
10

SLATE Users’ Guide
Mark Gates
Ali Charara
Jakub Kurzak
Asim YarKhan
Mohammed Al Farhan
Dalal Sukkari
Treece Burgess
Neil Lindquist
Jack Dongarra

Innovative Computing Laboratory

November 5, 2023

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Revision Notes
07-2020 first publication
11-2020 copy editing; update install directions
11-2023 major revision

@techreport{gates2020slate,
author={Gates, Mark and Charara, Ali and Kurzak, Jakub and YarKhan, Asim

and Al Farhan, Mohammed and Sukkari, Dalal and Burgess, Treece
and Lindquist, Neil and Dongarra, Jack},

title={{SLATE} Users’ Guide, {SWAN} No. 10},
institution={Innovative Computing Laboratory, University of Tennessee},
year={2020},
month={July},
number={ICL-UT-19-01},
note={revision 2023-11},
url={https://www.icl.utk.edu/publications/swan-010},

}

i

Contents

Contents ii

List of Figures v

List of Algorithms vii

1 Introduction 1

2 Essentials 2
2.1 SLATE . 2
2.2 Functionality and Goals of SLATE . 3
2.3 Software Components Required by SLATE . 3
2.4 Computers for Which SLATE Is Suitable . 5
2.5 Availability of SLATE . 5
2.6 User Support . 5
2.7 License and Commercial Use of SLATE . 6

3 Installation Instructions 7
3.1 Makefile-Based Build . 7
3.2 CMake . 8
3.3 Spack . 8
3.4 Verify Installation . 9

4 Getting Started with SLATE 10
4.1 Source Code for Example Program 1 . 10
4.2 Details of Example Program 1 . 10
4.3 Simplifying Assumptions Used in Example Program 1 11
4.4 Building and Running Example Program 1 . 14

ii

5 Design and Fundamentals of SLATE 15
5.1 Design Principles . 15

5.1.1 Matrix Layout . 16
5.1.2 Parallelism Model . 18

6 SLATE API 21
6.1 C++ API . 21

6.1.1 BLAS and Auxiliary . 21
6.1.2 Linear Systems and Least Squares . 22
6.1.3 Unitary Factorizations . 23
6.1.4 Eigenvalue and Singular Value Decomposition 24

6.2 C and Fortran API . 25
6.2.1 BLAS and Auxiliary . 25
6.2.2 Linear Systems and Least Squares . 26
6.2.3 Unitary Factorizations . 27
6.2.4 Eigenvalue and Singular Value Decomposition (SVD) 27

6.3 Traditional LAPACK and ScaLAPACK API . 28

7 Using SLATE 31
7.1 Matrices in SLATE . 31

7.1.1 Matrix Hierarchy . 31
7.1.2 Creating and Accessing Matrices . 34
7.1.3 Matrices from ScaLAPACK . 38
7.1.4 Matrix Transpose . 38
7.1.5 Submatrices . 39
7.1.6 Matrix Slices . 39
7.1.7 Deep Matrix Copy . 40

7.2 Using SLATE Functions . 40
7.2.1 Execution Options . 41
7.2.2 Matrix Norms . 41
7.2.3 Matrix-Matrix Multiply . 42
7.2.4 Operations with Triangular Matrices . 43
7.2.5 Operations with Band Matrices . 44
7.2.6 Linear Systems: General Non-Symmetric Square Matrices (LU) 44
7.2.7 Linear Systems: Hermitian/Symmetric Positive Definite (Cholesky) 45
7.2.8 Linear Systems: Hermitian/Symmetric Indefinite (Aasen’s) 45
7.2.9 Least Squares: AX ≈ B Using QR or LQ . 46
7.2.10 Mixed-Precision Routines . 47
7.2.11 Matrix Inverse . 48
7.2.12 Singular Value Decomposition . 49
7.2.13 Hermitian/Symmetric Eigenvalues . 49
7.2.14 Generalized Hermitian/Symmetric Eigenvalues 50

8 Testing Suite for SLATE 52
8.1 SLATE Tester . 53
8.2 Full Testing Suite . 55
8.3 Tuning SLATE . 56

iii

8.3.1 Enabling Multi-threaded MPI Broadcast . 56
8.4 Unit Tests . 56

9 Compatibility APIs for ScaLAPACK and LAPACK Users 58
9.1 LAPACK Compatibility API . 58
9.2 ScaLAPACK Compatibility API . 59

Bibliography 61

iv

List of Figures

2.1 Software layers in SLATE. 4

5.1 SLATE Software Stack. 15
5.2 General, symmetric, band, and symmetric band matrices. Only shaded tiles are stored;

blank tiles are implicitly zero or known by symmetry, so are not stored. 16
5.3 View of symmetric matrix on process (0, 0) in 2 × 2 process grid. Darker blue tiles are

local to process (0, 0); lighter yellow tiles are temporary workspace tiles copied from
remote process (0, 1). 17

5.4 Broadcast of tile and its symmetric image to nodes owning a block row and block
column in a symmetric matrix. 18

5.5 Block sizes can vary. Most algorithms require square diagonal tiles. 18
5.6 Tasks in Cholesky factorization. Arrows depict dependencies. 19

7.1 Matrix hierarchy in SLATE. Algorithms require the appropriate types for their operation. 33
7.2 Matrix layout of ScaLAPACK (left) and layout with contiguous tiles (right). SLATE

matrix and tiles structures are flexible and accommodate multiple layouts. 38

8.1 Performance comparison with using listBcastMT. 57

v

List of Algorithms

4.1 LU solve: slate_lu.cc (1 of 3) . 11
4.2 LU solve: slate_lu.cc (2 of 3) . 12
4.3 LU solve: slate_lu.cc (3 of 3) . 13
7.1 Conversions: ex02_conversion.cc . 33
7.2 Creating matrices: ex01_matrix.cc . 34
7.3 SLATE allocating CPU host memory for a matrix: ex01_matrix.cc 35
7.4 SLATE allocating GPU device memory for a matrix: ex01_matrix.cc 35
7.5 Inserting tiles using user-defined data: ex01_matrix.cc 35
7.6 Accessing tile elements: ex01_matrix.cc . 37
7.7 Accessing tile elements, currently more efficient implementation: ex01_matrix.cc . . 37
7.8 Creating matrix from ScaLAPACK-style data: ex01_matrix.cc 38
7.9 Transposing matrices: ex01_matrix.cc . 39
7.10 Sub-matrices: ex03_submatrix.cc . 39
7.11 Matrix slice: ex03_submatrix.cc . 40
7.12 Deep matrix copy:: ex01_matrix.cc . 40
7.13 Options. 41
7.14 Passing options to multiply (gemm): ex05_blas.cc 41
7.15 Norms: ex04_norm.cc . 42
7.16 Parallel matrix multiply: ex05_blas.cc . 42
7.17 Parallel rank 𝑘 and 2𝑘 updates: ex05_blas.cc . 43
7.18 Parallel triangular multiply and solve: ex05_blas.cc 43
7.19 Band operations. 44
7.20 LU solve: ex06_linear_system_lu.cc . 44
7.21 Cholesky solve: ex07_linear_system_cholesky.cc 45
7.22 Indefinite solve: ex08_linear_system_indefinite.cc 46
7.23 Least squares (overdetermined): ex09_least_squares.cc 47
7.24 Least squares (underdetermined): ex09_least_squares.cc 47
7.25 Mixed precision LU solve. ex06_linear_system_lu.cc 48
7.26 Mixed precision Cholesky solve. ex07_linear_system_cholesky.cc 48
7.27 LU inverse: ex06_linear_system_lu.cc . 48

vi

https://github.com/icl-utk-edu/slate/blob/master/examples/slate_lu.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/slate_lu.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/slate_lu.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex02_conversion.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex03_submatrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex03_submatrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex05_blas.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex04_norm.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex05_blas.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex05_blas.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex05_blas.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex06_linear_system_lu.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex07_linear_system_cholesky.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex08_linear_system_indefinite.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex09_least_squares.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex09_least_squares.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex06_linear_system_lu.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex07_linear_system_cholesky.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex06_linear_system_lu.cc

7.28 Cholesky inverse: ex07_linear_system_cholesky.cc 49
7.29 SVD: ex10_svd.cc . 49
7.30 Hermitian/symmetric eigenvalues: ex11_hermitian_eig.cc 50
7.31 Generalized Hermitian/symmetric eigenvalues: ex12_generalized_hermitian_eig.cc . 51
9.1 LAPACK-compatible API. 59
9.2 ScaLAPACK-compatible API. 60

vii

https://github.com/icl-utk-edu/slate/blob/master/examples/ex07_linear_system_cholesky.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex10_svd.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex11_hermitian_eig.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex12_generalized_hermitian_eig.cc

CHAPTER 1

Introduction

SLATE (Software for Linear Algebra Targeting Exascale)1 has been developed as part of the
Exascale Computing Project (ECP)2, which is a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration (NNSA). The objective of SLATE
is to provide fundamental dense linear algebra capabilities to the U.S. Department of Energy
and to the high-performance computing (HPC) community at large.

This SLATE Users’ Guide is intended for application end users and focuses on the public SLATE
application programming interface (API). The companion SLATE Developers’ Guide [1] is intended
to describe the internal workings of SLATE, to be of use for SLATE developers and contributors.
These guides will be periodically revised as SLATE develops, with the revisions noted in the
front matter notes and BibTeX.

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org

1

http://icl.utk.edu/slate/
https://www.exascaleproject.org

CHAPTER 2

Essentials

2.1 SLATE

SLATE is a library providing dense linear algebra capabilities for high-performance systems
supporting large-scale distributed-nodes with accelerators. SLATE provides coverage of existing
ScaLAPACK functionality, including parallel Basic Linear Algebra Subprograms (BLAS), linear
systems using LU and Cholesky, least squares problems using QR, eigenvalue problems, and the
singular value decomposition (SVD). SLATE is designed to be a replacement for ScaLAPACK,
which after two decades of operation cannot be adequately retrofitted for modern accelerated
architectures. SLATE also seeks to deliver dense linear algebra capabilities beyond the capabilities
of ScaLAPACK, including new features such as mixed-precision iterative refinement, threshold
pivoting, the polar decomposition, communication-avoiding and randomized algorithms, as well
as the potential to support variable size tiles and block low-rank compressed tiles. SLATE uses
modern techniques such as communication-avoiding algorithms, lookahead panels to overlap
communication and computation, task-based scheduling, and a modern C++ framework.

The SLATE project website is located at:
https://icl.utk.edu/slate/

The SLATE software can be downloaded from:
https://github.com/icl-utk-edu/slate/

The SLATE auto-generated function reference can be found at:
https://icl.bitbucket.io/slate/

2

https://icl.utk.edu/slate/
https://github.com/icl-utk-edu/slate/
https://icl.bitbucket.io/slate/

Chapter 2. Essentials 2.2. Functionality and Goals of SLATE

2.2 Functionality and Goals of SLATE

SLATE operates on dense matrices, solving systems of linear equations, linear least squares
problems, eigenvalue problems, and singular value problems. SLATE also handles many
associated computations such as matrix factorizations and matrix norms. SLATE routines also
support distributed parallel band factorization, band solve, and band BLAS.

SLATE is intended to fulfill the following design goals:

Target modern HPC hardware consisting of a large number of nodes with multi-core processors
and several hardware accelerators per node.

Achieve portable high performance by relying on vendor optimized standard BLAS, batched
BLAS, LAPACK, and standard parallel programming technologies such as MPI and
OpenMP. Using the OpenMP runtime puts less of a burden on applications to integrate
SLATE than adopting a proprietary runtime would.

Provide scalability by employing proven techniques in dense linear algebra, such as 2D block-
cyclic data distribution and communication-avoiding algorithms, as well as modern parallel
programming approaches, such as dynamic scheduling and communication overlapping.

Facilitate productivity by relying on the intuitive single program, multiple data (SPMD) program-
ming model and a set of simple abstractions to represent dense matrices and dense matrix
operations.

Assure maintainability by employing useful C++ facilities, such as templates and overloading
of functions and operators, with a focus on minimizing code.

Ease transition to SLATE by natively supporting the ScaLAPACK 2D block-cyclic layout and
providing a backwards-compatible ScaLAPACK API.

SLATE uses a modern testing framework, TestSweeper 1, which can exercise much of the
functionality provided by the library. This framework sweeps over an input space of parameters
to check valid combinations of parameters when calling SLATE routines.

2.3 Software Components Required by SLATE

SLATE builds on top of a small number of component packages, as depicted in Figure 2.1. The
BLAS++ library provides overloaded C++ wrappers around the Fortran BLAS routines, exposing
a single function interface to a routine independent of the datatype of the operands. BLAS++
provides both column-major and row-major access to matrices with no-to-minimal performance
overhead. The BLAS++ library provides Level 1, 2, and 3 BLAS on the CPU, and Level 1 and 3
BLAS on GPUs via CUDA’s cuBLAS, AMD’s rocBLAS, or Intel’s oneMKL. (Level 2 BLAS can
be added on GPUs as needed; please request by filing an issue on GitHub.) Where available,
Level 3 Batched BLAS routines are provided on the CPU and GPU as well.

1https://github.com/icl-utk-edu/testsweeper

3

https://github.com/icl-utk-edu/blaspp/issues/
https://github.com/icl-utk-edu/testsweeper

Chapter 2. Essentials 2.3. Software Components Required by SLATE

Vendor libraries

Driver Routines

Computational Routines

Internal Task Routines

Tile Routines

CPU & GPU
BLAS

CPU & GPU
LAPACK

BLAS++ LAPACK++

MPI OpenMP

Work Routines (optional)

cuBLAS, rocBLAS, oneMKL,
LibSci, ESSL, OpenBLAS, etc.

public
private

SLATE

public

Figure 2.1: Software layers in SLATE.

The LAPACK++ library provides similar datatype-independent overloaded C++ wrappers around
the Fortran LAPACK routines. We are starting to add LAPACK-like GPU routines such as LU
(getrf), Cholesky (potrf), QR (geqrf), and eigenvalues (heevd). Please file an issue on GitHub
to request additional routines to be added. Note that LAPACK++ provides support only for
column-major access to matrices. The LAPACK++ wrappers allocate optimal workspace sizes as
needed by the routines so that the user is not required to allocate workspace in advance.

Within a process, multi-threading in SLATE is obtained using OpenMP constructs. More
specifically, OpenMP task-depend clauses are used to specify high-level dependencies in SLATE
algorithms and OpenMP task-based parallelism is used to distribute data parallel work to the
processors.

Efficient use of GPUs and accelerators is obtained by using the Batched BLAS API. Batched BLAS
is an emerging standard technique for aggregating many small, independent BLAS operations
to efficiently use the hardware and obtain higher performance.

MPI is used for communication between processes in SLATE. If GPU-aware MPI is available,
SLATE can take advantage of it to send data directly between GPUs. To enable GPU-aware MPI,
set the environment variable:

export SLATE_GPU_AWARE_MPI=1

The job scheduler or MPI library may also need a flag set to enable GPU-aware MPI; see your
HPC center’s documentation. For Cray MPI as on Frontier and Perlmutter, set:

export MPICH_GPU_SUPPORT_ENABLED=1

4

https://github.com/icl-utk-edu/lapackpp/issues/

Chapter 2. Essentials 2.4. Computers for Which SLATE Is Suitable

2.4 Computers for Which SLATE Is Suitable

SLATE is primarily designed to solve dense linear algebra problems on large, distributed-memory
machines where the primary compute power in each node may be in GPUs or accelerators.
Nodes are expected to have close to identical hardware, with the same kind and number of
CPUs and GPUs in each node for good load balancing. SLATE is also expected to run well on
single-node, multi-processor machines, with or without accelerators. However, there are linear
algebra libraries (e.g., from vendors) that are more closely focused on single-node machines. For
single-node machines with accelerators, the MAGMA library2 is also well suited.

2.5 Availability of SLATE

SLATE is available and distributed as C++ source code, and is intended to be readily compiled
from source. Releases can be downloaded from the SLATE source repository:
https://github.com/icl-utk-edu/slate/releases
or cloned using git:
> git clone --recursive https://github.com/icl-utk-edu/slate.git

It has both Makefile (Section 3.1) and CMake (Section 3.2) build options. SLATE can also be
downloaded and installed using the Spack scientific software package manager (Section 3.3).

Some HPC centers make SLATE available as an environment module to load using, e.g.,
module load slate. Check with your HPC support desk.

Papers and documentation for SLATE can be found on the SLATE website.
https://icl.utk.edu/slate/

2.6 User Support

General support for SLATE can be obtained by visiting the SLATE User Forum at https://groups.
google.com/a/icl.utk.edu/g/slate-user. Join by signing in with your Google credentials, then
clicking Join group to post. Messages can be posted online or by emailing slate-user@icl.utk.edu

Bug reports and issues should be filed on the SLATE, BLAS++, or LAPACK++ Issues trackers
that can be found at their repositories:
https://github.com/icl-utk-edu/slate/issues/
https://github.com/icl-utk-edu/blaspp/issues/
https://github.com/icl-utk-edu/lapackpp/issues/

2http://icl.utk.edu/magma/

5

https://github.com/icl-utk-edu/slate/releases
https://icl.utk.edu/slate/
https://groups.google.com/a/icl.utk.edu/g/slate-user
https://groups.google.com/a/icl.utk.edu/g/slate-user
mailto:slate-user@icl.utk.edu
https://github.com/icl-utk-edu/slate/issues/
https://github.com/icl-utk-edu/blaspp/issues/
https://github.com/icl-utk-edu/lapackpp/issues/
http://icl.utk.edu/magma/

Chapter 2. Essentials 2.7. License and Commercial Use of SLATE

2.7 License and Commercial Use of SLATE

SLATE is licensed under the 3-clause BSD open-source software license. This means that SLATE
can be included in commercial packages. The SLATE team asks only that proper credit be given
to the authors.

