
UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 1

Scientific Programming 00 (20xx) 1–12 1
DOI 10.3233/SPR-140404
IOS Press1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

HPC programming on Intel
Many-Integrated-Core hardware with
MAGMA Port to Xeon Phi

Jack Dongarra a,b,c,∗, Mark Gates a, Azzam Haidar a, Yulu Jia a, Khairul Kabir a, Piotr Luszczek a and
Stanimire Tomov a

a University of Tennessee, Knoxville, TN, USA
b Oak Ridge National Laboratory, Oak Ridge, TN, USA
c University of Manchester, Manchester, UK

Abstract. This paper presents the design and implementation of several fundamental dense linear algebra (DLA) algorithms for
multicore with Intel Xeon Phi Coprocessors. In particular, we consider algorithms for solving linear systems. Further, we give an
overview of the MAGMA MIC library, an open source, high performance library that incorporates the developments presented
here, and, more broadly, provides the DLA functionality equivalent to that of the popular LAPACK library while targeting
heterogeneous architectures that feature a mix of multicore CPUs and coprocessors. The LAPACK-compliance simplifies the
use of the MAGMA MIC library in applications, while providing them with portably performant DLA. High performance is
obtained through the use of the high-performance BLAS, hardware-specific tuning, and a hybridization methodology whereby
we split the algorithm into computational tasks of various granularities. Execution of those tasks is properly scheduled over the
heterogeneous hardware by minimizing data movements and mapping algorithmic requirements to the architectural strengths
of the various heterogeneous hardware components. Our methodology and programming techniques are incorporated into the
MAGMA MIC API, which abstracts the application developer from the specifics of the Xeon Phi architecture and is therefore
applicable to algorithms beyond the scope of DLA.

Keywords: Numerical linear algebra, Intel Xeon Phi processor, Many Integrated Cores, hardware accelerators and coprocessors,
dynamic runtime scheduling using dataflow dependences, communication and computation overlap

1. Introduction and background

Solving linear systems of equations and eigenvalue
problems is fundamental to scientific computing. The
popular LAPACK library [4], and in particular its ven-
dor optimized implementations such as Intel’s MKL
[15] or AMD’s ACML [2], have been the software of
choice to provide solver routines for dense matrices
on shared memory systems. This paper considers a re-
design of the LAPACK algorithms and their implemen-
tation to add efficient support for heterogeneous sys-
tems of multicore processors with Intel Xeon Phi co-
processors. This is not the first time that DLA libraries
have needed a redesign to be efficient on new architec-
tures. Notable examples being the transition from LIN-
PACK [10] to LAPACK [4] in the 1980s to make al-

*Corresponding author: Jack Dongarra, University of Tennessee,
Knoxville, TN, USA. E-mail: dongarra@cs.utk.edu.

gorithms cache-friendly. Also, ScaLAPACK [8] in the
1990s added support for distributed memory systems.
And at present time, the PLASMA and MAGMA li-
braries [1] target efficiency on, respectively, multicore
and heterogeneous architectures.

The Intel Xeon Phi coprocessor is a hardware accel-
erator that made its debut in the late 2012 as a platform
for high-throughput technical computing. It is some-
times known under an alternative name of Many In-
tegrated Cores (MIC). For the purposes of this paper,
the common mode of operation for the device is called
off-load. However, the stand-alone and reverse off-load
modes are also valid possibilities. When in off-load
mode, the device receives work from the host proces-
sor and reports back as soon as the computational task
completes. Any such assignment of work proceeds and
completes without the host device being involved. In a
typical scenario, the host is an Intel x86 CPU such as
Sandy Bridge, Ivy Bridge or even more recent Haswell

1058-9244/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 2

2 J. Dongarra et al. / HPC programming on Intel Many-Integrated-Core hardware with MAGMA Port to Xeon Phi

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

and Ivy Town. The CPU may monitor the activity of
communication and/or computation through an event-
based interface and can also pursue its own compu-
tational activities between events. This is very simi-
lar to the operation of hardware accelerators based on
throughput-oriented GPUs and compute-capable FP-
GAs that are specialized for certain types of workloads
beyond what could be achieved on standard multicore
CPUs. In fact, Xeon Phi is often considered to be an al-
ternative to the hardware accelerators from AMD and
NVDIA despite the fact that there exist many technical
differences between the three.

