. Kurzak, J. Dongarra, K. Arturov, C. Cecka, and C. Freitag, C++ API for BLAS and LAPACK,” SLATE Working Notes, no. 02, ICL-UT-17-03: Innovative Computing Laboratory, University of Tennessee, June 2017.  (1.12 MB)
Gates, M., MAGMA Tutorial , Atlanta, GA, Keeneland Workshop, February 2012.  (2.47 MB)
Gates, M., S. Tomov, and A. Haidar, Comparing Hybrid CPU-GPU and Native GPU-only Acceleration for Linear Algebra,” 2015 SIAM Conference on Applied Linear Algebra, Atlanta, GA, SIAM, October 2015.  (4.7 MB)
Gates, M., J. Kurzak, P. Luszczek, Y. Pei, and J. Dongarra, Autotuning Batch Cholesky Factorization in CUDA with Interleaved Layout of Matrices,” Parallel and Distributed Processing Symposium Workshops (IPDPSW), Orlando, FL, IEEE, June 2017.
Gates, M., J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, SLATE: Design of a Modern Distributed and Accelerated Linear Algebra Library , Denver, CO, International Conference for High Performance Computing, Networking, Storage and Analysis (SC19), November 2019.  (16.19 MB)
Gates, M., S. Tomov, H. Anzt, P. Luszczek, and J. Dongarra, Clover: Computational Libraries Optimized via Exascale Research , Houston, TX, 2020 Exascale Computing Project Annual Meeting, February 2020.  (872 KB)
Gates, M., A. Charara, J. Kurzak, A. YarKhan, M. Al Farhan, D. Sukkari, and J. Dongarra, SLATE Users' Guide,” SLATE Working Notes, no. 10, ICL-UT-19-01: Innovative Computing Laboratory, University of Tennessee, July 2020.  (1.51 MB)
Gates, M., A. Charara, J. Kurzak, A. YarKhan, M. Al Farhan, D. Sukkari, and J. Dongarra, SLATE: Software for Linear Algebra Targeting Exascale (POSTER) , Houston, TX, 2020 Exascale Computing Project Annual Meeting, February 2020.  (546.56 KB)
Gates, M., M. Al Farhan, A. Charara, J. Kurzak, D. Sukkari, A. YarKhan, and J. Dongarra, SLATE Working Note 13: Implementing Singular Value and Symmetric/Hermitian Eigenvalue Solvers,” SLATE Working Notes, no. 13, ICL-UT-19-07: Innovative Computing Laboratory, University of Tennessee, September 2019.  (3.47 MB)

Pages