Like all software, SLATE is copyrighted. It is not trademarked. However, if modifications are
made that affect the interface, functionality, or accuracy of the resulting software, we request
that the name or options of the routine be changed. Any modification to SLATE software should
be noted in the modifier’s documentation.

The SLATE team will gladly answer questions regarding this software. If modifications are made
to the software, however, it is the responsibility of the individual or institution who modified
the routine to provide support.

The SLATE software license is included here:

Copyright ©2017–2023, University of Tennessee. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the following disclaimer in the documentation and/or
other materials provided with the distribution.

• Neither the name of the University of Tennessee nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

This software is provided by the copyright holders and contributors “as is” and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall the copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages (including, but
not limited to, procurement of substitute goods or services; loss of use, data, or
profits; or business interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or otherwise)
arising in any way out of the use of this software, even if advised of the possibility
of such damage.

6

CHAPTER 3

Installation Instructions

SLATE requires BLAS and LAPACK library support for core mathematical routines. SLATE
requires OpenMP 4.5 or better, and MPI with thread support, specifically MPI_THREAD_MULTIPLE.
Currently, SLATE uses CUDA, ROCm, or SYCL for acceleration on NVIDIA, AMD, and Intel
GPUs, respectively. SLATE can be built without GPU support, to run on only CPUs.

The SLATE source code has several methods that can be used to build and install the library:
GNUmakefile, CMake, or Spack.

For Makefile or CMake builds, first download the source. Note that the source has several
submodules and these need to be downloaded recursively.
Use one of the following: https access
> git clone --recursive https://github.com/icl-utk-edu/slate.git
or ssh access
> git clone --recursive git@github.com:icl-utk-edu/slate.git

> cd slate

3.1 Makefile-Based Build

The GNUmakefile build uses GNU-specific extensions and expects the user to provide some
configuration options to the build process. These build configuration options may change as the
build process is improved and modified. Please see INSTALL.md for the most current options.

The GNUmake build process expects to find the compilers, include files, and libraries for MPI,
CUDA, ROCm, SYCL, BLAS, LAPACK, and ScaLAPACK via search path variables. The Makefile
will auto-detect CUDA or ROCm if nvcc or hipcc, respectively, are in your PATH. The locations

7

https://github.com/icl-utk-edu/slate/blob/master/INSTALL.md

Chapter 3. Installation Instructions 3.2. CMake

of header files to be included can be provided by extending the CPATH or CXXFLAGS environment
variables. The location of libraries can be provided in LIBRARY_PATH, LDFLAGS, or LIBS.

With Makefile, creating a make.inc file with the necessary options is recommended, to ensure
the same options are used by all make commands. It is recommended to use the MPI compiler
wrappers such as mpicxx and mpif90. For instance, the following minimal make.inc file will
produce a SLATE library that uses OpenBLAS; has CUDA, ROCm, or SYCL support if available;
and is dynamically linked (default).
make.inc
CXX = mpicxx
FC = mpif90
blas = openblas

SLATE is then compiled and installed using:
> make lib # build libraries
> make tester # build tester
> make check # run sanity check tests
> make install prefix=/usr/local # install in /usr/local/{lib,include}

3.2 CMake

The CMake build has similar configuration options to the Makefile-based build, with some
CMake-specific options. Please see INSTALL.md for the most current options.

With CMake, create a build directory and specify options to cmake using its -D variable=value
syntax. It is recommended to set the CXX and FC environment variables to the desired C++ and
Fortran compilers; CMake takes the plain C++ and Fortran compilers, not the MPI compiler
wrappers. For instance, the following minimal configuration will produce a SLATE library that
uses OpenBLAS; has CUDA, ROCm, or SYCL support if available; and is dynamically linked
(default).
> mkdir build
> cd build
> export CXX=g++
> export FC=gfortran
> cmake -D blas=openblas -D CMAKE_INSTALL_PREFIX=/usr/local ..
> make lib # build libraries
> make tester # build tester
> make check # run sanity check tests
> make install # install in /usr/local/{lib,include}

3.3 Spack

Spack is a package manager for HPC software targeting supercomputers, Linux, and macOS.
The following set of commands will install Spack in your directory and then install SLATE with
all required dependencies. If Spack is already installed, use the local installation to install SLATE.
Spack has many configuration options (which compiler to use, which libraries, etc.); make sure
to use your desired setup. Here are some examples.

8

https://github.com/icl-utk-edu/slate/blob/master/INSTALL.md

Chapter 3. Installation Instructions 3.4. Verify Installation

> git clone https://github.com/spack/spack.git
> source spack/share/spack/setup-env.sh
> spack compiler find
> spack info slate # see available options
> spack install slate # with defaults
> spack install slate %gcc@11.3.1 # compile with gcc 11.3.1
> spack install slate %gcc@11.3.1 ^openblas # with OpenBLAS
> spack install slate %gcc@11.3.1 ^openblas ~cuda # without CUDA

See the Spack Getting Started Guide for more information.

3.4 Verify Installation

Run a basic gemm tester on 4 distributed nodes using your local job launcher. This will produce
output that indicates whether the test passed. Further explanation of SLATE’s tester is in
Chapter 8.
> export OMP_NUM_THREADS=8

Using command line mpirun, with 4 MPI processes of 8 threads each.
> mpirun -n 4 ./test/tester gemm

Using Slurm job manager, with 16 tasks (MPI processes) of 8 threads each on 4 nodes.
> srun --nodes=4 --ntasks=16 --cpus-per-task=${OMP_NUM_THREADS} ./test/tester gemm

9

https://spack.readthedocs.io/en/latest/getting_started.html

CHAPTER 4

Getting Started with SLATE

4.1 Source Code for Example Program 1

The following example program will set up SLATE matrices and solve a linear system 𝐴𝑋 = 𝐵

using the SLATE LU solver by calling a distributed lu_solve implementation. This is also
known as gesv, for general matrix solve, in the traditional LAPACK naming scheme.

4.2 Details of Example Program 1

The example program in Algorithms 4.1 to 4.3 shows how to set up matrices in SLATE and to call
several SLATE routines to operate on those matrices. This example uses the SLATE LU solver
lu_solve to solve a system of linear equations 𝐴𝑋 = 𝐵. In this example, the scalar data type
for the coefficient matrix 𝐴 and the right-hand side (RHS) matrix 𝐵 are double-precision real
numbers. However, this computation could have been instantiated for a number of different
data types. The matrices are partitioned into 𝑛𝑏 × 𝑛𝑏 blocks, which are distributed over the 𝑝 × 𝑞

grid of processes. The default distribution is a 2D block-cyclic distribution of the blocks, similar
to that of ScaLAPACK, although the distribution can be changed within SLATE.

After the 𝐴 and 𝐵 matrices are defined at line 60, the required local data space is allocated on
each process by SLATE (line 64), and this local memory is then initialized with random values
(line 70). Copies of the matrices are retained to do an error check after the solve (line 78).

After the call to SLATE’s lu_solve at line 89, the distributed 𝐵 matrix will contain the solution

10

Chapter 4. Getting Started with SLATE 4.3. Simplifying Assumptions Used in . . .

Algorithm 4.1 LU solve: slate_lu.cc (1 of 3)

1 #include <slate/slate.hh>
2 #include <blas.hh>
3 #include <mpi.h>
4 #include <stdio.h>
5
6 // Forward function declarations
7 template <typename scalar_type >
8 void lu_example(int64_t n, int64_t nrhs, int64_t nb, int p, int q);
9
10 template <typename matrix_type >
11 void random_matrix(matrix_type& A);
12
13 int main(int argc, char** argv)
14 {
15 // Initialize MPI, requiring MPI_THREAD_MULTIPLE support.
16 int err=0, mpi_provided=0;
17 err = MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE , &mpi_provided);
18 if (err != 0 || mpi_provided != MPI_THREAD_MULTIPLE) {
19 throw std::runtime_error("MPI_Init failed");
20 }
21
22 // Call the LU example.
23 int64_t n=5000, nrhs=1, nb=256, p=2, q=2;
24 lu_example <double >(n, nrhs, nb, p, q);
25
26 err = MPI_Finalize();
27 if (err != 0) {
28 throw std::runtime_error("MPI_Finalize failed");
29 }
30 return 0;
31 }

matrix 𝑋. A residual check is performed at line line 92 to verify the accuracy of the results:

∥𝐴𝑋 − 𝐵∥1
∥𝑋∥1 · ∥𝐴∥1 · 𝑛

< 𝜖.

The call to lu_solve uses an optional parameter (opts) at line 85 to set the execution target to
running tasks on the host CPU HostTask. If SLATE is compiled for GPU devices, the execution
target can be set to Devices. The opts can also be used to set a number of internal variables and
is used here to give an example of how to pass options to SLATE.

4.3 Simplifying Assumptions Used in Example Program 1

Several assumptions and choices have been made in the Example Program 1:

• Choice of nb=256: The tile size nb should be tuned for the execution target.

• Choice of p=2, q=2: The 𝑝× 𝑞 process grid was set to a square grid; however, other process
grids may perform better depending on the number of processes and the problem size.

• Data distribution: The default data distribution in SLATE is 2D block-cyclic on CPUs.

11

https://github.com/icl-utk-edu/slate/blob/master/examples/slate_lu.cc

Chapter 4. Getting Started with SLATE 4.3. Simplifying Assumptions Used in . . .

Algorithm 4.2 LU solve: slate_lu.cc (2 of 3)

33 // Create matrices , call LU solver, and check result.
34 template <typename scalar_t >
35 void lu_example(int64_t n, int64_t nrhs, int64_t nb, int p, int q)
36 {
37 // Get associated real type, e.g., double for complex<double >.
38 using real_t = blas::real_type <scalar_t >;
39 using llong = long long; // guaranteed >= 64 bits
40 const scalar_t one = 1;
41 int err=0, mpi_size=0, mpi_rank=0;
42
43 // Get MPI size. Must be >= p*q for this example.
44 err = MPI_Comm_size(MPI_COMM_WORLD , &mpi_size);
45 if (err != 0) {
46 throw std::runtime_error("MPI_Comm_size failed");
47 }
48 if (mpi_size < p*q) {
49 printf("Usage: mpirun -np %d ... # %d ranks hard coded\n",
50 p*q, p*q);
51 return;
52 }
53
54 // Get MPI rank
55 err = MPI_Comm_rank(MPI_COMM_WORLD , &mpi_rank);
56 if (err != 0) {
57 throw std::runtime_error("MPI_Comm_rank failed");
58 }
59
60 // Create SLATE matrices A and B.
61 slate::Matrix<scalar_t > A(n, n, nb, p, q, MPI_COMM_WORLD);
62 slate::Matrix<scalar_t > B(n, nrhs, nb, p, q, MPI_COMM_WORLD);
63
64 // Allocate local space for A, B on distributed nodes.
65 A.insertLocalTiles();
66 B.insertLocalTiles();
67
68 // Set random seed so data is different on each MPI rank.
69 srand(100 * mpi_rank);
70 // Initialize the data for A, B.
71 random_matrix(A);
72 random_matrix(B);
73
74 // For residual error check,
75 // create A0 as an empty matrix like A and copy A to A0.
76 slate::Matrix<scalar_t > A0 = A.emptyLike();
77 A0.insertLocalTiles();
78 slate::copy(A, A0);
79 // Create B0 as an empty matrix like B and copy B to B0.
80 slate::Matrix<scalar_t > B0 = B.emptyLike();
81 B0.insertLocalTiles();
82 slate::copy(B, B0);

12

https://github.com/icl-utk-edu/slate/blob/master/examples/slate_lu.cc

Chapter 4. Getting Started with SLATE 4.3. Simplifying Assumptions Used in . . .

Algorithm 4.3 LU solve: slate_lu.cc (3 of 3)

84 // Call the SLATE LU solver.
85 slate::Options opts = {
86 {slate::Option::Target, slate::Target::HostTask}
87 };
88 double time = omp_get_wtime();
89 slate::lu_solve(A, B, opts);
90 time = omp_get_wtime() - time;
91
92 // Compute residual ||A0 * X - B0|| / (||X|| * ||A0|| * n)
93 real_t A_norm = slate::norm(slate::Norm::One, A0);
94 real_t X_norm = slate::norm(slate::Norm::One, B);
95 slate::gemm(-one, A0, B, one, B0);
96 real_t R_norm = slate::norm(slate::Norm::One, B0);
97 real_t residual = R_norm / (X_norm * A_norm * n);
98 real_t tol = std::numeric_limits <real_t >::epsilon();
99 bool status_ok = (residual < tol);
100
101 if (mpi_rank == 0) {
102 printf("lu_solve n %lld, nb %lld, p-by-q %lld-by-%lld, "
103 "residual %.2e, tol %.2e, time %.2e sec, %s\n",
104 llong(n), llong(nb), llong(p), llong(q),
105 residual , tol, time,
106 status_ok ? "pass" : "FAILED");
107 }
108 }
109
110 // Put random data in matrix A.
111 // todo: replace with:
112 // auto rand_entry = [](int64_t i, int64_t j) {
113 // return 1.0 - rand() / double(RAND_MAX);
114 // }
115 // set(rand_entry , A);
116 template <typename matrix_type >
117 void random_matrix(matrix_type& A)
118 {
119 // For each tile in the matrix
120 for (int64_t j = 0; j < A.nt(); ++j) {
121 for (int64_t i = 0; i < A.mt(); ++i) {
122 if (A.tileIsLocal(i, j)) {
123 // set data values in the local tile.
124 auto tile = A(i, j);
125 auto tiledata = tile.data();
126 for (int64_t jj = 0; jj < tile.nb(); ++jj) {
127 for (int64_t ii = 0; ii < tile.mb(); ++ii) {
128 tiledata[ii + jj*tile.stride()]
129 = 1.0 - (rand() / double(RAND_MAX));
130 }
131 }
132 }
133 }
134 }
135 }

13

https://github.com/icl-utk-edu/slate/blob/master/examples/slate_lu.cc

Chapter 4. Getting Started with SLATE 4.4. Building and Running Example Program 1

SLATE can specify other data distributions by using C++ lambda functions or functions
from the slate::func namespace when defining the matrix.

• Execution target slate::Target::HostTask: The execution will happen on the host using
OpenMP tasks. Other execution targets like Device for GPU accelerator devices may be
preferable. Currently the default target is HostTask, but that may change to Auto, which
would automatically select Devices if a GPU accelerator is available, otherwise HostTask.

4.4 Building and Running Example Program 1

The code in Example 1 requires SLATE, BLAS++, LAPACK++, and optionally CUDA or ROCm
header files. The paths to SLATE, BLAS++, LAPACK++, and optionally CUDA or ROCm libraries
are also needed. Using -rpath avoids the need to add these library paths to LD_LIBRARY_PATH.
The shell commands below set up these paths. Note that SLATE typically requires -fopenmp to
be used when compiling and linking applications.

1 # Locations of SLATE, BLAS++, LAPACK++ install or build directories.
2 export SLATE_ROOT=/path/to/slate
3 export BLASPP_ROOT=${SLATE_ROOT}/blaspp # or ${SLATE_ROOT}, if installed
4 export LAPACKPP_ROOT=${SLATE_ROOT}/lapackpp # or ${SLATE_ROOT}, if installed
5 # export CUDA_HOME=/usr/local/cuda # wherever CUDA is installed
6 # export ROCM_PATH=/opt/rocm # wherever ROCm is installed
7
8 # Compile the example.
9 mpicxx -fopenmp -c slate_lu.cc
10 -I${SLATE_ROOT}/include \
11 -I${BLASPP_ROOT}/include \
12 -I${LAPACKPP_ROOT}/include
13 # -I${CUDA_HOME}/include # For CUDA
14 # -I${ROCM_PATH}/include # For ROCm
15
16 mpicxx -fopenmp -o slate_lu slate_lu.o \
17 -L${SLATE_ROOT}/lib -Wl,-rpath,${SLATE_ROOT}/lib \
18 -L${BLASPP_ROOT}/lib -Wl,-rpath,${BLASPP_ROOT}/lib \
19 -L${LAPACKPP_ROOT}/lib -Wl,-rpath,${LAPACKPP_ROOT}/lib \
20 -lslate -llapackpp -lblaspp
21
22 # For CUDA, may need to add:
23 # -L${CUDA_HOME}/lib64 -Wl,-rpath,${CUDA_HOME}/lib64 \
24 # -lcusolver -lcublas -lcudart
25
26 # For ROCm, may need to add:
27 # -L${ROCM_PATH}/lib -Wl,-rpath,${ROCM_PATH}/lib \
28 # -lrocsolver -lrocblas -lamdhip64
29
30 # Run the slate_lu executable.
31 mpirun -n 4 ./slate_lu
32
33 # Output from the run will be something like the following:
34 # lu_solve n 5000, nb 256, p-by-q 2-by-2, residual 8.41e-20, tol 2.22e-16, time 7.65e-01 sec,
35 # pass
36 #

14

CHAPTER 5

Design and Fundamentals of SLATE

5.1 Design Principles

Figure 5.1 shows the SLATE software stack, designed after a careful consideration of available
implementation technologies [2]. The objective of SLATE is to provide dense linear algebra
capabilities to the ECP applications (e.g., EXAALT, NWChemEx, QMCPACK, WarpX) as well
as other software libraries and frameworks (e.g., STRUMPACK), and the HPC community at
large. In that regard, SLATE is intended to be a replacement for ScaLAPACK, with superior
performance and scalability in distributed-memory environments with multi-core processors
and hardware accelerators.

SLATE
MPIOpenMP

ESSL cuBLAS rocBLAS oneMKL

BLAS++ LAPACK++

Standards SLATEVendor

CUDA, HIP,
SYCL ...

NWChemEX WarpX EXAALT QMCPACK STRUMPACK

ECP

...

Figure 5.1: SLATE Software Stack.