The development of new high-performance numer-
ical libraries is a complex endeavor, which requires
meticulous accounting for the extreme levels of par-
allelism, heterogeneity, and wide variety of accelera-
tors and coprocessors available in the current architec-
tures. Challenges vary from new algorithmic designs to
choices of programming models, languages and frame-
works that ease the development, future maintenance
and portability. This paper addresses these issues while
presenting our approach and algorithmic designs in the
development of the MAGMA MIC [23] library. Spe-
cific differences between the GPU-based MAGMA [1]
and the MIC version are elaborated upon in Section 3.

To provide a uniform portability across a variety of
coprocessors/accelerators, we developed an API that
abstracts the application developer from the low level
specifics of the architecture. In particular, we use low
level vendor libraries, like SCIF for Intel Xeon Phi (see
Section 5), to define API for memory management and
off-loading computations to coprocessors and/or accel-
erators.

To deal with the extreme level of parallelism and
heterogeneity in the current architectures, MAGMA
MIC uses a hybridization methodology, described in
Section 6, where we split the algorithms of interest into
computational tasks of various granularities, and prop-
erly schedule those tasks’ execution over the hetero-
geneous hardware. Thus, we use a Directed Acyclic
Graph (DAG) approach to parallelism and schedul-
ing that has been developed and successfully used for
dense linear algebra libraries such as PLASMA and
MAGMA [1], as well as in general task-based ap-
proaches to parallelism, such as runtime systems like
StarPU [5] and SMPSs [6].

Obtaining high performance depends on a combi-
nation of algorithmic and hardware-specific optimiza-
tions, discussed in Section 6.4. This is in addition to the
use of high-performance low-level libraries, which we
address in Section 5. This has implications on the re-

sulting software: in order to maintain the performance
portability across hardware, it is necessary to provide
in the library a number of algorithmic variations that
are tunable, e.g., at installation time. This is the basic
premise of autotuning – a prominent example of these
kinds of advanced optimization techniques.

A performance study is presented in Section 7. Be-
sides verifying our approach and confirming the ap-
peal of the Intel Xeon Phi coprocessors for high-
performance DLA, the results open up a number of
future work opportunities discussed in Section 8 that
concludes the paper.

2. Related work

Intel Xeon Phi [14,16] is a family of Intel copro-
cessors known before under the MIC (Many Inte-
grated Cores) moniker. Knights Corner (KNC) is the
first official product accelerator card in a series that
will be followed by Knights Landing (KNL). Phi is a
hardware platform based on x86 instruction set with
modifications for throughput-oriented workloads. In
some sense, Phi may be regarded as an alternative
to NVIDIA’s compute GPU cards that require CUDA
programming [19] or AMD’s compute GPU cards that
are programmed with OpenCL [17] and the AMD’s
GPU libraries [3].

Phi’s use for scientific applications that require solu-
tion to PDEs (Partial Differential Equations) was stud-
ied and under some scenarios revealed opportunities
and advantages [28,29].

There is a rich area of work on execution environ-
ments that begin with serial code and result in paral-
lel execution, often using task superscalar techniques,
for example Jade [22], Cilk [9], Sequoia [12], OmpSS
[20], Habanero [7], StarPU [5] or the DepSpawn [13]
project.

3. Differences between GPU and MIC versions of
MAGMA

We mostly focus on the CUDA-based version of
MAGMA for the comparison because it is the basis for
functional interface and, in terms of the feature set, it is
our aim to reproduce it on the Intel MIC coprocessor.

Fundamentally, hardware accelerators require refac-
toring of the existing code base to accommodate the
new compute device and include it harmoniously into
the mix with the CPU so that the performance gains

UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 3

J. Dongarra et al. / HPC programming on Intel Many-Integrated-Core hardware with MAGMA Port to Xeon Phi 3

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

may be fully realized. In terms of raw performance
across a broad spectrum of applications, the most ef-
ficient programming language is CUDA [19]. Our ex-
periments show that it easily outperforms portable
standards-based APIs such as OpenCL [11]. While it
might be tempting to include CUDA in the family of
languages derived from C and C++, it is worth not-
ing that the clear syntactic differences from the base
language (mostly C++ and its 1998 standard) form an
easily distinguishable delineation of the computational
spaces of the CPU and the GPU. At the CPU code
level the triple-chevron launch notation, for exam-
ple: <<<blocks, threadsPerBlock >>>gpu_kernel(args),
launches GPU kernels by means of incompatible syn-
tax that requires NVIDIA’s own nvcc compiler. This
divergent syntax has spurred over the years a num-
ber of ways to simplify the coding with the use of
directive-based code and as of lately, these efforts
have coalesced into the OpenACC initiative [21,25] –
directive-based approach that hides some of the CUDA
complexity behind compiler’s pragma syntax.

The directive-based approach is what Intel MIC fea-
tured from the beginning and this is what MAGMA’s
port to the coprocessor used. However, the MIC port
of MAGMA accommodated changes in the interfaces,
feature set and performance levels. Thus, the end user
was shielded from the effects of the growth of the plat-
form and the flux of the software ecosystem. A particu-
lar example of such an underlying change was the early
use of SCIF (see Section 5) which was essential for ex-
changing non-contiguous memory regions between the
host and the device with a very low overhead. This has
been progressively phased as the need for SCIF dimin-
ished with richer functionality available through the di-
rectives and improvements in the Linux kernel drivers
and runtime overheads. From the user perspective, this
change was transparent for programming on Xeon Phi
while the recent changes in event-driven APIs of CU-
DAs had to percolated to MAGMA’s publicly visible
interface.

Another departure from the CUDA-based MAGMA
was the device- and software-specific tuning and opti-
mization (described in more detail in Section 6). There

is very little commonality between the targeted sys-
tems, both in terms of hardware and software. The
Xeon Phi implementation has to balance the perfor-
mance sensitivity of the BLAS calls in MKL, custom
kernels, and their mapping onto the much different
hardware substrate. Similarly, the levels and layer-
ing of parallelism nesting (software threads, hardware
threads, versus BLAS threads) is anything but what
is presented to the CUDA programmer. Despite the
differences, however, MAGMA’s external interface re-
mains almost indistinguishable.

4. Compiler support for off-load

In this paper, we consider the off-load mode as the
primary mode of operation for the Xeon Phi coproces-
sor. The device receives work from the host proces-
sor and reports back upon completion of the assign-
ment without the host being involved in between these
two events. This is very similar to the operation of net-
work off-load engines, specifically, the TCP Off-load
Engines (TOEs) that feature an optimized implemen-
tation of the TCP stack that handles the majority of the
network traffic to lessen the burden of the main pro-
cessor, which handles other operating system and user
application tasks.

The off-load mode for the Xeon Phi devices has
direct support from the compiler in that it is possi-
ble to issue requests to the device and ascertain the
completion of tasks directly from the user’s C/C++
code. The support for this mode of operation is offered
by the Intel compiler through Phi-specific pragma di-
rectives: offload, offload_attribute, offload_transfer and
offload_wait [14]. This is very closely related to the off-
load directives now included in the OpenMP 4 stan-
dard. In fact, the two are syntactically and semantically
equivalent, barring the difference in the “omp” prefix
for the OpenMP syntax. A similar standard for GPUs is
called OpenACC. A summary of various programming
methods on Xeon Phi is provided in Table 1. From our
rudimentary experiments we concluded that the com-
piler directive overhead is very close that of the Com-
mon Offload Interface (COI) library.