The SLATE project also encompasses the design and implementation of the BLAS++ and
LAPACK++ C++ APIs [3], providing a portability layer for both CPU and GPU BLAS and
LAPACK, including Batched BLAS. Underneath these APIs, highly optimized vendor libraries

15

Chapter 5. Design and Fundamentals of SLATE 5.1. Design Principles

Figure 5.2: General, symmetric, band, and symmetric band matrices. Only shaded tiles are stored;
blank tiles are implicitly zero or known by symmetry, so are not stored.

will be called for maximum performance (Intel oneMKL, IBM ESSL, Cray LibSci, OpenBLAS,
NVIDIA cuBLAS, AMD rocBLAS, etc.).

To maximize portability, the design relies on the MPI standard for message passing and the
OpenMP standard for multithreading and offload to hardware accelerators.

5.1.1 Matrix Layout

The new matrix storage introduced in SLATE is one of its most impactful features. In this
respect, SLATE represents a radical departure from other distributed dense linear algebra
software such as ScaLAPACK, Elemental, and PLASMA, where the local matrix occupies a
contiguous memory region on each process. While PLASMA uses tiled algorithms, the tiles
are stored in one contiguous memory block. In contrast, SLATE makes tiles first-class objects
that can be individually allocated and passed to low-level tile routines. In SLATE, the matrix
consists of a collection of individual tiles, with no correlation between their positions in the
matrix and their memory locations. Furthermore, SLATE supports tiles pointing to data in a
traditional ScaLAPACK matrix layout, easing an application’s transition from ScaLAPACK to
SLATE. A similar strategy of allocating tiles individually has been successfully used in low-rank,
data-sparse linear algebra libraries, such as hierarchical matrices [4, 5] in HLib [6] and with the
block low-rank (BLR) format [7]. Compared to other distributed dense linear algebra formats,
SLATE’s matrix structure offers numerous advantages, outlined below.

First, the same structure can be used for holding many different matrix types: general, symmetric,
triangular, band, symmetric band, etc., as shown in Figure 5.2. Little memory is wasted for
storing parts of the matrix that hold no useful data, such as the upper triangle of a lower
triangular matrix. Instead of wasting ∼ 1

2𝑛
2 memory as ScaLAPACK does, only ∼ 1

2𝑛𝑛𝑏 memory
is unused in the diagonal tiles for a block size 𝑛𝑏 ; all unused off-diagonal tiles are simply never
allocated. There is no need for using complex matrix layouts—such as the Recursive Packed
Format (RPF) [8] or Rectangular Full Packed (RFP) [9]—in order to save space.

Second, the matrix can be easily converted, in parallel, from one layout to another with 𝑂(𝑃)
memory overhead for 𝑃 processors (cores/threads). Possible conversions include changing tile
layout from column-major to row-major, “packing” of tiles for efficient BLAS execution [10],
and low-rank compression of tiles. Notably, transposition of the matrix can be accomplished by
transposition of each tile and remapping of the indices. There is no need for complex in-place

16

Chapter 5. Design and Fundamentals of SLATE 5.1. Design Principles

Figure 5.3: View of symmetric matrix on process (0, 0) in 2 × 2 process grid. Darker blue tiles are
local to process (0, 0); lighter yellow tiles are temporary workspace tiles copied from remote process
(0, 1).

layout translation and transposition algorithms [11].

Moreover, tiles can be easily allocated and copied among different memory spaces. Both
inter-node and intra-node communication are vastly simplified. Tiles can be easily and efficiently
transferred between nodes using MPI. Tiles can be easily moved in and out of fast memory,
such as the MCDRAM in Xeon Phi processors. Tiles can also be copied to one or more device
memories in the case of GPU acceleration.

In practical terms, a SLATE matrix is implemented using the std::map container from the C++
standard library as:

std::map< std::tuple< int64_t, int64_t >,
TileNode <scalar_t >* >

The map’s key is a tuple consisting of the tile’s (𝑖 , 𝑗) block row and column indices in the matrix.
SLATE relies on global indexing of tiles, meaning that each tile is identified by the same unique
tuple across all processes. The map’s value is a TileNode object that stores tiles on each device
(host or accelerator), and is indexed by the device number where the tile is located. The tile itself
is a lightweight object that stores a tile’s data and properties (dimensions, uplo, etc.).

In addition to facilitating the storage of different types of matrices, this structure also readily
accommodates partitioning of the matrix to the nodes of a distributed-memory system. Each
node stores only its local subset of tiles, as shown in Figure 5.3. Mapping of tiles to nodes is
defined by a C++ lambda function, and set to 2D block cyclic mapping by default, but the user
can supply an arbitrary mapping function. Similarly, distribution to accelerators within each
node is 1D block cyclic by default, but the user can substitute an arbitrary function.

Remote access is realized by replicating remote tiles in the local matrix for the duration of the
operation. This is shown in Figure 5.3 for the trailing matrix update in Cholesky, where portions
of the remote panel (yellow) have been copied locally.

Communication in SLATE relies on explicit dataflow information. When tiles are needed for
computation, they are broadcast to all the processes where they are required. Figure 5.4 shows a
single tile being broadcast from the Cholesky panel to a block row and block column for the
trailing matrix update. The broadcast is expressed in terms of the tiles to be updated, which are
internally mapped by SLATE to explicit MPI ranks as destinations.

17

Chapter 5. Design and Fundamentals of SLATE 5.1. Design Principles

Figure 5.4: Broadcast of tile and its symmetric image to nodes owning a block row and block column
in a symmetric matrix.

Figure 5.5: Block sizes can vary. Most algorithms require square diagonal tiles.

Finally, SLATE can support non-uniform tile sizes (Figure 5.5). Most factorizations require that
the diagonal tiles be square, but the block row heights and block column widths can, in principle,
be arbitrary. Non-uniform tile sizes does, however, complicate using the Batched BLAS, which
work on tiles that are a fixed size. Due to this, most SLATE algorithms currently require fixed
tile size for GPU Device execution, while CPU HostTask execution supports non-uniform tile
sizes in most cases. We are currently working to resolve this issue for GPUs; see PRs with
regions. Non-uniform tile sizes is useful in applications where the block structure is significant,
for instance in Adaptive Cross Approximation (ACA) linear solvers [12].

5.1.2 Parallelism Model

SLATE utilizes up to four levels of parallelism: distributed parallelism between nodes using
MPI, explicit thread parallelism using OpenMP, implicit thread parallelism within the vendor’s
node-level BLAS, and, at the lowest level, vector parallelism for the processor’s single instruction,
multiple data (SIMD) vector instructions. For multi-core CPUs, SLATE typically uses all the
threads explicitly, and uses the vendor’s BLAS in sequential mode. For GPU accelerators, SLATE
uses a batched BLAS call, utilizing the thread block parallelism built into the accelerator’s BLAS.

The cornerstones of SLATE are (1) the single program, multiple data (SPMD) programming
model for productivity and maintainability, (2) dynamic task scheduling using OpenMP for
maximum node-level parallelism and portability, (3) the lookahead technique for prioritizing the
critical path, (4) primary reliance on the 2D block cyclic distribution for scalability, and (5) reliance
on the gemm operation, specifically its batched rendition, for maximum hardware utilization.

18

https://github.com/icl-utk-edu/slate/pulls?q=regions+
https://github.com/icl-utk-edu/slate/pulls?q=regions+

Chapter 5. Design and Fundamentals of SLATE 5.1. Design Principles

Panel

Lookahead
Update

Trailing Matrix
Update

...

Panel

Lookahead
Update

Trailing Matrix
Update

Figure 5.6: Tasks in Cholesky factorization. Arrows depict dependencies.

Cholesky factorization demonstrates the basic framework, with its task graph shown in Figure 5.6.
Dataflow tasking (using omp task depend), is used for scheduling operations with dependencies
on large blocks of the matrix. Within each large block, either nested tasking (forking multiple
omp task), or batched operations of independent tile operations are used for scheduling
individual tile operations to individual cores, without dependencies. For accelerators, batched
BLAS calls are used for fast processing of large blocks of the matrix.

Compared to pure tile-by-tile dataflow scheduling—as is used by DPLASMA and Chameleon—
this approach minimizes the size of the task graph and number of dependencies to track. For
a matrix of 𝑁 × 𝑁 tiles, tile-by-tile scheduling creates 𝑂(𝑁3) tasks and dependencies, which
can lead to significant scheduling overheads. This is one of the main performance handicaps of
the OpenMP version of the PLASMA library [13] for many-core processors such as the Xeon
Phi family. In contrast, SLATE’s approach creates 𝑂(𝑁) dependencies, eliminating the issue
of scheduling overheads. At the same time, this approach is a necessity for scheduling a large
set of independent tasks to accelerators to fully occupy their massive compute resources. It
also eliminates the need to use a hierarchical task graph to satisfy the vastly different levels of
parallelism on CPUs versus on accelerators [14].

At each step of Cholesky, one or more columns of the trailing submatrix are prioritized for
processing, using the OpenMP priority clause, to facilitate faster advance along the critical
path, implementing a lookahead. At the same time, the lookahead depth needs to be limited, as
the amount of extra memory required for storing temporary tiles is proportional to the lookahead.
Deep lookahead translates to depth-first processing of the task graph, synonymous with left-
looking algorithms, but can also lead to catastrophic memory overheads in distributed-memory
environments [15].

19

Chapter 5. Design and Fundamentals of SLATE 5.1. Design Principles

Distributed-memory computing is implemented by filtering operations based on the matrix
distribution function; in most cases, the owner of the output tile performs the computation
to update the tile. Appropriate communication calls are issued to send tiles to where the
computation will occur. Management of multiple accelerators is handled by a node-level
memory consistency protocol.

The user can choose among various target implementations. In the case of accelerated execution,
the updates are executed as calls to batched gemm (Target::Devices). In the case of multi-core
execution, the updates can be executed as:

• a set of OpenMP tasks (Target::HostTask),

• a nested parallel for loop (Target::HostNest), or

• a call to batched gemm (Target::HostBatch).

For CPUs, HostTask is the most thoroughly implemented target; HostNest and HostBatch are
not implemented for all algorithms and are less tested.

SLATE intentionally relies on standards in MPI, OpenMP, and BLAS to maintain easy portability.
Any CPU platform with good implementations of these standards should work well for SLATE.
For accelerators, SLATE’s reliance on batched gemm means any platform that implements
batched gemm is a good target. Differences between vendors’ BLAS implementations are
abstracted at a low level in the BLAS++ library to ease porting. There are few accelerator (e.g.,
CUDA, HIP, SYCL) kernels in SLATE—currently just matrix norms, add, copy, set, scale, and
transpose—and they are relatively simple, Level 2 BLAS-type operations, so porting to a new
architecture has proven to be a lightweight task.

20

CHAPTER 6

SLATE API

SLATE provides two naming schemes. The first is based on the traditional BLAS and LAPACK
naming scheme, which is explained in Section 6.3, with routines like trsm and gesv. Given the
cryptic nature of the traditional BLAS and LAPACK names, and that SLATE can identify the
matrix type from the matrix classes in arguments, we also provide a second, simplified C++ API,
with routine names that are spelled out, such as triangular_solve and lu_solve. Detailed
information about each routine is provided in the online routine reference at
https://icl.bitbucket.io/slate/.

To make SLATE accessible from C and Fortran, we also provide C and Fortran 2003 APIs, given
in Section 6.2.

To aid transition for existing codes, we provide a compatibility layer using ScaLAPACK routines
that requires no application source code changes, and an LAPACK-like API that requires minimal
source code changes, adding a slate_ prefix, as described in Chapter 9.

6.1 C++ API

All routines here are in the slate:: namespace.

6.1.1 BLAS and Auxiliary

The BLAS perform basic operations such as matrix-multiply and norms. In most cases, 𝐴 and 𝐵

can be transposed or conjugate-transposed.

21

https://icl.bitbucket.io/slate/

Chapter 6. SLATE API 6.1. C++ API

Simplified API Traditional API Operation Matrix type
multiply gemm 𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶 𝐴, 𝐵, 𝐶 all general
multiply hemm 𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶 𝐴 xor 𝐵 Hermitian
multiply symm 𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶 𝐴 xor 𝐵 symmetric

rank_k_update herk 𝐶 = 𝛼𝐴𝐴𝐻 + 𝛽𝐶 𝐶 Hermitian
rank_k_update syrk 𝐶 = 𝛼𝐴𝐴𝑇 + 𝛽𝐶 𝐶 symmetric
rank_2k_update her2k 𝐶 = 𝛼𝐴𝐵𝐻 + �̄�𝐵𝐴𝐻 + 𝛽𝐶 𝐶 Hermitian
rank_2k_update syr2k 𝐶 = 𝛼𝐴𝐵𝑇 + 𝛼𝐵𝐴𝑇 + 𝛽𝐶 𝐶 symmetric

triangular_multiply trmm 𝐵 = 𝛼𝐴𝐵 or 𝐵 = 𝛼𝐵𝐴 𝐴 triangular
triangular_solve trsm Solve 𝐴𝑋 = 𝛼𝐵 or 𝑋𝐴 = 𝛼𝐵 𝐴 triangular

add geadd 1 𝐵 = 𝛼𝐴 + 𝛽𝐵 any
copy lacpy 1 𝐵 = 𝐴, local any
copy zlag2c 1 𝐵 = 𝐴, local, precision conversion any
redistribute gemr2d 1 𝐵 = 𝐴 any
norm lange, ... 1 ∥𝐴∥1, ∥𝐴∥∞, ∥𝐴∥fro, ∥𝐴∥max any
scale lascl 1 𝐵 = 𝛼𝐴 any
scale_row_col laqge 1 𝐴 = diag(𝑅)𝐴diag(𝐶), equilibration general

set laset 1 𝐴𝑖 𝑗 =

{
𝛼 if 𝑖 ≠ 𝑗 ,

𝛽 if 𝑖 = 𝑗
any

print n/a print full or subset of matrix any

6.1.2 Linear Systems and Least Squares

Linear system and least squares solvers factor a matrix into simpler matrices, typically triangular
or unitary, that are easily solved. The factored matrix is then used to solve 𝐴𝑋 = 𝐵 or 𝐴𝑋 ≈ 𝐵. LU
factors a general non-symmetric matrix into a lower-triangular matrix 𝐿, upper-triangular matrix
𝑈 , and permutation matrix 𝑃, yielding 𝑃𝐴 = 𝐿𝑈 . Cholesky factors a Hermitian or symmetric
positive-definite matrix (HPD/SPD) into a lower-triangular matrix 𝐿 and its conjugate-transpose,
𝐿𝐻 , with 𝐴 = 𝐿𝐿𝐻 . Aasen factors a Hermitian or symmetric indefinite matrix into a lower-
triangular matrix 𝐿, permutation matrix 𝑃, and a band matrix 𝑇, with 𝐴 = 𝐿𝑇𝐿𝑇 . This is different
than the familiar Bunch-Kaufman algorithm for indefinite matrices, which generates a block
diagonal matrix 𝐷, with 𝐴 = 𝐿𝐷𝐿𝑇 , instead of a band matrix 𝑇. The standard approach for
solving least squares problems uses a unitary factorization such as 𝐴 = 𝑄𝑅 or 𝐴 = 𝐿𝑄.

To solve a single system 𝐴𝑋 = 𝐵, potentially with multiple right-hand sides, the *_solve drivers
are recommended. To factor a matrix once, then solve different right-hand side matrices, such as
in a time-stepping loop, call *_factor once, then repeatedly call *_solve_using_factor.

1 SLATE does not provide these traditional (Sca)LAPACK names, only the simplified names.

22

Chapter 6. SLATE API 6.1. C++ API

Simplified API Traditional API Operation
General non-symmetric (LU)
lu_solve gesv Solve 𝐴𝑋 = 𝐵 using LU
lu_solve_mixed 3 gesv_mixed Solve 𝐴𝑋 = 𝐵 using LU,

mixed precision with iterative refinement
lu_solve_mixed_gmres 3 gesv_mixed_gmres Solve 𝐴𝑋 = 𝐵 using LU,

mixed precision with GMRES
lu_factor getrf Factor 𝐴 = 𝑃𝐿𝑈

lu_solve_using_factor getrs Solve 𝐴𝑋 = (𝑃𝐿𝑈)𝑋 = 𝐵

lu_inverse_using_factor getri Form 𝐴−1 = (𝑃𝐿𝑈)−1

lu_condest_using_factor gecondest 2 �𝑝(𝐴) = ∥𝐴∥𝑝 ·
𝐴−1

𝑝

for 𝑝 ∈ {1,∞}

Hermitian/symmetric positive definite (Cholesky)
chol_solve posv Solve 𝐴𝑋 = 𝐵 using Cholesky
chol_solve_mixed 3 posv_mixed Solve 𝐴𝑋 = 𝐵 using Cholesky,

mixed precision with iterative refinement
chol_solve_mixed_gmres 3 posv_mixed_gmres Solve 𝐴𝑋 = 𝐵 using Cholesky,

mixed precision with GMRES
chol_factor potrf Factor 𝐴 = 𝐿𝐿𝐻

chol_solve_using_factor potrs Solve 𝐴𝑋 = (𝐿𝐿𝐻)𝑋 = 𝐵

chol_inverse_using_factor potri Form 𝐴−1 = (𝐿𝐿𝐻)−1

chol_condest_using_factor pocondest �𝑝(𝐴) = ∥𝐴∥𝑝 ·
𝐴−1

𝑝

for 𝑝 ∈ {1,∞}

Hermitian/symmetric indefinite (block Aasen, permutation not shown)
indefinite_solve hesv, sysv Solve 𝐴𝑋 = 𝐵 using Aasen
indefinite_factor hetrf, sytrf Factor 𝐴 = 𝐿𝑇𝐿𝐻

indefinite_solve_using_factor hetrs, sytrs Solve 𝐴𝑋 = (𝐿𝑇𝐿𝐻)𝑋 = 𝐵

indefinite_inverse_using_factor 3 hetri, sytri 3 Form 𝐴−1 = (𝐿𝑇𝐿𝐻)−1

indefinite_condest 3 sycondest 2 3 �𝑝(𝐴) = ∥𝐴∥𝑝 ·
𝐴−1

𝑝

for 𝑝 ∈ {1,∞}

Triangular
triangular_inverse 3 trtri Form 𝐿−1

triangular_condest_using_factor trcondest 2 �𝑝(𝐿) = ∥𝐿∥𝑝 ·
𝐿−1

𝑝

for 𝑝 ∈ {1,∞}

Least squares
least_squares_solve gels Solve 𝐴𝑋 ≈ 𝐵 for rectangular 𝐴

6.1.3 Unitary Factorizations

Unitary factorizations factor a matrix 𝐴 into a unitary matrix 𝑄 and an upper-triangular matrix
𝑅 or lower-triangular matrix 𝐿. The 𝑄 is represented implicitly by a sequence of vectors
representing Householder reflectors. SLATE uses CAQR (communication avoiding QR), so its
representation does not match LAPACK’s or ScaLAPACK’s.