Table 1

Programming models for the Intel Xeon Phi coprocessors and their current status and properties

Programming model/API Status Portability Overhead Language support

SCIF Mature No None No

COI Mature Yes Minimal Yes

OpenMP 4.0 Early Yes Varies Yes

OpenCL Experimental Yes Minimal No

UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 4

4 J. Dongarra et al. / HPC programming on Intel Many-Integrated-Core hardware with MAGMA Port to Xeon Phi

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

5. Programming model: Host-device with a server
based on LLAPI

For many scientific applications, the off-load model
offered by the Intel compiler, described in Section 4,
is sufficient. This is not the case for a fully equiv-
alent port of MAGMA to the Xeon Phi because of
the very rich functionality that MIC MAGMA inher-
its from both its CUDA and OpenCL ports. We had
to use the LLAPI (Low-Level API) based on Symmet-
ric Communication InterFace (SCIF) that offers, as the
name suggests, a very low level interface to the host
and device hardware. The use of this API is discour-
aged for most workloads as it tends to be error-prone
and offers very little abstraction on top of the hardware
interfaces. What motivated us to use it for the port of
our library was: (1) the asynchronous events capabil-
ity that allows low-latency messaging between the host
and the device to notify about completion of kernels on
Xeon Phi; (2) the possibility of hiding the cost of data
transfer between the host and the device which requires
the transfer of submatrices to overlap with the compu-
tation. The direct access to the DMA (Direct Memory
Access) engine allowed us to maximize the bandwidth
of data transfers over the PCI Express bus. The only
requirement was that the memory regions for transfer
be page-aligned and pinned to guarantee their fixed lo-
cation in the physical memory. Figure 1(a) shows the
interaction between the host and the server running
on the Xeon Phi and responding to requests that are
remote invocations of numerical kernels on data that
have already been transferred to the device.

(a) (b)

Fig. 1. (a) MIC MAGMA programming model with a LLAPI server
mediating requests between the host CPU and the Xeon Phi de-
vice. (b) DLA algorithm as a collection of BLAS-based tasks
and their dependencies. The algorithm’s critical path is, in gen-
eral, scheduled on the CPUs, and large data-parallel tasks on the
Xeon Phi. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140404.)

6. Hybridization methodology and optimization
strategies

The hybridization methodology used in CUDA
MAGMA [26], adopted for MIC MAGMA, is an ex-
tension of the task-based approach for parallelism and
developing DLA on homogeneous multicore systems
[1]. In particular,

• the computation is split into BLAS-based tasks
of various granularities, with their data dependen-
cies, as shown in Fig. 1(b);

• small, non-parallelizable tasks with significant
control-flow are scheduled on the CPUs;

• large, parallelizable tasks are scheduled on Xeon
Phi.

The difference with multicore algorithms is the task
splitting, which here is of various granularities to make
different tasks suitable for particular architectures, and
the scheduling itself. Specific algorithms using this
methodology, and covering the main classes of DLA,
are described in the subsections below.

6.1. Design and functionality

The MIC MAGMA interface is similar to LAPACK.
For example, compare LAPACK’s LU factorization in-
terface vs. MIC MAGMA’s:

lapackf77_dgetrf(&M, &N, hA,
&lda, ipiv, &info)
magma_dgetrf_mic(M, N, dA, 0,
ldda, ipiv, &info, queue)

Here, hA is the typical CPU pointer (double *) to
the matrix of interest in the CPU memory and dA is
a pointer in the Xeon Phi memory (its type is mag-
maDouble_ptr). The last argument in every MIC
MAGMA call is an Xeon Phi queue, through which the
computation will be streamed on the Xeon Phi device
(its type is magma_queue_t).