2 renamed from gecon, pocon, sycon, trcon in LAPACK
3 not yet implemented

23

Chapter 6. SLATE API 6.1. C++ API

Simplified API Traditional API Operation
qr_factor geqrf Factor 𝐴 = 𝑄𝑅

qr_multiply_by_q gemqr Multiply 𝐶 = op(𝑄)𝐶 or 𝐶 = 𝐶 op(𝑄)
qr_generate_q 3 gegqr 3 Form 𝑄

lq_factor gelqf Factor 𝐴 = 𝐿𝑄

lq_multiply_by_q gemlq Multiply 𝐶 = op(𝑄)𝐶 or 𝐶 = 𝐶 op(𝑄)
lq_generate_q 3 geglq 3 Form 𝑄

rq_factor 3 gerqf 3 Factor 𝐴 = 𝑅𝑄

rq_multiply_by_q 3 gemrq 3 Multiply 𝐶 = op(𝑄)𝐶 or 𝐶 = 𝐶 op(𝑄)
rq_generate_q 3 gegrq 3 Form 𝑄

ql_factor 3 geqlf 3 Factor 𝐴 = 𝑄𝐿

ql_multiply_by_q 3 gemql 3 Multiply 𝐶 = op(𝑄)𝐶 or 𝐶 = 𝐶 op(𝑄)
ql_generate_q 3 gegql 3 Form 𝑄

op(𝑄) is 𝑄 or 𝑄𝐻 .

6.1.4 Eigenvalue and Singular Value Decomposition

SLATE currently has Hermitian/symmetric eigenvalue solvers, generalized Hermitian/sym-
metric eigenvalue solvers, and the Singular Value Decomposition (SVD). The non-symmetric
eigensolver is planned for future work.

The _values routines compute only eigen/singular values, while the regular routines also
compute eigen/singular vectors.

Variants of methods can be provided by specifying an option in the input arguments, rather
than a different routine name as in LAPACK (gesvd, gesdd, gesvdx, gesvj, etc.). Currently,
the Hermitian eigensolver supports two methods: QR iteration (MethodEig::QR) and divide &
conquer (MethodEig::DC). The SVD supports only QR iteration; divide & conquer is planned
for future work. Other methods such as bisection and Jacobi may also be added as needed.

Simplified API Traditional API Operation
Hermitian eigenvalues
eig, eig_values heev, syev Factor 𝐴 = 𝑋Λ𝑋𝐻

eig, eig_values hegv, sygv For positive-definite 𝐵:
Type 1: 𝐴𝑋 = 𝐵𝑋Λ

Type 2: 𝐴𝐵𝑋 = 𝑋Λ

Type 3: 𝐵𝐴𝑋 = 𝑋Λ

SVD
svd, svd_values gesvd 1 Factor 𝐴 = 𝑈Σ𝑉𝐻

General non-symmetric eigenvalues
eig, eig_values 3 geev 3 Factor 𝐴 = 𝑋Λ𝑋−1

eig, eig_values 3 ggev 3 Factor 𝐴 = 𝐵𝑋Λ𝑋−1

24

Chapter 6. SLATE API 6.2. C and Fortran API

6.2 C and Fortran API

To make SLATE accessible from C and Fortran, we also provide C and Fortran 2003 APIs.
Generally, these APIs replaces the :: in the C++ API with _ underscore. Because C does not
provide overloading, some routine names include an extra term to differentiate. Following the
BLAS G2 convention, a suffix is added indicating the type: _r32 (single), _r64 (double), _c32
(complex-single), _c64 (complex-double). This notation is easily expanded to other data types
such as _r16, _c16 for 16-bit half precision, and _r128 and _c128 for 128-bit quad precision, as
well as mixed precisions. The _c64 version is shown below.

6.2.1 BLAS and Auxiliary

Simplified API Traditional API C/Fortran API
multiply gemm slate_multiply_c64
multiply hemm slate_hermitian_multiply_c64
multiply symm slate_symmetric_multiply_c64

rank_k_update herk slate_hermitian_rank_k_update_c64
rank_k_update syrk slate_symmetric_rank_k_update_c64
rank_2k_update her2k slate_hermitian_rank_2k_update_c64
rank_2k_update syr2k slate_symmetric_rank_2k_update_c64
triangular_multiply trmm slate_triangular_multiply_c64
triangular_solve trsm slate_triangular_solve_c64

add geadd 1 slate_add_c64
copy lacpy 1 slate_copy_c64
copy zlag2c 1 slate_copy_c64c32
norm lange 1 slate_norm_c64
norm lanhe 1 slate_hermitian_norm_c64
norm lansy 1 slate_symmetric_norm_c64
norm lantr 1 slate_triangular_norm_c64
scale lascl 1 slate_scale_c64
scale_row_col laqge 1 slate_scale_row_col_c64
set laset 1 slate_set_c64

LAPACK does not have a matrix add routine, only the vector add routine axpy. ScaLAPACK has
geadd and tradd.

25

Chapter 6. SLATE API 6.2. C and Fortran API

6.2.2 Linear Systems and Least Squares

Simplified API Traditional API C/Fortran API
General non-symmetric (LU)
lu_solve gesv slate_lu_solve_c64
lu_factor getrf slate_lu_factor_c64
lu_solve_using_factor getrs slate_lu_solve_using_factor_c64
lu_inverse_using_factor getri slate_lu_inverse_using_factor_c64
lu_condest_using_factor gecondest 2 slate_lu_condest_c64

Hermitian/symmetric positive definite (Cholesky)
chol_solve posv slate_chol_solve_c64
chol_factor potrf slate_chol_factor_c64
chol_solve_using_factor potrs slate_chol_solve_using_factor_c64
chol_inverse_using_factor potri slate_chol_inverse_using_factor_c64
chol_condest_using_factor pocondest} \cref{cond_renamed slate_chol_condest_using_factor_c64

Hermitian/symmetric indefinite (block Aasen, permutation not shown)
indefinite_solve hesv slate_indefinite_solve_c64
indefinite_factor hetrf slate_indefinite_factor_c64
indefinite_solve_using_factor hetrs slate_indefinite_solve_using_factor_c64
indefinite_inverse_using_factor 3 hetri 3 slate_indefinite_inverse_using_factor_c64 3

indefinite_condest 3 hecondest 2 3 slate_indefinite_condest_c64 3

Triangular
triangular_inverse 3 trtri slate_triangular_inverse_c64 3

triangular_condest_using_factor trcondest 2 slate_triangular_condest_using_factor_c64

Least squares
least_squares_solve gels slate_least_squares_solve_c64

26

Chapter 6. SLATE API 6.2. C and Fortran API

6.2.3 Unitary Factorizations

Simplified API Traditional API C/Fortran API
qr_factor geqrf slate_qr_factor_c64
qr_multiply_by_q gemqr slate_qr_multiply_by_q_c64
qr_generate_q 3 gegqr 3 slate_qr_generate_q_c64 3

lq_factor gelqf slate_lq_factor_c64
lq_multiply_by_q gemlq slate_lq_multiply_by_q_c64
lq_generate_q 3 geglq 3 slate_lq_generate_q_c64 3

rq_factor 3 gerqf 3 slate_rq_factor_c64 3

rq_multiply_by_q 3 gemrq 3 slate_rq_multiply_by_q_c64 3

rq_generate_q 3 gegrq 3 slate_rq_generate_q_c64 3

ql_factor 3 geqlf 3 slate_ql_factor_c64 3

ql_multiply_by_q 3 gemql 3 slate_ql_multiply_by_q_c64 3

ql_generate_q 3 gegql 3 slate_ql_generate_q_c64 3

6.2.4 Eigenvalue and Singular Value Decomposition (SVD)

Simplified API Traditional API C/Fortran API
Hermitian
eig, eig_values heev slate_hermitian_eig_c64

slate_hermitian_eig_values_c64
eig, eig_values hegv slate_generalized_hermitian_eig_c64

slate_generalized_hermitian_eig_values_c64

SVD
svd, svd_values gesvd 1 slate_svd_c64

slate_svd_values_c64

General non-symmetric
eig, eig_values 3 geev 3 slate_eig_c64 3

slate_eig_values_c64 3

eig, eig_values 3 ggev 3 slate_generalized_eig_c64 3

slate_generalized_eig_values_c64 3

27

Chapter 6. SLATE API 6.3. Traditional LAPACK and ScaLAPACK API

6.3 Traditional LAPACK and ScaLAPACK API

SLATE implements many routines from BLAS, LAPACK, and ScaLAPACK. The traditional BLAS,
LAPACK, and ScaLAPACK APIs rely on a 5–6 character naming scheme. This systematic scheme
was designed to fit into the 6 character limit of Fortran 77. Compared to LAPACK, in SLATE the
precision character has been dropped in favor of overloading (slate::gemm instead of sgemm,
dgemm, cgemm, zgemm), and the arguments are greatly simplified by packing information into the
matrix classes.

• One or two characters for precision (dropped in SLATE)

– s: single
– d: double
– c: complex-single
– z: complex-double
– zc: mixed complex-double/single (e.g., zcgesv)
– ds: mixed double/single (e.g., dsgesv)
– sc: real-single output, complex-single input (e.g., scnrm2)
– dz: real-double output, complex-double input (e.g., dznrm2)

• Two character matrix type

– ge: general non-symmetric matrix
– he: Hermitian matrix
– sy: symmetric matrix
– po: positive definite, Hermitian or symmetric matrix
– tr: triangular or trapezoidal matrix
– tz: trapezoidal matrix
– hs: Hessenberg matrix
– or: orthogonal matrix
– un: unitary matrix
– Band matrices

• gb: general band non-symmetric matrix
• hb: Hermitian band matrix
• sb: symmetric band matrix
• pb: positive definite, Hermitian or symmetric band matrix
• tb: triangular band matrix

– Bi- or tridiagonal matrices
• bd: bidiagonal matrix
• st: symmetric tridiagonal matrix
• ht: Hermitian tridiagonal matrix

28

Chapter 6. SLATE API 6.3. Traditional LAPACK and ScaLAPACK API

• pt: positive definite, Hermitian or symmetric tridiagonal matrix

• Several characters for function

– Level 1 BLAS: 𝑂(𝑛) data, 𝑂(𝑛) operations (vectors; no matrix type)
• axpy : 𝑦 = 𝛼𝑥 + 𝑦

• scal : 𝑥 = 𝛼𝑥

• copy : copy vector
• swap : swap vectors
• dot, dotu, dotc: dot products (u = unconjugated, c = conjugated)
• nrm2 : vector 2-norm
• asum : vector 1-norm (absolute value sum)
• iamax: vector ∞-norm
• rot : apply plane (Givens) rotation
• rotg : generate plane rotation
• rotm : apply modified (fast) plane rotation
• rotmg: generate modified plane rotation

– Level 2 BLAS: 𝑂(𝑛2) data, 𝑂(𝑛2) operations
• mv : matrix-vector multiply
• sv : solve, one vector RHS
• r : rank-1 update
• r2 : rank-2 update
• lan: matrix norm (1, infinity, frobenius, max)

– Level 3 BLAS: 𝑂(𝑛2) data, 𝑂(𝑛3) operations
• mm : matrix multiply
• sm : solve, multiple RHS
• rk : rank-𝑘 update
• r2k: rank-2𝑘 update

– Linear systems and least squares
• sv : solve
• ls : least squares solve (several variants)
• trf: triangular factorization
• trs: solve, using triangular factorization
• tri: inverse, using triangular factorization
• con: condition number, using triangular factorization

– Unitary (orthogonal) factorizations
• qrf, qlf, rqf, lqf: QR, QL, RQ, LQ unitary factorization
• mqr, mlq, mrq, mlq: multiply by Q from factorization
• gqr, glq, grq, glq: generate Q from factorization

– Eigenvalue and singular value
• ev : eigenvalue decomposition (variants: ev, evd, evx, evr)

29

Chapter 6. SLATE API 6.3. Traditional LAPACK and ScaLAPACK API

• gv : generalized eigenvalue decomposition (variants: gv, gvd, gvx)
• svd: singular value decomposition (variants:
svd, sdd, svdq, svdx, svj, jsv)

There are many more lower level or specialized routines, but the above routines are the main
routines users may encounter. Traditionally, there are also packed (hp, sp, pp, tp, op, up) and
rectangular full-packed (RFP: hf, sf, pf, tf, op, up) matrix formats, but these don’t apply in
SLATE.

30

CHAPTER 7

Using SLATE

Many of the code snippets in this section reference the SLATE tutorial, available at
https://github.com/icl-utk-edu/slate/tree/master/examples.
Links to individual files are given where applicable.

7.1 Matrices in SLATE

A SLATE matrix consists of a collection of individual tiles, with no correlation between their
positions in the matrix and their memory locations. In SLATE the tiles of a matrix are first-class
objects that can be individually allocated and passed to low-level tile routines.

7.1.1 Matrix Hierarchy

The usage of SLATE revolves around a Tile class and a Matrix class hierarchy (Figure 7.1). The
Tile class is intended as a simple class for maintaining the properties of individual tiles and used
in implementing core serial tile operations, such as tile BLAS, while the Matrix class hierarchy
maintains the state of distributed matrices throughout the execution of parallel matrix algorithms
in a distributed-memory environment.

31

https://github.com/icl-utk-edu/slate/tree/master/examples

Chapter 7. Using SLATE 7.1. Matrices in SLATE

Grayed out classes are abstract base classes that cannot be directly instantiated.

BaseMatrix Abstract base class for all matrices.

Matrix General, 𝑚 × 𝑛 matrix.
BaseTrapezoidMatrix Abstract base class for all upper or lower trapezoid storage, 𝑚 × 𝑛

matrices. For upper, tiles 𝐴(𝑖 , 𝑗) for 𝑖 ≤ 𝑗 are stored; for lower, tiles 𝐴(𝑖 , 𝑗) for 𝑖 ≥ 𝑗 are
stored.
TrapezoidMatrix Upper or lower trapezoid, 𝑚 × 𝑛 matrix with unit or non-unit

diagonal; the opposite triangle is implicitly zero.
TriangularMatrix Upper or lower triangular, 𝑛 × 𝑛 matrix.

SymmetricMatrix Symmetric, 𝑛 × 𝑛 matrix, stored by its upper or lower triangle; the
opposite triangle is known implicitly by symmetry (𝑎 𝑗 ,𝑖 = 𝑎𝑖 , 𝑗).

HermitianMatrix Hermitian, 𝑛 × 𝑛 matrix, stored by its upper or lower triangle; the
opposite triangle is known implicitly by symmetry (𝑎 𝑗 ,𝑖 = 𝑎𝑖 , 𝑗).

BaseBandMatrix Abstract base class for band matrices, with a lower bandwidth 𝑘𝑙 (number
of sub-diagonals) and upper bandwidth 𝑘𝑢 (number of super-diagonals).
BandMatrix General, 𝑚 × 𝑛 band matrix. All tiles intersecting the band exist, e.g.,

𝐴(𝑖 , 𝑗) for 𝑗 = 𝑖 −
⌈
𝑘𝑙
𝑛𝑏

⌉
, . . . , 𝑖 +

⌈
𝑘𝑢
𝑛𝑏

⌉
.

BaseTriangularBandMatrix Abstract base class for all upper or lower triangular
storage, 𝑛 × 𝑛 band matrices. For upper, tiles within the band in the upper
triangle exist; for lower, tiles within the band in the lower triangle exist.
TriangularBandMatrix Upper or lower triangular, 𝑛 × 𝑛 band matrix; the oppo-

site triangle is implicitly zero.
SymmetricBandMatrix Symmetric, 𝑛 × 𝑛 band matrix, stored by its upper

or lower triangle; the opposite triangle is known implicitly by symmetry
(𝑎 𝑗 ,𝑖 = 𝑎𝑖 , 𝑗).

HermitianBandMatrix Hermitian, 𝑛×𝑛 band matrix, stored by its upper or lower
triangle; the opposite triangle is known implicitly by symmetry (𝑎 𝑗 ,𝑖 = 𝑎𝑖 , 𝑗).

The BaseMatrix class stores the matrix dimensions; whether the matrix is upper, lower, or
general; whether it is non-transposed, transposed, or conjugate transposed; how the matrix
is distributed; and the set of tiles—both local tiles and temporary workspace tiles, as needed,
during the computation. It also stores the distribution parameters and MPI communicator that
would traditionally be stored in a ScaLAPACK context. As such, there is no separate structure to
maintain state, nor any need to initialize or finalize the SLATE library.

Currently, in the band matrix hierarchy there is no TrapezoidBandMatrix. This is simply because
we haven’t found a need for it; if a need arises, it can be added.