To abstract the user away from knowing the low-
level directives, library functions (such as BLAS),
CPU–Phi data transfers, and memory allocations and
deallocations are redefined in terms of MIC MAGMA
data types and functions. This design allows us to more
easily port the MIC MAGMA library to many devices
as was the case for the GPU accelerators that either
use CUDA [19] or OpenCL [11,17] and eventually to
merge them in order to maintain a single source code
tree with conditional compilation options that allow
seamless targeting of specific hardware. Also, the MIC
MAGMA wrappers provide a complete set of func-

UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 5

J. Dongarra et al. / HPC programming on Intel Many-Integrated-Core hardware with MAGMA Port to Xeon Phi 5

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

tions for programming hybrid high-performance nu-
merical libraries. Thus, not only users but application
developers as well can opt to use the MIC MAGMA
wrappers. MIC MAGMA provides the four standard
floating-point arithmetic precisions – single and dou-
ble precision real as well as single and double precision
complex. It has routines for the so called one-sided
factorizations (LU, QR and Cholesky), and recently
we are developing the two-sided factorizations (Hes-
senberg, bi- and tridiagonal reductions), linear system
and least squares solvers, matrix inversions, symmet-
ric and non-symmetric standard eigenvalue problems,
SVD and orthogonal transformation routines.

6.2. Task distribution based on hardware capability

Programming models that raise the level of ab-
straction are of great importance for reducing soft-
ware development efforts. A traditional approach has
been to organize algorithms in terms of BLAS calls,
where hardware specific optimizations would be hid-
den in BLAS implementations such as Intel’s MKL
or AMD’s ACML. This is still valid and used but has
shown some drawbacks on new architectures. In par-
ticular, parallelization is achieved using a fork–join ap-
proach since each BLAS call, e.g., a matrix–matrix
multiplication, can be performed in parallel (fork) but
a synchronization is needed before performing the next
call (join). The number of synchronizations thus can
become a prohibitive bottlenecks for performance on
highly parallel devices such as the MICs. This type
of programming has been popularized under the Bulk
Synchronous Processing name [27].

Instead, the algorithms (like matrix factorizations)
are broken into computational tasks (e.g., panel fac-
torizations followed by trailing submatrix updates) and
pipelined for execution on the available hardware com-
ponents (see below). Moreover, particular tasks are
scheduled for execution on the hardware components
that are best suited for them. Thus, this task distribu-
tion based on hardware capability allows the user for
the efficient use of each hardware component. In the
case of DLA factorizations, the less parallel panel tasks
are scheduled for execution on multicore CPUs, and
the parallel updates mainly on the MICs. We illustrate
this in Algorithm 1.

6.3. LU, QR and Cholesky factorizations for Intel
Xeon Phi

The one-sided factorization routines implemented
and currently available through MIC MAGMA are:

Algorithm 1. Two-phase (first: panel, two: update)
factorization of A = [P1,P2, . . .] with lookahead
of depth 1. Matrix A and the result are assumed to
reside on the MIC memory

1 PanelStartReceivingon CPU(P1);
2 for Pi = P1,P2, . . . do
3 PanelFactorizeon CPU(Pi);
4 PanelSendto MIC(Pi);
5 TrailingMatrixUpdateon MIC(Pi+1);
6 PanelStartReceivingon CPU(Pi+1);
7 TrailingMatrixUpdateon MIC(Pi+2, . . .);

Fig. 2. Typical computational pattern for the hybrid one-sided fac-
torizations in MIC MAGMA. (The colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-140404.)

magma_zgetrf_mic computes an LU factorization
of a general M -by-N matrix A using partial piv-
oting with row interchanges;

magma_zgeqrf_mic computes a QR factorization
of a general M -by-N matrix A;

magma_zpotrf_mic computes the Cholesky fac-
torization of a complex Hermitian positive defi-
nite matrix A.