SLATE routines require the correct matrix types for their arguments, which helps to ensure
correctness, while inexpensive shallow copy conversions exist between the various matrix types.
For instance, a general Matrix can be converted to a TriangularMatrix for doing a triangular
solve (trsm), without copying. The two matrices have a reference-counted C++ shared pointer

32

Chapter 7. Using SLATE 7.1. Matrices in SLATE

BaseMatrix

Matrix

BaseTrapezoidMatrix

TrapezoidMatrix

TriangularMatrix

SymmetricMatrix

HermitianMatrix

n × n

n × n

n × n

m × n

m × n

BaseMatrix

BandMatrix

BaseTriangularBandMatrix

TriangularBandMatrix

HermitianBandMatrix n × n

n × n

m × n

BaseBandMatrix

Figure 7.1: Matrix hierarchy in SLATE. Algorithms require the appropriate types for their operation.

to the same underlying data (std::map of tiles). Algorithm 7.1 shows some conversions between
various matrix types.

Algorithm 7.1 Conversions: ex02_conversion.cc

26 // A is defined to be a general m x n matrix of type scalar_type
27 // (float, std::complex<float>, double, std::complex<double>, etc.).
28 slate::Matrix<scalar_type >
29 A(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
30
31 // Lz is a trapezoid matrix view of the lower trapezoid of A,
32 // assuming Unit diagonal.
33 slate::TrapezoidMatrix <scalar_type >
34 Lz(slate::Uplo::Lower, slate::Diag::Unit, A);
35
36 // Triangular , symmetric , and Hermitian matrices must be square --
37 // take square slice if needed.
38 int64_t min_mn = std::min(m, n);
39 auto A_square = A.slice(0, min_mn -1, 0, min_mn -1);
40
41 // L is a triangular matrix view of the lower triangle of A,
42 // assuming Unit diagonal.
43 slate::TriangularMatrix <scalar_type >
44 L(slate::Uplo::Lower, slate::Diag::Unit, A_square);
45
46 // U is a triangular matrix view of the upper triangle of A.
47 slate::TriangularMatrix <scalar_type >
48 U(slate::Uplo::Upper, slate::Diag::NonUnit, A_square);
49
50 // S is a symmetric matrix view of the upper triangle of A.
51 slate::SymmetricMatrix <scalar_type >
52 S(slate::Uplo::Upper, A_square);
53
54 // H is a Hermitian matrix view of the upper triangle of A.
55 slate::HermitianMatrix <scalar_type >
56 H(slate::Uplo::Upper, A_square);

33

https://github.com/icl-utk-edu/slate/blob/master/examples/ex02_conversion.cc

Chapter 7. Using SLATE 7.1. Matrices in SLATE

Likewise, copying a matrix object is an inexpensive shallow copy, using a C++ shared pointer.
Submatrices are also implemented by creating an inexpensive shallow copy, with the matrix
object storing the offset from the top left of the original matrix and the transposition operation
with respect to the original matrix.

Transpose and conjugate transpose are supported by creating an inexpensive shallow copy and
changing the transposition operation flag stored in the new matrix object. For a matrix A that is
a possibly transposed copy of an original matrix A0, the function A.op() returns Op::NoTrans,
Op::Trans, or Op::ConjTrans, indicating whether A is non-transposed, transposed, or conjugate
transposed, respectively. The functions A = transpose(A0) and A = conj_transpose(A0)
return new matrices with the operation flag set appropriately. Querying properties of a matrix
object takes the transposition and submatrix offsets into account. For instance, A.mt() is the
number of block rows of op(𝐴0), where 𝐴 = op(𝐴0) = 𝐴0, 𝐴𝑇

0 , or 𝐴𝐻
0 . The function A(i, j)

returns the 𝑖 , 𝑗-th tile of op(𝐴0), with the tile’s operation flag set to match the Amatrix.

SLATE supports upper and lower storage with A.uplo() returning Uplo::Upper or Uplo::Lower.
Tiles likewise have a flag indicating upper or lower storage, accessed by A(i, j).uplo(). For
tiles on the matrix diagonal, the uplo flag is set to match the matrix, while for off-diagonal tiles
it is set to Uplo::General.

7.1.2 Creating and Accessing Matrices

A SLATE matrix can be defined and created empty with no data tiles attached.

Algorithm 7.2 Creating matrices: ex01_matrix.cc

26 // Create an empty matrix (2D block cyclic layout, p x q grid,
27 // no tiles allocated , square nb x nb tiles)
28 slate::Matrix<scalar_type >
29 A(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
30
31 // Create an empty matrix (2D block cyclic layout, p x q grid,
32 // no tiles allocated , rectangular mb x nb tiles)
33 slate::Matrix<scalar_type >
34 B(m, n, mb, nb, grid_p, grid_q, MPI_COMM_WORLD);
35
36 // Create an empty TriangularMatrix (2D block cyclic layout, no tiles)
37 slate::TriangularMatrix <scalar_type >
38 T(slate::Uplo::Lower, slate::Diag::NonUnit, n, nb,
39 grid_p, grid_q, MPI_COMM_WORLD);
40
41 // Create an empty matrix based on another matrix structure.
42 slate::Matrix<scalar_type > A2 = A.emptyLike();

At this point, data tiles can be inserted into the matrix. The tile data can be allocated by
SLATE in CPU memory (Algorithm 7.3) or GPU memory (Algorithm 7.4), in which case
SLATE is responsible for deallocating the data. The tile data can also be provided by the user
(Algorithm 7.5), so that the user retains ownership of the data, and the user is responsible for
deallocating the data. Below are examples of different modes of allocating data.

34

https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc

Chapter 7. Using SLATE 7.1. Matrices in SLATE

Algorithm 7.3 SLATE allocating CPU host memory for a matrix: ex01_matrix.cc

55 // Create two empty matrices.
56 slate::Matrix<scalar_type > A(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
57 auto A2 = A.emptyLike();
58
59 // Insert tiles on the CPU host.
60 A.insertLocalTiles(slate::Target::Host);
61
62 // A2.insertLocalTiles(slate::Target::Host) is equivalent to:
63 for (int64_t j = 0; j < A2.nt(); ++j)
64 for (int64_t i = 0; i < A2.mt(); ++i)
65 if (A2.tileIsLocal(i, j))
66 A2.tileInsert(i, j, slate::HostNum);

Algorithm 7.4 SLATE allocating GPU device memory for a matrix: ex01_matrix.cc

79 // Create two empty matrices.
80 slate::Matrix<scalar_type > A(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
81 auto A2 = A.emptyLike();
82
83 // Insert tiles on the GPU devices.
84 A.insertLocalTiles(slate::Target::Devices);
85
86 // A2.insertLocalTiles(slate::Target::Devices) is equivalent to:
87 for (int64_t j = 0; j < A2.nt(); ++j)
88 for (int64_t i = 0; i < A2.mt(); ++i)
89 if (A2.tileIsLocal(i, j))
90 A2.tileInsert(i, j, A2.tileDevice(i, j));

SLATE can take memory pointers directly from the user to initialize the tiles in a Matrix. The
user’s tile size must match the tile size mb × nb for the Matrix.

Algorithm 7.5 Inserting tiles using user-defined data: ex01_matrix.cc

120 // Create an empty matrix (2D block cyclic layout, no tiles).
121 slate::Matrix<scalar_type > A(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
122
123 // Attach user allocated tiles, from pointers in data(i, j)
124 // with local stride lld between columns.
125 for (int64_t j = 0; j < A.nt(); ++j) {
126 for (int64_t i = 0; i < A.mt(); ++i) {
127 if (A.tileIsLocal(i, j))
128 A.tileInsert(i, j, data(i, j), lld);
129 }
130 }

Now that the matrix is created and tiles are attached to the matrix, the elements of data in the
tiles can be accessed locally on different processes.

For a matrix A, calling A(i, j) returns its (𝑖 , 𝑗)-th block, in block row 𝑖 and block column
𝑗. If a matrix is transposed, the indices get transposed and the transposition operation is set
on the tile, that is, if AT = transpose(A), then AT(i, j) is transpose(A(j, i)).
Similarly, with conjugate transposed, if AH = conj_transpose(A), then AH(i, j) is
conj_transpose(A(j, i)). The A.at(i, j) operator is equivalent to A(i, j).

35

https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc

Chapter 7. Using SLATE 7.1. Matrices in SLATE

For a tile T, calling T(i, j) returns its (𝑖 , 𝑗)-th element. If a tile is transposed, the transposition
operation is included, that is, if TT = transpose(T), then TT(i, j) is T(j, i). If a tile
is conjugate transposed, the conjugation is also included, that is, if TH = conj_transpose(T),
then TH(i, j) is conj(T(j, i)). This makes TH(i, j) read-only. The T.at(i, j)
operator includes transposition but not conjugation in order to return a reference that can be
updated. As this is a rather subtle distinction for which we may devise a better solution in the
future; feedback and suggestions are welcome.

Also, at the moment, the mb(), nb(), T(i, j), and T.at(i, j) operators have an if
condition inside to check the transposition; thus, they are not efficient for use inside inner
loops. It is better to get the data pointer and index it directly. Compare Algorithm 7.6 and
Algorithm 7.7.

36

Chapter 7. Using SLATE 7.1. Matrices in SLATE

Algorithm 7.6 Accessing tile elements: ex01_matrix.cc

198 slate::Matrix<scalar_type > A(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
199 A.insertLocalTiles(slate::Target::Host);
200
201 // Loop over tiles in A.
202 int64_t jj_global = 0;
203 for (int64_t j = 0; j < A.nt(); ++j) {
204 int64_t ii_global = 0;
205 for (int64_t i = 0; i < A.mt(); ++i) {
206 if (A.tileIsLocal(i, j)) {
207 // For local tiles, loop over entries in tile.
208 // Make sure CPU tile exists for writing.
209 A.tileGetForWriting(i, j, slate::HostNum, LayoutConvert::ColMajor);
210 slate::Tile<scalar_type > T = A(i, j, slate::HostNum);
211 for (int64_t jj = 0; jj < T.nb(); ++jj) {
212 for (int64_t ii = 0; ii < T.mb(); ++ii) {
213 // Note: currently using T.at() is inefficient
214 // in inner loops; see below.
215 T.at(ii, jj)
216 = std::abs((ii_global + ii) - (jj_global + jj));
217 }
218 }
219 }
220 ii_global += A.tileMb(i);
221 }
222 jj_global += A.tileMb(j);
223 }

Algorithm 7.7 Accessing tile elements, currently more efficient implementation: ex01_matrix.cc

227 // Loop over tiles in A, more efficient implementation.
228 jj_global = 0;
229 for (int64_t j = 0; j < A.nt(); ++j) {
230 int64_t ii_global = 0;
231 for (int64_t i = 0; i < A.mt(); ++i) {
232 if (A.tileIsLocal(i, j)) {
233 // For local tiles, loop over entries in tile.
234 // Make sure CPU tile exists for writing.
235 A.tileGetForWriting(i, j, slate::HostNum, LayoutConvert::ColMajor);
236 slate::Tile<scalar_type > T = A(i, j, slate::HostNum);
237 scalar_type* data = T.data();
238 int64_t mb = T.mb();
239 int64_t nb = T.nb();
240 int64_t stride = T.stride();
241 for (int64_t jj = 0; jj < T.nb(); ++jj) {
242 for (int64_t ii = 0; ii < T.mb(); ++ii) {
243 // Currently more efficient than using T.at().
244 data[ii + jj*stride]
245 = std::abs((ii_global + ii) - (jj_global + jj));
246 }
247 }
248 }
249 ii_global += A.tileMb(i);
250 }
251 jj_global += A.tileMb(j);
252 }

37

https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc

Chapter 7. Using SLATE 7.1. Matrices in SLATE

local
m

lld

local n nb

mb

Figure 7.2: Matrix layout of ScaLAPACK (left) and layout with contiguous tiles (right). SLATE
matrix and tiles structures are flexible and accommodate multiple layouts.

7.1.3 Matrices from ScaLAPACK

SLATE also supports tiles laid out in memory using the traditional ScaLAPACK matrix storage
allowing a leading dimension stride when accessing the matrix (Figure 7.2). This eases an
application’s transition from ScaLAPACK to SLATE.

SLATE can map its Matrix datatype over matrices that are laid out in ScaLAPACK format.

Algorithm 7.8 Creating matrix from ScaLAPACK-style data: ex01_matrix.cc

143 // User-allocated data, in ScaLAPACK format (assuming column-major grid).
144 int myrow = mpi_rank % grid_p;
145 int mycol = mpi_rank / grid_p;
146 int64_t mlocal = slate::num_local_rows_cols(m, nb, myrow, 0, grid_p);
147 int64_t nlocal = slate::num_local_rows_cols(n, nb, myrow, 0, grid_p);
148 int64_t lld = mlocal; // local leading dimension
149 scalar_type* A_data = new scalar_type[lld*nlocal];
150
151 // Create matrix from ScaLAPACK data.
152 auto A = slate::Matrix<scalar_type >::fromScaLAPACK(
153 m, n, // global matrix dimensions
154 A_data, // local ScaLAPACK array data
155 lld, // local leading dimension (column stride) for data
156 nb, nb, // block size
157 slate::GridOrder::Col, // col- or row-major MPI process grid
158 grid_p, grid_q, // MPI process grid
159 MPI_COMM_WORLD // MPI communicator
160);

7.1.4 Matrix Transpose

In SLATE the transpose is a structural property and is associated with the Matrix or Tile object.
Using the transpose operation is a lightweight operations that sets a flag in a shallow copy of the
matrix or tile.

38

https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc

Chapter 7. Using SLATE 7.1. Matrices in SLATE

Algorithm 7.9 Transposing matrices: ex01_matrix.cc

173 slate::Matrix<scalar_type > A(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
174
175 // Transpose
176 // AT is a transposed view of A, with flag AT.op() == Op::Trans.
177 // The Tile AT(i, j) == transpose(A(j, i)).
178 auto AT = transpose(A);
179
180 // Conjugate transpose
181 // AH is a conjugate -transposed view of A, with flag AH.op() == Op::ConjTrans.
182 // The Tile AH(i, j) == conj_transpose(A(j, i)).
183 auto AH = conj_transpose(A);

7.1.5 Submatrices

SLATE submatrices are views of SLATE matrices based on tile indices. The submatrix that is
created uses shallow copy semantics.

Algorithm 7.10 Sub-matrices: ex03_submatrix.cc

37 // view of A(i1 : i2, j1 : j2) as tile indices, inclusive
38 auto B = A.sub(i1, i2, j1, j2);
44
45 // view of all of A
46 B = A;
52
53 // same, view of all of A
54 B = A.sub(0, A.mt()-1, 0, A.nt()-1);
60
61 // view of first block-column, A[0:mt-1, 0:0] as tile indices
62 B = A.sub(0, A.mt()-1, 0, 0);
68
69 // view of first block-row, A[0:0, 0:nt-1] as tile indices
70 B = A.sub(0, 0, 0, A.nt()-1);

7.1.6 Matrix Slices

Matrix slices use column and row indices instead of tile indices. Note that the slice operations
are less efficient than the submatrix operations, and the matrices produced have less algorithm
support, especially on GPUs, which uses batch operations where all tiles must be the same size.
We are in the process of fixing this so GPUs can handle arbitrary mixtures of tile sizes (Oct 2023).

39

https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex03_submatrix.cc

Chapter 7. Using SLATE 7.2. Using SLATE Functions

Algorithm 7.11 Matrix slice: ex03_submatrix.cc

78 // view of A(row1 : row2, col1 : col2), inclusive
79 B = A.slice(row1, row2, col1, col2);
85
86 // view of all of A
87 B = A.slice(0, A.m()-1, 0, A.n()-1);
93
94 // view of first column, A[0:m-1, 0:0]
95 B = A.slice(0, A.m()-1, 0, 0);
101
102 // view of first row, A[0:0, 0:n-1]
103 B = A.slice(0, 0, 0, A.n()-1);

7.1.7 Deep Matrix Copy

SLATE can make a deep copy of a matrix and do precision conversion as needed. This is a
heavy-weight operation and makes a full copy of the matrix. Currently it copies host-to-host or
device-to-device, depending on the Target in options (Section 7.2.1). Copying from a matrix on
the host to a matrix on devices works, but currently incurs extra overhead.

Algorithm 7.12 Deep matrix copy:: ex01_matrix.cc

286 // scalar_type is double or complex<double >;
287 // low_type is float or complex<float>.
288 slate::Matrix<scalar_type > A_hi(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
289 slate::Matrix<low_type > A_lo(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
290 A_hi.insertLocalTiles();
291 A_lo.insertLocalTiles();
292
293 auto A_hi_2 = A_hi.emptyLike();
294 A_hi_2.insertLocalTiles();
295
296 // Copy with precision conversion from double to float.
297 copy(A_hi, A_lo);
298
299 // Copy with precision conversion from float to double.
300 copy(A_lo, A_hi);
301
302 // Copy without conversion.
303 copy(A_hi, A_hi_2);

7.2 Using SLATE Functions

This user’s guide describes some of the high-level, commonly used functionality available in
SLATE. For details on the current implementation, please access the online SLATE Function
Reference, generated from the source code documentation and are available at
https://icl.bitbucket.io/slate/

40

https://github.com/icl-utk-edu/slate/blob/master/examples/ex03_submatrix.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex01_matrix.cc
https://icl.bitbucket.io/slate/

Chapter 7. Using SLATE 7.2. Using SLATE Functions

7.2.1 Execution Options

SLATE routines take an optional map of options as the last argument. These options can help
tune the execution or specify the execution target.

Algorithm 7.13 Options.

1 // Commonly used options in SLATE (slate::Option::name)
2 Target // computation method:
3 // HostTask (default), Devices, HostNest , HostBatch
4 Lookahead , // lookahead depth for algorithms (default 1)
5 InnerBlocking // inner blocking size for panel operations (default 16)
6 MaxPanelThreads // max number of threads for panel operation (default omp_get_max_threads() / 2)
7 PivotThreshold // pivoting threshold in LU (default 1.0)
8
9 MethodCholQR // method for Cholesky QR: Auto (default), HerkC, GemmA, GemmC
10 MethodEig // method to solve tridiagonal eig: QR or DC
11 MethodGels // method for least squares: Auto, Cholqr, Geqrf (default)
12 MethodGemm // method for gemm: Auto (default), GemmA, GemmC
13 MethodHemm // method for hemm: Auto (default), HemmA, HemmC
14 MethodLU // method for pivoting in LU: PartialPiv (default), CALU, NoPiv
15 MethodTrsm // method for trsm: Auto (default), TrsmA, TrsmB
16
17 PrintPrecision // floating point precision to print (default 4)
18 PrintWidth // floating point width to print (default 10)
19 PrintVerbose // which matrix entries to print, level 0-4. See ‘./test/tester -h gemm‘.
20
21 MaxIterations // max number of iterations in iterative refinement (default 30)
22 Tolerance // tolerance for iterative methods (default epsilon)
23 UseFallbackSolver // whether to fall back to full double-precision solve (default true)

These options are passed via an optional map of name–value pairs. In the following example,
the gemm execution options are set to execute on GPU devices with a lookahead of 2. For more
details, see the SLATE function reference.

Algorithm 7.14 Passing options to multiply (gemm): ex05_blas.cc

45 // Execute on GPU devices with lookahead of 2.
46 slate::Options opts = {
47 { slate::Option::Lookahead , 2 },
48 { slate::Option::Target, slate::Target::Devices },
49 };
50 slate::multiply(alpha, A, B, beta, C, opts);

7.2.2 Matrix Norms

The following distributed parallel general matrix norms are available in SLATE and are defined
for any SLATE matrix type: Matrix, SymmetricMatrix, HermitianMatrix, TriangularMatrix, etc.

41

https://icl.bitbucket.io/slate/
https://github.com/icl-utk-edu/slate/blob/master/examples/ex05_blas.cc

Chapter 7. Using SLATE 7.2. Using SLATE Functions

Algorithm 7.15 Norms: ex04_norm.cc

28 slate::Matrix<scalar_type > A(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
29 // ...
37 real_type A_norm_one = slate::norm(slate::Norm::One, A);
38 real_type A_norm_inf = slate::norm(slate::Norm::Inf, A);
39 real_type A_norm_max = slate::norm(slate::Norm::Max, A);
40 real_type A_norm_fro = slate::norm(slate::Norm::Fro, A);
57
58 // norm() is overloaded for all matrix types: Symmetric , Triangular , etc.
59 slate::SymmetricMatrix <scalar_type >
60 S(slate::Uplo::Lower, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
61 // ...
69 real_type S_norm_one = slate::norm(slate::Norm::One, S);
70 real_type S_norm_inf = slate::norm(slate::Norm::Inf, S);
71 real_type S_norm_max = slate::norm(slate::Norm::Max, S);
72 real_type S_norm_fro = slate::norm(slate::Norm::Fro, S);

7.2.3 Matrix-Matrix Multiply

SLATE implements matrix multiply for the matrices in the matrix hierarchy (e.g.,
gemm, gbmm, hemm, symm, trmm, trsm). A matrix can set several flags that get recorded
within its structure and define the view of the matrix. For example, the transpose flag can be
set (e.g., AT = transpose(A), or AC = conj_transpose(A)), so that the user can access the
matrix data as needed.

Algorithm 7.16 Parallel matrix multiply: ex05_blas.cc

37 // C = alpha A B + beta C, where A, B, C are all general matrices.
38 slate::multiply(alpha, A, B, beta, C); // simplified API
39 slate::gemm(alpha, A, B, beta, C); // traditional API
76
77 // Matrices can be transposed or conjugate -transposed beforehand.
78 // C = alpha A^T B^H + beta C
79 auto AT = transpose(A);
80 auto BH = conj_transpose(B);
81 slate::multiply(alpha, AT, BH, beta, C); // simplified API
82 slate::gemm(alpha, AT, BH, beta, C); // traditional API
113
114 // C = alpha A B + beta C, where A is symmetric , on left side
115 slate::multiply(alpha, A, B, beta, C); // simplified API
116 slate::symm(slate::Side::Left, alpha, A, B, beta, C); // traditional API
142
143 // C = alpha B A + beta C, where A is symmetric , on right side
144 // Note B, A order reversed in multiply compared to symm.
145 slate::multiply(alpha, B, A, beta, C); // simplified API
146 slate::symm(slate::Side::Right, alpha, A, B, beta, C); // traditional API
172
173 // C = alpha A B + beta C, where A is Hermitian , on left side
174 slate::multiply(alpha, A, B, beta, C); // simplified API
175 slate::hemm(slate::Side::Left, alpha, A, B, beta, C); // traditional API
201
202 // C = alpha B A + beta C, where A is Hermitian , on right side
203 // Note B, A order reversed in multiply compared to hemm.
204 slate::multiply(alpha, B, A, beta, C); // simplified API
205 slate::hemm(slate::Side::Right, alpha, A, B, beta, C); // traditional API

Rank 𝑘 and 2𝑘 matrix multiply have different semantics, namely that the 𝐴 and 𝐵 matrices are

42

https://github.com/icl-utk-edu/slate/blob/master/examples/ex04_norm.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex05_blas.cc

Chapter 7. Using SLATE 7.2. Using SLATE Functions

each used twice—once un-transposed, once (conjugate) transposed.

Algorithm 7.17 Parallel rank 𝑘 and 2𝑘 updates: ex05_blas.cc

230
231 // C = alpha A A^T + beta C, where C is symmetric
232 slate::rank_k_update(alpha, A, beta, C); // simplified API
233 slate::syrk(alpha, A, beta, C); // traditional API
237
238 // C = alpha A B^T + alpha B A^T + beta C, where C is symmetric
239 slate::rank_2k_update(alpha, A, B, beta, C); // simplified API
240 slate::syr2k(alpha, A, B, beta, C); // traditional API
265
266 // C = alpha A A^H + beta C, where C is Hermitian
267 slate::rank_k_update(alpha, A, beta, C); // simplified API
268 slate::herk(alpha, A, beta, C); // traditional API
272
273 // C = alpha A B^H + conj(alpha) B A^H + beta C, where C is Hermitian
274 slate::rank_2k_update(alpha, A, B, beta, C); // simplified API
275 slate::her2k(alpha, A, B, beta, C); // traditional API

7.2.4 Operations with Triangular Matrices

For triangular matrices, the uplo (Lower, Upper), diag (Unit, NonUnit) and
transpose op (NoTrans, Trans, ConjTrans) flags set matrix-specific information about
whether the matrix is upper or lower triangular, the status of the diagonal, and whether the
matrix is transposed.

Algorithm 7.18 Parallel triangular multiply and solve: ex05_blas.cc

299
300 //----- left
301 // B = alpha A B, where A is triangular , on left side
302 slate::triangular_multiply(alpha, A, B); // simplified API
303 slate::trmm(slate::Side::Left, alpha, A, B); // traditional API
304
305 // Solve AX = B, where A is triangular , on left side; X overwrites B.
306 // That is, B = alpha A^{-1} B.
307 slate::triangular_solve(alpha, A, B); // simplified API
308 slate::trsm(slate::Side::Left, alpha, A, B); // traditional API
332
333 //----- right
334 // B = alpha B A, where A is triangular , on right side
335 // Note B, A order reversed in multiply compared to trmm.
336 slate::triangular_multiply(alpha, B, A); // simplified API
337 slate::trmm(slate::Side::Right, alpha, A, B); // traditional API
338
339 // Solve XA = B, where A is triangular , on right side; X overwrites B.
340 // That is, B = alpha B A^{-1}.
341 // Note B, A order reversed in solve compared to trsm.
342 slate::triangular_solve(alpha, B, A); // simplified API
343 slate::trsm(slate::Side::Right, alpha, A, B); // traditional API

43

https://github.com/icl-utk-edu/slate/blob/master/examples/ex05_blas.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex05_blas.cc

Chapter 7. Using SLATE 7.2. Using SLATE Functions

7.2.5 Operations with Band Matrices

Band matrices include the BandMatrix, TriangularBandMatrix, SymmetricBandMatrix, and
HermitianBandMatrix classes. For an upper-block bandwidth 𝑘𝑢 and lower-block bandwidth
𝑘𝑙 , only the tiles 𝐴(𝑖 , 𝑗) for 𝑗 − 𝑘𝑢 ≤ 𝑖 ≤ 𝑗 + 𝑘𝑙 are stored. Band matrices have multiply, factorize,
solve and norm operations defined for them.

Algorithm 7.19 Band operations.

1 // band matrix with block bandwidth (kl, ku)
2 auto A = slate::BandMatrix <scalar_t >(
3 m, n, kl, ku, nb, p, q, mpi_comm);
4 // A needs memory to be allocated and initialized ...
5 // general matrix B
6 slate::Matrix<double> B(n, nrhs, ...);
7 // B needs memory to be allocated and initialized ...
8
9 // Solve AX = B where A is band; X overwrites B
10 slate::lu_solve(A, B); // simplified
11
12 slate::Pivots pivots;
13 slate::gbsv(A, pivots, B); // traditional

7.2.6 Linear Systems: General Non-Symmetric Square Matrices (LU)

Distributed parallel LU factorization and solve computes the solution to a system of linear
equations

𝐴𝑋 = 𝐵,

where 𝐴 is an 𝑛 × 𝑛 matrix and 𝑋 and 𝐵 are 𝑛 × 𝑛𝑟ℎ𝑠 matrices. LU decomposition with partial
pivoting and row interchanges is used to factor 𝐴 as

𝐴 = 𝑃𝐿𝑈,

where 𝑃 is a permutation matrix, 𝐿 is unit lower triangular, and 𝑈 is upper triangular. The
factored form of 𝐴 is then used to solve the system of equations 𝐴𝑋 = 𝐵.

Algorithm 7.20 LU solve: ex06_linear_system_lu.cc

26 slate::Matrix<scalar_type > A(n, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
27 slate::Matrix<scalar_type > B(n, nrhs, nb, grid_p, grid_q, MPI_COMM_WORLD);
28 // ...
37
38 slate::lu_solve(A, B); // simplified API
39
40 slate::Pivots pivots;
41 slate::gesv(A, pivots, B); // traditional API

Because pivoting can be expensive, SLATE provides several pivoting variants for LU. These
variants are controlled with the options argument. First, Option::MethodLU can be set to
MethodLU::PartialPiv for partial pivoting, MethodLU::CALU [16] for tournament pivoting, or
MethodLU::NoPiv for no pivoting. Furthermore, partial pivoting can be relaxed by setting the

44

https://github.com/icl-utk-edu/slate/blob/master/examples/ex06_linear_system_lu.cc

Chapter 7. Using SLATE 7.2. Using SLATE Functions

Option::PivotThreshold option between 0 and 1 [17]. A threshold of 1 gives regular partial
pivoting, and reducing the threshold reduces the number of row exchanges.

Not pivoting is the fastest variant but is only numerically stable for select classes of matrices,
such as diagonal-dominant ones. Partial pivoting with a threshold of 1 is the slowest, but most
stable, variant. Reducing the pivoting threshold reduces the number of rows that are exchanged;
experimental results suggest that a threshold of 0.5 or 0.1 usually gives a nice speedup with little
loss of accuracy. Finally, tournament pivoting reduces the number of MPI reductions in the pivot
search, so tournament pivoting should provide better scaling than partial pivoting.

Currently, LU for banded matrices ignores Option::MethodLU and always uses partial pivoting,
but it does support the Option::PivotThreshold option. The mixed-precision LU routines
support both options.

7.2.7 Linear Systems: Hermitian/Symmetric Positive Definite (Cholesky)

Distributed parallel Cholesky factorization and solve computes the solution to a system of linear
equations

𝐴𝑋 = 𝐵,

where 𝐴 is an 𝑛 × 𝑛 Hermitian or symmetric positive definite matrix and 𝑋 and 𝐵 are 𝑛 × 𝑛𝑟ℎ𝑠

matrices. The Cholesky decomposition is used to factor 𝐴 as

𝐴 = 𝐿𝐿𝐻 ,

if 𝐴 is stored lower, where 𝐿 is a lower-triangular matrix, or

𝐴 = 𝑈𝐻𝑈,

if 𝐴 is stored upper, where 𝑈 is an upper-triangular matrix. The factored form of 𝐴 is then used
to solve the system of equations 𝐴𝑋 = 𝐵.

Algorithm 7.21 Cholesky solve: ex07_linear_system_cholesky.cc

26 slate::HermitianMatrix <scalar_type >
27 A(slate::Uplo::Lower, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
28 slate::Matrix<scalar_type > B(n, nrhs, nb, grid_p, grid_q, MPI_COMM_WORLD);
29 // ...
38 slate::chol_solve(A, B); // simplified API
39
40 slate::posv(A, B); // traditional API

7.2.8 Linear Systems: Hermitian/Symmetric Indefinite (Aasen’s)

Distributed parallel Hermitian or symmetric indefinite 𝐿𝑇𝐿𝑇 factorization and solve computes
the solution to a system of linear equations

𝐴𝑋 = 𝐵,

45

https://github.com/icl-utk-edu/slate/blob/master/examples/ex07_linear_system_cholesky.cc

Chapter 7. Using SLATE 7.2. Using SLATE Functions

where 𝐴 is an 𝑛 × 𝑛 Hermitian or symmetric matrix and 𝑋 and 𝐵 are 𝑛 × 𝑛𝑟ℎ𝑠 matrices. Aasen’s
2-stage algorithm is used to factor 𝐴 as

𝐴 = 𝐿𝑇𝐿𝐻 ,

if 𝐴 is stored lower, or
𝐴 = 𝑈𝐻𝑇𝑈,

if 𝐴 is stored upper. 𝑈 (or 𝐿) is a product of permutation and unit upper (lower) triangular
matrices, and 𝑇 is Hermitian and banded. The matrix 𝑇 is then factored using LU with partial
pivoting. The factored form of 𝐴 is then used to solve the system of equations 𝐴𝑋 = 𝐵.

Algorithm 7.22 Indefinite solve: ex08_linear_system_indefinite.cc

27 slate::HermitianMatrix <scalar_type >
28 A(slate::Uplo::Lower, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
29 slate::Matrix<scalar_type > B(n, nrhs, nb, grid_p, grid_q, MPI_COMM_WORLD);
30 // ...
39
40 // simplified API
41 slate::indefinite_solve(A, B);
42
43 // traditional API
44 // workspaces
45 // todo: drop H (internal workspace)
46 slate::Matrix<scalar_type > H(n, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
47 slate::BandMatrix <scalar_type > T(n, n, nb, nb, nb, grid_p, grid_q, MPI_COMM_WORLD);
48 slate::Pivots pivots, pivots2;
49
50 slate::hesv(A, pivots, T, pivots2, H, B);

7.2.9 Least Squares: AX ≈ B Using QR or LQ

Distributed parallel least squares solve via QR or LQ factorization solves overdetermined or
underdetermined complex linear systems involving an 𝑚 × 𝑛 matrix 𝐴, using a QR or LQ
factorization of 𝐴. It is assumed that 𝐴 has full rank. 𝑋 is 𝑛 × 𝑛𝑟ℎ𝑠, 𝐵 is 𝑚 × 𝑛𝑟ℎ𝑠. The routine
takes a single matrix 𝐵𝑋 , which is max(𝑚, 𝑛) × 𝑛𝑟ℎ𝑠, to represent both the input right-hand side
𝐵 and the output solution 𝑋.

If 𝑚 ≥ 𝑛, it solves the overdetermined system 𝐴𝑋 ≈ 𝐵 with least squares solution 𝑋 that
minimizes ∥𝐴𝑋 − 𝐵∥2. The matrix 𝐵𝑋 is 𝑚 × 𝑛𝑟ℎ𝑠. On input, 𝐵 is all 𝑚 rows of 𝐵𝑋 . On output,
𝑋 is the first 𝑛 rows of 𝐵𝑋 . Currently, in this case 𝐴 must be not transposed.

If 𝑚 < 𝑛, it solves the underdetermined system 𝐴𝑋 = 𝐵 with minimum norm solution 𝑋

that minimizes ∥𝑋∥2. The matrix 𝐵𝑋 is 𝑛 × 𝑛𝑟ℎ𝑠. On input, 𝐵 is first the 𝑚 rows of 𝐵𝑋 . On
output, 𝑋 is all 𝑛 rows of 𝐵𝑋 . Currently, in this case 𝐴 must be transposed (only if real) or
conjugate-transposed.

Several right-hand side vectors 𝑏 and solution vectors 𝑥 can be handled in a single call; they are
stored as the columns of the 𝑚 × 𝑛𝑟ℎ𝑠 right-hand side matrix 𝐵 and the 𝑛 × 𝑛𝑟ℎ𝑠 solution matrix
𝑋.

Note that these (𝑚, 𝑛) differ from (𝑀, 𝑁) in ScaLAPACK, where the original 𝐴 is 𝑀 × 𝑁 before
applying any transpose, while here 𝐴 is 𝑚 × 𝑛 after applying any transpose.

46

https://github.com/icl-utk-edu/slate/blob/master/examples/ex08_linear_system_indefinite.cc

Chapter 7. Using SLATE 7.2. Using SLATE Functions

The solution vector 𝑋 is contained in the same storage as 𝐵, so the space provided for the
right-hand side 𝐵 should accommodate the solution vector 𝑋. The example in Algorithm 7.23
shows how to handle overdetermined systems (𝑚 ≥ 𝑛).