Routines in all standard four floating-point precision
arithmetics are available, following LAPACK’s nam-
ing convention. Namely, the first letter of the routine
name (after the prefix magma_) indicates the preci-
sion – z, c, d or s for double complex, single com-
plex, double real or single real, respectively. The suffix
_mic indicates that the input and the output matrices
are in the Xeon Phi memory.

The typical hybrid computation and communication
pattern for the one-sided factorizations (LU, QR and
Cholesky) is shown in Fig. 2. At a given iteration, panel
i is copied to the CPU and factored using LAPACK,
and the result is copied back to Xeon Phi. The trailing
matrix, consisting of the next panel i+1 and the rest of
the matrix, is updated on the Xeon Phi. After receiving
panel i back from the CPU, panel i+ 1 is updated first

UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 6

6 J. Dongarra et al. / HPC programming on Intel Many-Integrated-Core hardware with MAGMA Port to Xeon Phi

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Algorithm 2. Cholesky factorization in MIC
MAGMA

using panel i and the result is sent to the CPU (as being
the next panel to be factored there). While the CPU
starts the factorization of i, the rest of trailing matrix,
panels i + 1, i + 2, . . . , is updated on the Xeon Phi
device in parallel with the CPU factorization of panel
i+1. In this pattern, only data to the right of the current
panel is accessed and modified, and the factorizations
that use it are known as right-looking. The computation
can be organized differently – to access and modify
data only to the left of the panel – in which case the
factorizations are known as left-looking.

An example of a left-looking factorization, demon-
strating a hybrid implementation, is given in Algo-
rithm 2 for the Cholesky factorization. The algorithm
introduces a notion of a blocking factor denoted as
nb, which is the algorithm-level entity that defines the
number of columns in the panel and the inner dimen-
sion of the outer-product update to the trailing subma-
trix. Copying the panel to the CPU, in this case just a
square block on the diagonal, is done on line 4. The
data transfer is asynchronous, so before we factor it
on the CPU (line 8), we synchronize on line 7 to en-
force that the data has arrived. Note that the CPU work
from line 8 is overlapped with the Xeon Phi work on
line 6. This is indeed the case because line 6 is an asyn-
chronous call/request from the CPU to Xeon Phi to
start a ZGEMM operation. Thus, the control is passed
to lines 7 and 8 while Xeon Phi is performing the
ZGEMM. The resulting factored panel from the CPU
work is sent to Xeon Phi on line 11 and used on line 14,
after making sure that it has arrived through the sync
command on line 13.

6.4. Hybrid implementation and optimization
techniques

In order to explain our hybrid methodology and the
optimization that we have developed, let us give a de-
tailed analysis for the QR decomposition algorithm.
While the description below only addresses the QR
factorization, it is straightforward to derive with the
same ideas the analysis for both the Cholesky and LU
factorizations. For that we start briefly by recalling the
description of the QR algorithm.

The QR factorization is a transformation that factor-
izes an m× n matrix A into its factors Q and R where
Q is a unitary matrix of size m × m and R is an up-
per trapezoidal matrix of size m × n. The QR algo-
rithm can be described as a sequence of steps where, at
each step, a QR of a panel is performed based on ac-
cumulating a number of Householder transformations
in what is called a “panel factorization” which are,
then, applied all at once by means of high performance
Level 3 BLAS operations in what is called the “trail-
ing matrix update”. Despite that this approach can ex-
ploit the parallelism of the Level 3 BLAS during the
trailing matrix update, it has a number of limitations
when implemented on massively multithreaded system
such as the Intel Xeon Phi coprocessor due to the na-
ture of its operations. On the one hand, the panel fac-
torization relies on Level 2 BLAS operations that can-
not be efficiently parallelized on either Xeon Phi or
any accelerator such as GPU-based architectures, and
thus it can be considered to be close to sequential op-
erations that limit the scalability of the algorithm. On
the other hand, this algorithm is referred as the fork–
join approach since the execution flow will show a se-
quence of sequential operations (panel factorizations)
interleaved with parallel ones (trailing matrix updates).
In order to take advantage of the high execution rate
of the massively multithreaded system, in particular,
the Phi coprocessor we redesigned the standard algo-
rithm in a way to perform the Level 3 BLAS opera-
tions (trailing matrix update) on the Xeon Phi while
performing the Level 2 BLAS operations (panel factor-
ization) on the CPU. We also proposed an algorithmic
change to remove the fork–join bottleneck and to min-
imize the overhead of the panel factorization by hid-
ing its costs behind the parallel trailing matrix update.
This approach can be described as the scalable look
ahead techniques [24]. Our idea is to split the trailing
matrix update into two phases, the update of the looka-
head panel (panel of step i + 1, i.e., dark blue portion
of Fig. 2) and the update of the remaining trailing sub-

UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 7

J. Dongarra et al. / HPC programming on Intel Many-Integrated-Core hardware with MAGMA Port to Xeon Phi 7

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

matrix (clear blue portion of Fig. 2). Thus, during the
submatrix update the CPU can receive asynchronously
the panel i+ 1 and performs its factorization. As a re-
sult, our MIC MAGMA implementation of the QR fac-
torization can be described by a sequence of the three
phases described below. Consider a matrix A that can
be represented as:

A =

⎡
⎣
A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤
⎦ . (1)

• Phase 1, the panel factorization: at a step i, this
phase consists of a QR transformation of the panel
Ai:n,i as in Eq. (2). This operation consists of
calling two routines. The DGEQR2 that factorizes
the panel and produces nb Householder reflectors
(V∗i) and an upper triangular matrix Rii of size
nb × nb, which is a portion of the final R fac-
tor, and the DLARFT that generates the triangu-
lar matrix Tii of size nb × nb used for the trail-
ing matrix update. This phase is performed on the
CPU,

⎡
⎣
A11
A21
A31

⎤
⎦ =⇒

⎡
⎣
V11
V21
V31

⎤
⎦ , [R1,1], [T1,1]. (2)

• Phase 2, the look ahead panel update: the trans-
formation that was computed in the panel factor-
ization needs to be applied to the rest of the matrix
(trailing matrix, i.e., the blue portion of Fig. 2).
This phase consists into updating only the next
panel (dark blue portion of Fig. 2) in order to let
the CPU start its factorization as soon as possi-
ble while the update of the remaining portion of
the matrix is performed in phase 3. The idea is to
hide the cost of the panel factorization. This op-
eration presented in Eq. (3), is performed on the
Phi coprocessor and involves the DLARFB rou-
tine which has been redesigned as a sequence of
DGEMM’s to better take advantage of the Level 3
BLAS operations,

⎡
⎣
R12

Ã22

Ã32

⎤
⎦ =

[
I − V∗iT

T
ii V

T
∗i
]
⎡
⎣
A12
A22
A32

⎤
⎦ . (3)

• Phase 3, the trailing matrix update: Similarly
to phase 2, this phase consists of applying the
Householder reflectors generated during the panel

Fig. 3. Effect of the blocking factor on performance of MAGMA
MIC factorizations. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-140404.)

factorization of step i according to Eq. (3), to the
remaining portion of the matrix (the trailing sub-
matrix i.e., the clear blue portion of Fig. 2). This
operation is also performed on the Phi coproces-
sor, while in parallel to it, the CPU performs the
factorization of the panel i+1 that has been com-
puted in phase 2.