Algorithm 7.23 Least squares (overdetermined): ex09_least_squares.cc

26 int64_t max_mn = std::max(m, n);
27 slate::Matrix<scalar_type > A(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
28 slate::Matrix<scalar_type > BX(max_mn, nrhs, nb, grid_p, grid_q, MPI_COMM_WORLD);
29 // ...
35 auto B = BX; // == BX.slice(0, m-1, 0, nrhs-1);
36 auto X = BX.slice(0, n-1, 0, nrhs-1);
42
43 // solve AX = B, solution in X
44 slate::least_squares_solve(A, BX); // simplified API
45
46 slate::gels(A, BX); // traditional API

The example in Algorithm 7.24 shows how to handle underdetermined systems (𝑚 < 𝑛).

Algorithm 7.24 Least squares (underdetermined): ex09_least_squares.cc

59 int64_t max_mn = std::max(m, n);
60 slate::Matrix<scalar_type > A(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
61 slate::Matrix<scalar_type > BX(max_mn, nrhs, nb, grid_p, grid_q, MPI_COMM_WORLD);
62 // ...
69 auto B = BX.slice(0, n-1, 0, nrhs-1);
70 auto X = BX; // == BX.slice(0, m-1, 0, nrhs-1);
77
78 // solve A^H X = B, solution in X
79 auto AH = conj_transpose(A);
80 slate::least_squares_solve(AH, BX); // simplified API
81
82 slate::gels(AH, BX); // traditional API

7.2.10 Mixed-Precision Routines

Mixed-precision routines do their heavy computation in lower precision (e.g., single precision),
taking advantage of the higher number of operations per second that are available at lower
precision. Then, the answers obtained in the lower precision are improved using iterative
refinement or GMRES in higher precision (e.g., double precision) to achieve the accuracy desired.
If iterative refinement fails to reach desired accuracy, the computation falls back and runs the
high-precision algorithm. Mixed-precision algorithms are implemented for LU and Cholesky
solvers.

47

https://github.com/icl-utk-edu/slate/blob/master/examples/ex09_least_squares.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex09_least_squares.cc

Chapter 7. Using SLATE 7.2. Using SLATE Functions

Algorithm 7.25 Mixed precision LU solve. ex06_linear_system_lu.cc

55 // mixed precision: factor in single, iterative refinement to double
56 slate::Matrix<scalar_type > A(n, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
57 slate::Matrix<scalar_type > B(n, nrhs, nb, grid_p, grid_q, MPI_COMM_WORLD);
58 slate::Matrix<scalar_type > X(n, nrhs, nb, grid_p, grid_q, MPI_COMM_WORLD);
59 slate::Matrix<scalar_type > B1(n, 1, nb, grid_p, grid_q, MPI_COMM_WORLD);
60 slate::Matrix<scalar_type > X1(n, 1, nb, grid_p, grid_q, MPI_COMM_WORLD);
61 int iters = 0;
62 // ...
78
79 // todo: simplified API
80
81 // traditional API
82 slate::gesv_mixed(A, pivots, B, X, iters);
83 slate::gesv_mixed_gmres(A, pivots, B1, X1, iters); // only one RHS

Algorithm 7.26 Mixed precision Cholesky solve. ex07_linear_system_cholesky.cc

54 // mixed precision: factor in single, iterative refinement to double
55 slate::HermitianMatrix <scalar_type >
56 A(slate::Uplo::Lower, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
57 slate::Matrix<scalar_type > B(n, nrhs, nb, grid_p, grid_q, MPI_COMM_WORLD);
58 slate::Matrix<scalar_type > X(n, nrhs, nb, grid_p, grid_q, MPI_COMM_WORLD);
59 slate::Matrix<scalar_type > B1(n, 1, nb, grid_p, grid_q, MPI_COMM_WORLD);
60 slate::Matrix<scalar_type > X1(n, 1, nb, grid_p, grid_q, MPI_COMM_WORLD);
61 int iters = 0;
76
77 // todo: simplified API
78
79 // traditional API
80 slate::posv_mixed(A, B, X, iters);
81 slate::posv_mixed_gmres(A, B1, X1, iters); // only one RHS

7.2.11 Matrix Inverse

Matrix inversion requires that the matrix first be factored, and then the inverse is computed from
the factors. Note: it is generally recommended that you solve 𝐴𝑋 = 𝐵 using the solve routines
(e.g., lu_solve, chol_solve) rather than computing the inverse and multiplying 𝑋 = 𝐴−1𝐵.
Solves are both faster and more accurate. Matrix inversion is implemented for LU and Cholesky
factorization.

Algorithm 7.27 LU inverse: ex06_linear_system_lu.cc

121 slate::HermitianMatrix <scalar_type >
122 A(slate::Uplo::Lower, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
123 // ...
130
131 // simplified API
132 slate::chol_factor(A);
133 slate::chol_inverse_using_factor(A);
134
135 // traditional API
136 slate::potrf(A); // factor
137 slate::potri(A); // inverse

48

https://github.com/icl-utk-edu/slate/blob/master/examples/ex06_linear_system_lu.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex07_linear_system_cholesky.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex06_linear_system_lu.cc

Chapter 7. Using SLATE 7.2. Using SLATE Functions

Algorithm 7.28 Cholesky inverse: ex07_linear_system_cholesky.cc

121 slate::HermitianMatrix <scalar_type >
122 A(slate::Uplo::Lower, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
123 // ...
130
131 // simplified API
132 slate::chol_factor(A);
133 slate::chol_inverse_using_factor(A);
134
135 // traditional API
136 slate::potrf(A); // factor
137 slate::potri(A); // inverse

7.2.12 Singular Value Decomposition

The SLATE singular value decomposition (SVD) algorithm uses a 2-stage reduction that involves
reduction first to a triangular band matrix, and then to bidiagonal, which is used to compute the
singular values.

Algorithm 7.29 SVD: ex10_svd.cc

28 int64_t min_mn = std::min(m, n);
29 slate::Matrix<scalar_type > A(m, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
30 std::vector<real_t> Sigma(min_mn);
31 // ...
39
40 // A = U Sigma V^H, singular values only
41 slate::svd_vals(A, Sigma);
46 slate::svd(A, Sigma);
59
60 // Singular vectors
61 // U is m x min_mn (reduced SVD) or m x m (full SVD)
62 // V is min_mn x n (reduced SVD) or n x n (full SVD)
63 slate::Matrix<scalar_type > U(m, min_mn, nb, grid_p, grid_q, MPI_COMM_WORLD);
64 slate::Matrix<scalar_type > VH(min_mn, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
65 // empty, 0-by-0 matrices as placeholders for U and VH.
66 slate::Matrix<scalar_type > Uempty, Vempty;
67 // ...
75
76 slate::svd(A, Sigma, U, VH); // both U and V^H
81 slate::svd(A, Sigma, U, Vempty); // only U
86 slate::svd(A, Sigma, Uempty, VH); // only V^H

7.2.13 Hermitian/Symmetric Eigenvalues

The SLATE eigenvalue algorithm uses a 2-stage reduction that involves reduction first to a
Hermitian band matrix, then to real symmetric tridiagonal, which is used to compute the
eigenvalues. Even in the complex-valued case, the tridiagonal matrix is real.

It currently has two methods: MethodEig::DC for divide-and-conquer (default for vectors), and
MethodEig::QR for QR iteration. Eigenvalues are always found using a variant of QR iteration.

49

https://github.com/icl-utk-edu/slate/blob/master/examples/ex07_linear_system_cholesky.cc
https://github.com/icl-utk-edu/slate/blob/master/examples/ex10_svd.cc

Chapter 7. Using SLATE 7.2. Using SLATE Functions

Algorithm 7.30 Hermitian/symmetric eigenvalues: ex11_hermitian_eig.cc

28 slate::HermitianMatrix <scalar_type >
29 A(slate::Uplo::Lower, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
30 slate::Matrix<scalar_type >
31 Z(n, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
32 std::vector<real_t> Lambda(n);
33 // ...
42 // A = Z Lambda Z^H, eigenvalues only
43 slate::eig_vals(A, Lambda); // simplified API, or
49 slate::eig(A, Lambda); // simplified API
55 slate::heev(A, Lambda); // traditional API
62 // A = Z Lambda Z^H, eigenvalues and eigenvectors
63 slate::eig(A, Lambda, Z); // simplified API
68 slate::heev(A, Lambda, Z); // traditional API

7.2.14 Generalized Hermitian/Symmetric Eigenvalues

The generalized eigenvalue problem adds a Hermitian positive definite matrix 𝐵 in one of three
places, set by itype:

(1) 𝐴𝑧 = �𝐵𝑧

(2) 𝐴𝐵𝑧 = �𝑧

(3) 𝐵𝐴𝑧 = �𝑧

It uses a Cholesky factorization to reduce the problem to a standard eigenvalue problem. All of
the options for a standard eig apply.

50

https://github.com/icl-utk-edu/slate/blob/master/examples/ex11_hermitian_eig.cc

Chapter 7. Using SLATE 7.2. Using SLATE Functions

Algorithm 7.31 Generalized Hermitian/symmetric eigenvalues:
ex12_generalized_hermitian_eig.cc

32 slate::HermitianMatrix <scalar_type >
33 A(slate::Uplo::Lower, n, nb, grid_p, grid_q, MPI_COMM_WORLD),
34 B(slate::Uplo::Lower, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
35 slate::Matrix<scalar_type >
36 Z(n, n, nb, grid_p, grid_q, MPI_COMM_WORLD);
37 std::vector<real_t> Lambda(n);
38 // ...
49 // Type 1: A = B Z Lambda Z^H, eigenvalues only
50 slate::eig_vals(1, A, B, Lambda); // simplified API, or
57 slate::eig(1, A, B, Lambda); // simplified API
64 slate::hegv(1, A, B, Lambda); // traditional API
72
73 // Type 2: A B = Z Lambda Z^H, eigenvalues only
74 slate::eig_vals(2, A, B, Lambda); // simplified API
82
83 // Type 3: A = B Z Lambda Z^H, eigenvalues only
84 slate::eig_vals(3, A, B, Lambda); // simplified API
92
93 // Types 1, 2, and 3, with eigenvectors
94 slate::eig(1, A, B, Lambda, Z); // simplified API
101 slate::eig(2, A, B, Lambda, Z); // simplified API
108 slate::eig(3, A, B, Lambda, Z); // simplified API
115 slate::hegv(1, A, B, Lambda, Z); // traditional API
122 slate::hegv(2, A, B, Lambda, Z); // traditional API
129 slate::hegv(3, A, B, Lambda, Z); // traditional API

51

https://github.com/icl-utk-edu/slate/blob/master/examples/ex12_generalized_hermitian_eig.cc

CHAPTER 8

Testing Suite for SLATE

SLATE comes with a testing suite to check the correctness and accuracy of the functionality
provided by the library. The testing suite can also be used to obtain timing results for the
routines. For many of the routines, the SLATE testers can be used to run a reference ScaLAPACK
execution of the same routine (with some caveats with respect to threading).

Most routines using backwards error checks to check the accuracy, similar to the checks done in
LAPACK. See LAPACK working note 41 for descriptions of the error formulas.

For the parallel BLAS routines, with --ref=n, accuracy checks are done by multiplying the
expression by a random matrix 𝑋 with two different parenthesizations, e.g., for gemm:

𝐶out = 𝛼𝐴𝐵 + 𝛽𝐶in ,

𝑌1 = 𝛼𝐴(𝐵𝑋) + (𝛽𝐶in𝑋),
𝑌2 = 𝐶out𝑋,

error = ∥𝑌1 − 𝑌2∥
∥𝑌1∥

.

This is fast but cannot detect all errors. With --ref=y, accuracy checks are done compared with
the ScaLAPACK reference result. This is slower but more robust, since it relies on a different
implementation for the reference solution.

For the parallel norm routines, accuracy checks are done by comparing the answer with a
reference ScaLAPACK execution. Older versions of ScaLAPACK have accuracy errors in the
norms that can cause apparent failures.

The SLATE test suite should be built by default in the test directory. A number of the tests
require ScaLAPACK to run reference versions, so the build process will try to link the tester
binary with a ScaLAPACK library.

52

http://www.netlib.org/lapack/lawnspdf/lawn41.pdf

Chapter 8. Testing Suite for SLATE 8.1. SLATE Tester

The SLATE tests are all driven by the TestSweeper testing framework, which enables the tests to
sweep over a combination of input choices.

8.1 SLATE Tester

Some basic examples of using the SLATE tester are shown here.

1 cd test
2 # list all the available tests
3 ./tester --help
4
5 # do a quick test of gemm using small default settings
6 ./tester gemm
7
8 # list the options for testing gemm
9 ./tester --help gemm
10
11 # do a larger single-process sweep of gemm
12 ./tester --nb 256 --dim 1000:5000:1000 gemm
13
14 # do a multi-process sweep of gemm using MPI
15 mpirun -n 4 ./tester --nb 256 --dim 1000:5000:1000 --grid 2x2 gemm
16
17 # do a multi-process sweep of gemm using MPI and target devices (CUDA / ROCm / oneMKL)
18 mpirun -n 4 ./tester --nb 256 --dim 1000:5000:1000 --target d gemm

The ./tester --help gemm command will generate a list of available parameters for gemm.
Other routines can be checked similarly.

53

Chapter 8. Testing Suite for SLATE 8.1. SLATE Tester

1 > ./tester --help gemm
2 % SLATE version 2023.08.25, id 965f1d63
3 % input: ./tester --help gemm
4 % 2023-11-05 04:16:47, 1 MPI ranks, CPU-only MPI, 4 OpenMP threads per MPI rank
5 Usage: test [-h|--help]
6 test [-h|--help] routine
7 test [parameters] routine
8
9 Parameters for gemm:
10 --check check the results; default y; valid: [ny]
11 --error-exit check error exits; default n; valid: [ny]
12 --ref run reference; sometimes check implies ref; default n; valid: [nyo]
13 --trace enable/disable traces; default n; valid: [ny]
14 --trace-scale horizontal scale for traces, in pixels per sec; default 1000
15 --tol tolerance (e.g., error < tol*epsilon to pass); default 50
16 --repeat number of times to repeat each test; default 1
17 --verbose verbose level:
18 0: no printing (default)
19 1: print metadata only (dimensions , uplo, etc.)
20 2: print first & last edgeitems rows & cols from the four corner tiles
21 3: print 4 corner elements of every tile
22 4: print full matrix; default 0
23 --print-edgeitems for verbose=2, number of first & last rows & cols to print
24 from the four corner tiles; default 16
25 --print-width minimum number of characters to print per value; default 10
26 --print-precision number of digits to print after the decimal point; default 4
27 --cache total cache size, in MiB; default 20
28 --debug given rank waits for debugger (gdb/lldb) to attach; default -1
29
30 Parameters that take comma-separated list of values and may be repeated:
31 --type s=single (float), d=double, c=complex-single, z=complex-double; default d
32 --origin origin: h=Host, s=ScaLAPACK , d=Devices; default host
33 --target target: t=HostTask , n=HostNest , b=HostBatch , d=Devices; default task
34 --method-gemm auto=auto, A=gemmA, C=gemmC; default auto
35 --grid-order (go) MPI grid order: c=Col, r=Row; default col
36 --matrix test matrix kind; see ’test --help-matrix’; default ’rand’
37 --cond requested matrix condition number; default NA
38 --condD matrix D condition number; default NA
39 --seed Randomization seed (-1 randomizes the seed for each matrix); default -1
40 --matrixB test matrix kind; see ’test --help-matrix’; default ’rand’
41 --condB requested matrix condition number; default NA
42 --condD_B matrix D condition number; default NA
43 --seedB Randomization seed (-1 randomizes the seed for each matrix); default -1
44 --matrixC test matrix kind; see ’test --help-matrix’; default ’rand’
45 --condC requested matrix condition number; default NA
46 --condD_C matrix D condition number; default NA
47 --seedC Randomization seed (-1 randomizes the seed for each matrix); default -1
48 --norm norm: o=one, 2=two, i=inf, f=fro, m=max; default 1
49 --transA transpose of A: n=no-trans, t=trans, c=conj-trans; default notrans
50 --transB transpose of B: n=no-trans, t=trans, c=conj-trans; default notrans
51 --dim m x n x k dimensions
52 --nrhs number of right hand sides; default 10
53 --alpha alpha value
54 --beta beta value
55 --nb block size; default 384
56 --grid MPI grid p x q dimensions
57 --lookahead (la) number of lookahead panels; default 1

54

Chapter 8. Testing Suite for SLATE 8.2. Full Testing Suite

The SLATE tester can be used to check the accuracy and tune the performance of specific routines
(e.g., gemm).

1 # Run gemm, single precision , targeting cpu tasks, matrix dimensions
2 # 500 to 2000 with step 500 and tile size 256.
3 ./tester --type s --target t --dim 500:2000:500 --nb 256 gemm
4
5 # The following command could be used to tune tile sizes. Run gemm,
6 # single precision , target devices, matrix dimensions 5000, 10000 and
7 # use tile sizes 192 to 512 with step 64.
8 ./tester --type s --target d --dim 5000,10000 --nb 192:256:64 gemm
9
10 # Run distributed gemm, double precision , target devices, matrix
11 # dimensions 10000, use tile sizes 192 to 512 with step 64,
12 # and use 2x2 MPI process grid.
13 mpirun -n 4 ./tester --type d --target d --dim 10000 --nb 192:256:64 \
14 --grid 2x2 gemm
15
16 # Run distributed gemm, double precision , target devices, matrix
17 # dimensions 10000, use tile size 256, and a 1x4 MPI process grid.
18 mpirun -n 4 ./tester --type d --target d --dim 10000 --nb 256 \
19 --grid 1x4 gemm

8.2 Full Testing Suite

The SLATE tester contains a Python test driver script run_tests.py that can run the available
routines, sweeping over combinations of parameters and running the SLATE tester to ensure
that SLATE is functioning correctly. By default, the test driver will run the tester for all the
known functions; however, it can be restricted to run only specific functions.

The run_tests.py script has a large number of parameters that can be passed to the tester.

1 cd test
2
3 # Get a list of available parameters
4 python3 ./run_tests.py --help
5
6 # The default full test suite used by SLATE
7 python3 ./run_tests.py --xml ../report_unit.xml
8
9 # Run a small run using the full testing suite
10 python3 ./run_tests.py --xsmall
11
12 # You can also send jobs to a job manager or use mpirun by changing
13 # the test command. Run gesv tests using SLURM plus mpirun, running
14 # on 4 process Note, if the number of processes is a square number,
15 # the tester will set p and q to the root of that number.
16 python3 ./run_tests.py --test "salloc -N 4 -n 4 -t 10 mpirun -n 4 ./tester" \
17 --xsmall gesv
18
19 # Run on execution target devices, assuming all the nodes have NVIDIA GPUs
20 python3 ./run_tests.py --test "mpirun -n 4 ./tester " --xsmall --target d gesv

55

Chapter 8. Testing Suite for SLATE 8.3. Tuning SLATE

8.3 Tuning SLATE

There are several parameters that can affect the performance of SLATE routines on different
architectures. The most basic parameter is the tile size nb. For execution on the CPU using
OpenMP tasks (HostTask), SLATE tile sizes tend to be in the order of hundreds. A sweep over
tile sizes can be used to determine the appropriate tile size for an algorithm. Note that the
appropriate tile sizes are likely to vary for different execution targets and process grids.

1 cd test
2 # Trying tile sizes for gesv, double precision data, target HostTask
3 ./tester --type d --target t --dim 3000 --nb 128:512:32 gesv
4
5 # Trying tile sizes for gesv, double precision data, target Devices
6 # For NVIDIA GPUs, nb tends to be larger and a multiple of 64
7 ./tester --type d --target d --dim 10000 --nb 192:1024:64 gesv

Similarly, for a distributed execution a number of process grids may need to be tested to determine
the appropriate choice. For many of SLATE algorithms, a 𝑝 × 𝑞 grid where 𝑝 ≤ 𝑞, but not too far
from square, will work well. A 1D grid (𝑝 = 1 or 𝑞 = 1) is usually bad for performance, as it
leads to higher communication.

1 cd test
2 # Trying grid sizes for gemm, double precision data, target HostTask
3 mpirun -n 4 ./tester --target t --nb 256 --dim 10000 --grid 1x4,2x2 gemm

There are several other parameters that can be tested—for example, the algorithmic lookahead
(--lookahead 1 default is usually sufficient) and the number of threads to be used in panel
operations.

8.3.1 Enabling Multi-threaded MPI Broadcast

Sending tiles to MPI ranks in the list of submatrices during computations can be accomplished
using OpenMP tasksloop and multi-threaded MPI. To enable the multithreaded MPI broadcast,
the flag CXXFLAGS += -DSLATE_HAVE_MT_BCAST have to be added to the make.inc file. Figure 8.1
illustrates a performance comparison of gemm with and without enabling the multithreaded
MPI broadcast. On Summit (Figure 8.1a), enabling this option results in approximately 2𝑋
performance improvements. However, on Frontier (Figure 8.1b), it exhibits similar performance
to disabling it but can cause SLATE to hang when using GPU-aware MPI.

8.4 Unit Tests

SLATE also contains a set of unit tests that are used to check the functionality of smaller parts of
the source code. For example, the unit tests can ensure that the SLATE memory manager, the
various Matrix objects, and the Tile objects are functioning as expected. These unit tests are of
more use to the SLATE developer and are not discussed in more detail here.

The unit tests also have a Python script that will run a sweep over these tests.

56

Chapter 8. Testing Suite for SLATE 8.4. Unit Tests

0 25k 50k 75k 100k 125k 150k 175k 200k
matrix dimension (m = n = k)

0

50

100

150

200

250

300

Tf
lo

p/
s

gemm, 16 node, 128 GPUs
listBcastMT
disable-listBcastMT

(a) 16 nodes of Summit (672 Power9 CPUs, 96 V100 GPUs).

0 50k 100k 150k 200k 250k 300k
matrix dimension (m = n = k)

0

500

1000

1500

2000

Tf
lo

p/
s

gemm, 16 node, 128 GPUs
listBcastMT
disable-listBcastMT

(b) 16 nodes of Frontier (896 EPYC CPUs, 128 MI250X GPUs).

Figure 8.1: Performance comparison with using listBcastMT.

1 cd unit_test
2 # The default unit_test run used by SLATE
3 python3 ./run_tests.py --xml ../report_unit.xml

57

CHAPTER 9

Compatibility APIs for ScaLAPACK and LAPACK Users

In order to facilitate easy and quick adoption of SLATE, a set of compatibility APIs is provided
for routines that will allow ScaLAPACK and LAPACK functions to execute using their matching
SLATE routines. SLATE can support such compatibility because the flexible tile layout adopted
by SLATE was purposely designed to match LAPACK and ScaLAPACK matrix layouts.

9.1 LAPACK Compatibility API

The SLATE-LAPACK compatibility API is parameter matched to standard LAPACK calls with
the function names prefaced by slate_. The prefacing was necessary because SLATE uses
standard LAPACK routines internally, and the function names would clash if the SLATE-LAPACK
compatibility API used the standard names.

Each supported LAPACK routine (e.g., gemm) added to the compatibility library provides
interfaces for all data types (single, double, single complex, double complex, mixed) that may be
required. These interfaces (e.g., slate_sgemm, slate_dgemm) call a type-generic routine that sets
up other SLATE requirements.

The LAPACK data is then mapped to a SLATE matrix type using a support routine fromLAPACK.
SLATE requires a block/tile size (nb) because SLATE algorithms view matrices as composed of
tiles of data. This tiling does not require the LAPACK data to be moved; it is a view on top of the
pre-existing LAPACK data layout.

SLATE will attempt to manage the number of available threads such that threads are used to
generate and manage tasks and the internal lower-level BLAS calls all run single threaded. These
settings may need to be altered to support different BLAS libraries since each library may have

58

Chapter 9. Compatibility APIs for . . . 9.2. ScaLAPACK Compatibility API

its own methods for controlling the threads used for BLAS computations.

The SLATE execution target (e.g., HostTask, Devices, ...) is not something available from
the LAPACK function parameters (e.g. dgemm). The execution target information defaults to
HostTask (running on the CPUs), but the user can specify the execution target to the compatibility
routine using environment variables, allowing the LAPACK call (e.g., slate_dgemm) to execute
on Device/GPU targets.

The compatibility library will then call the SLATE version of the routine (slate::gemm) and
execute it on the selected target.

Algorithm 9.1 LAPACK-compatible API.
C example

1 // Compile with, e.g.,
2 // mpicc -o example example.c -lslate_lapack_api
3
4 // Original call to LAPACK
5 dgetrf_(&m, &n, A, &lda, ipiv, &info);
6
7 // New call to SLATE
8 slate_dgetrf_(&m, &n, A, &lda, ipiv, &info);

Fortran example
1 !! Compile with, e.g.,
2 !! mpif90 -o example example.f90 -lslate_lapack_api
3
4 !! Original call to LAPACK
5 call dgetrf(m, n, A, lda, ipiv, info)
6
7 !! New call to SLATE
8 call slate_dgetrf(m, n, A, lda, ipiv, info)

9.2 ScaLAPACK Compatibility API

The SLATE-ScaLAPACK compatibility API is intended to be link-time compatible with standard
ScaLAPACK, matching both function names and parameters to the degree possible.

Each supported ScaLAPACK routine (e.g., gemm) has interfaces for all the supported data types
(e.g., pdgemm, psgemm) and all the standard Fortran name manglings (i.e., uppercase, lowercase,
added underscore). So, a call to a ScaLAPACK function will be intercepted using a function
name expected by the end user.

All the defined Fortran interface routines (e.g., pdgemm, PDGEMM, pdgemm_) call a single type-generic
SLATE function that sets up the translation between the ScaLAPACK and SLATE parameters.
The ScaLAPACK matrix data can be mapped to SLATE matrix types using a support function
fromScaLAPACK provided by SLATE. This mapping does not move the ScaLAPACK data from its
original locations. A SLATE matrix structure is defined, referencing the ScaLAPACK data using
the ScaLAPACK blocking factor to define SLATE tiles. Note: SLATE algorithms tend to perform
better at larger block sizes, especially on GPU devices, so it is preferable if ScaLAPACK uses a
larger blocking factor.

59

Chapter 9. Compatibility APIs for . . . 9.2. ScaLAPACK Compatibility API

The SLATE execution target (e.g., HostTask, Devices, ...) defaults to HostTask (running on
the CPUs) but the user can specify the execution target to the compatibility routine using
environment variables. This allows an end user to use ScaLAPACK and SLATE within the
same executable. ScaLAPACK functions that have an analog in SLATE will benefit from any
algorithmic or GPU speedup, and any functions that are not yet in SLATE will transparently fall
through to the pre-existing ScaLAPACK implementations.

Algorithm 9.2 ScaLAPACK-compatible API.
C example

1 // Compile with, e.g.,
2 // mpicc -o example example.c -lslate_scalapack_api -lscalapack
3
4 // Call to ScaLAPACK will be intercepted by SLATE
5 pdgetrf_(&m, &n, A, &ia, &ja, descA, ipiv, &info);

Fortran example
1 !! Compile with, e.g.,
2 !! mpif90 -o example example.f90 -lslate_scalapack_api -lscalapack
3
4 !! Call to ScaLAPACK will be intercepted by SLATE
5 call pdgetrf(m, n, A, ia, ja, descA, ipiv, info)

60

Bibliography

[1] Ali Charara, Mark Gates, Jakub Kurzak, Asim YarKhan, and Jack Dongarra. SLATE
Developers’ Guide, SWAN no. 11. Technical Report ICL-UT-19-02, Innovative Computing
Laboratory, University of Tennessee, December 2019. revision 12-2019.

[2] Ahmad Abdelfattah, Hartwig Anzt, Aurelien Bouteiller, Anthony Danalis, Jack Dongarra,
Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, Stephen Wood,
Panruo Wu, Ichitaro Yamazaki, and Asim YarKhan. Roadmap for the Development of
a Linear Algebra Library for Exascale Computing: SLATE: Software for Linear Algebra
Targeting Exascale. SLATE Working Notes 1, ICL-UT-17-02, 2017. URL http://www.icl.utk.
edu/publications/swan-001.

[3] Mark Gates, Piotr Luszczek, Ahmad Abdelfattah, Jakub Kurzak, Jack Dongarra, Konstantin
Arturov, Cris Cecka, and Chip Freitag. C++ API for BLAS and LAPACK. Technical Report
ICL-UT-17-03, SLATE Working Note 2, Innovative Computing Laboratory, University of
Tennessee, 2017. URL https://www.icl.utk.edu/publications/swan-002.

[4] Wolfgang Hackbusch. A sparse matrix arithmetic based on H-Matrices. part i: Introduction
to H-Matrices. Computing, 62:89–108, 1999. doi:https://doi.org/10.1007/s006070050015.

[5] Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch. Introduction to hierarchical
matrices with applications. Engineering analysis with boundary elements, 27(5):405–422, 2003.
doi:https://doi.org/10.1016/S0955-7997(02)00152-2.

[6] Wolfgang Hackbusch, Steffen Börm, and Lars Grasedyck. HLib 1.4. Max-Planck-Institut,
Leipzig, 2012. URL http://www.hlib.org.

[7] Clément Weisbecker. Improving multifrontal solvers by means of algebraic block low-rank
representations. PhD thesis, Institut National Polytechnique de Toulouse-INPT, 2013. URL
https://tel.archives-ouvertes.fr/tel-00934939/.

61

http://www.icl.utk.edu/publications/swan-001
http://www.icl.utk.edu/publications/swan-001
https://www.icl.utk.edu/publications/swan-002
https://doi.org/https://doi.org/10.1007/s006070050015
https://doi.org/https://doi.org/10.1016/S0955-7997(02)00152-2
http://www.hlib.org
https://tel.archives-ouvertes.fr/tel-00934939/

Bibliography Bibliography

[8] Fred Gustavson, André Henriksson, Isak Jonsson, Bo Kågström, and Per Ling. Re-
cursive blocked data formats and BLAS’s for dense linear algebra algorithms. Ap-
plied Parallel Computing Large Scale Scientific and Industrial Problems, 1541:195–206, 1998.
doi:https://doi.org/10.1007/BFb0095337.

[9] Fred G Gustavson, Jerzy Waśniewski, Jack J Dongarra, and Julien Langou. Rect-
angular full packed format for cholesky’s algorithm: factorization, solution, and
inversion. ACM Transactions on Mathematical Software (TOMS), 37(2):18, 2010.
doi:https://doi.org/10.1145/1731022.1731028.

[10] Introducing the new Packed APIs for GEMM. Intel Corp., 2016. URL https://software.intel.com/
en-us/articles/introducing-the-new-packed-apis-for-gemm.

[11] Fred Gustavson, Lars Karlsson, and Bo Kågström. Parallel and cache-efficient in-place
matrix storage format conversion. ACM Transactions on Mathematical Software (TOMS), 38(3):
17, 2012. doi:https://doi.org/10.1145/2168773.2168775.

[12] Stefan Kurz, Oliver Rain, and Sergej Rjasanow. The adaptive cross-approximation technique
for the 3d boundary-element method. IEEE Transactions on Magnetics, 38(2):421–424, 2002.
doi:https://doi.org/10.1109/20.996112.

[13] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Panruo Wu, Ichi-
taro Yamazaki, Asim YarKhan, Maksims Abalenkovs, Negin Bagherpour, Sven Hammarling,
Jakub Šíšístek, David Stevens, Mawussi Zounon, and Samuel Relton. PLASMA: Parallel
Linear Algebra Software for Multicore Using OpenMP. ACM Transactions on Mathematical
Software (TOMS), 45:16:1–16:35, 2019. doi:https://doi.org/10.1145/3264491.

[14] Wei Wu, Aurelien Bouteiller, George Bosilca, Mathieu Faverge, and Jack Dongarra.
Hierarchical DAG scheduling for hybrid distributed systems. In 2015 IEEE In-
ternational Parallel and Distributed Processing Symposium, pages 156–165. IEEE, 2015.
doi:https://doi.org/10.1109/IPDPS.2015.56.

[15] Jakub Kurzak, Piotr Luszczek, Ichitaro Yamazaki, Yves Robert, and Jack Don-
garra. Design and implementation of the PULSAR programming system for
large scale computing. Supercomputing Frontiers and Innovations, 4(1):4–26, 2017.
doi:http://dx.doi.org/10.14529/jsfi170101.

[16] Laura Grigori, James W Demmel, and Hua Xiang. CALU: a communication optimal LU
factorization algorithm. SIAM Journal on Matrix Analysis and Applications, 32(4):1317–1350,
2011. doi:10.1137/100788926.

[17] Neil Lindquist, Mark Gates, Piotr Luszczek, and Jack Dongarra. Threshold pivoting
for dense LU factorization. In 2022 IEEE/ACM Workshop on Latest Advances in Scal-
able Algorithms for Large-Scale Heterogeneous Systems (ScalAH), pages 34–42. IEEE, 2022.
doi:10.1109/ScalAH56622.2022.00010.

62

https://doi.org/https://doi.org/10.1007/BFb0095337
https://doi.org/https://doi.org/10.1145/1731022.1731028
https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm
https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm
https://doi.org/https://doi.org/10.1145/2168773.2168775
https://doi.org/https://doi.org/10.1109/20.996112
https://doi.org/https://doi.org/10.1145/3264491
https://doi.org/https://doi.org/10.1109/IPDPS.2015.56
https://doi.org/http://dx.doi.org/10.14529/jsfi170101
https://doi.org/10.1137/100788926
https://doi.org/10.1109/ScalAH56622.2022.00010

	Contents
	List of Figures
	List of Algorithms
	Introduction
	Essentials
	SLATE
	Functionality and Goals of SLATE
	Software Components Required by SLATE
	Computers for Which SLATE Is Suitable
	Availability of SLATE
	User Support
	License and Commercial Use of SLATE

	Installation Instructions
	Makefile-Based Build
	CMake
	Spack
	Verify Installation

	Getting Started with SLATE
	Source Code for Example Program 1
	Details of Example Program 1
	Simplifying Assumptions Used in Example Program 1
	Building and Running Example Program 1

	Design and Fundamentals of SLATE
	Design Principles
	Matrix Layout
	Parallelism Model

	SLATE API
	C++ API
	BLAS and Auxiliary
	Linear Systems and Least Squares
	Unitary Factorizations
	Eigenvalue and Singular Value Decomposition

	C and Fortran API
	BLAS and Auxiliary
	Linear Systems and Least Squares
	Unitary Factorizations
	Eigenvalue and Singular Value Decomposition (SVD)

	Traditional LAPACK and ScaLAPACK API

	Using SLATE
	Matrices in SLATE
	Matrix Hierarchy
	Creating and Accessing Matrices
	Matrices from ScaLAPACK
	Matrix Transpose
	Submatrices
	Matrix Slices
	Deep Matrix Copy

	Using SLATE Functions
	Execution Options
	Matrix Norms
	Matrix-Matrix Multiply
	Operations with Triangular Matrices
	Operations with Band Matrices
	Linear Systems: General Non-Symmetric Square Matrices (LU)
	Linear Systems: Hermitian/Symmetric Positive Definite (Cholesky)
	Linear Systems: Hermitian/Symmetric Indefinite (Aasen’s)
	Least Squares: AX B Using QR or LQ
	Mixed-Precision Routines
	Matrix Inverse
	Singular Value Decomposition
	Hermitian/Symmetric Eigenvalues
	Generalized Hermitian/Symmetric Eigenvalues

	Testing Suite for SLATE
	SLATE Tester
	Full Testing Suite
	Tuning SLATE
	Enabling Multi-threaded MPI Broadcast

	Unit Tests

	Compatibility APIs for ScaLAPACK and LAPACK Users
	LAPACK Compatibility API
	ScaLAPACK Compatibility API

	Bibliography