This hybrid technique of distribution of tasks be-
tween CPU–Phi allows us to hide the memory bound
operations occurred during the panel factorization
(phase 1) by performing such operation on the CPU
in parallel with the trailing submatrix update (phase 3)
on the Phi coprocessor. However, one of the key pa-
rameters to performance tuning is the blocking size as
the performance and the overlap between the CPU–Phi
will be solely guided by it. Figure 3 illustrates the ef-
fect of the blocking factor on the performance. It is ob-
vious that, a small nb will reduce the cost of the panel
factorization phase 1, but it decreases the efficiency
of the Level 3 BLAS kernel of phase 2 and phase
3 and thus resulting a bad performance. As opposed,
a large nb will dramatically affect the panel factoriza-
tion phase 1 which becomes slow and thus the CPU–
Phi computation cannot be overlapped, providing a de-
terioration in the performance as shown in Fig. 3. As
a consequence, the challenging problem is the follow-
ing: on the one hand, the blocking size nb needs to
be large enough to extract high performance from the
Level 3 BLAS phase 3 and on the other hand, it has
to be small enough to extract efficiency (thanks to the
cache speed up) from the Level 2 BLAS phase 1 and
overlap CPU/Phi computation. Figure 3 shows the per-
formance obtained for different blocking sizes and we

UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 8

8 J. Dongarra et al. / HPC programming on Intel Many-Integrated-Core hardware with MAGMA Port to Xeon Phi

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

can see a trade-off between small and large nb’s. Either
nb = 480 or nb = 960 can be considered as a good
choice because MKL Phi BLAS is optimized for multi-
ples of 240. Moreover, to extract the maximum perfor-
mance and allow the maximum overlap between both
of the CPU and the Xeon Phi coprocessor, we devel-
oped a new variant that can use a variable nb during the
steps of the algorithm. The flexibility of our implemen-
tation allows an efficient task execution overlap be-
tween the CPU host and the Phi coprocessor which en-
ables the implementation to scale almost linearly with
the number of cores on the Phi coprocessor, which we
see (below) from very good performance that is close
to the practical peak obtained on such a system from
matrix–matrix multiply and related dense linear alge-
bra operations, which achieve over 70% of the theoreti-
cal peak performance. Our tuned variable implementa-
tion is represented by the red curve of Fig. 3 where we
can easily observe its advantages over the other vari-
ants.

The Phi-specific techniques had to be employed in
order to reap the benefits of the above design in the
presence of particular constraints and opportunities
present on the Intel hardware. One opportunity is to
choose the best one out of a number of interfaces for
transferring data between the CPU and the coproces-
sor – refer to Table 1 for details. The Phi implemen-
tation of MAGMA seeks to minimize the latency and
maximize the bandwidth of the PCIe transfers while
maintaining a good computational load of both the host
and the device. If the proper API for the right size of
data transfer is chosen, the DMA hardware can take
over and off-load the transfer logistics so that the com-
pute components can remain the busy computing on
matrix elements and not polluting their cache hierar-
chy with spurious messaging data. In particular, SCIF
offers the lowest latency but the large data transfers
create complexity burden of dealing of many smaller
transfer requests. Higher level mechanisms, such as
COI and virtual shared memory regions, carry a larger
overhead but allow the handling of large volumes of
data in a much more automated fashion. The switching
between these interfaces occurs seamless behind the
familiar MIC MAGMA functions.

6.5. Task-based runtime model

The scheduling of tasks for execution can be static
or dynamic. In either case, the small and not easy to
parallelize tasks from the critical path (e.g., panel fac-
torizations) are executed on CPUs, and the large and

highly parallel task (like the matrix updates) mostly on
the MICs.

The use of multiple coprocessors complicates the
development using static scheduling. Instead, the use
of a light-weight runtime system is preferred as it can
keep scheduling overhead low, while enabling the ex-
pression of parallelism through sequential-like code.
The runtime system relieves the developer from keep-
ing track of the computational activities that, in the
case of heterogeneous systems, are further exacerbated
by the separation between the address spaces of the
main memory of the CPU and the MICs. Our runtime
model is build on the QUARK [30] superscalar exe-
cution environment that has been originally used with
great success for linear algebra software on just multi-
core platforms [18]. The conceptual work though could
be replicated within other models such as StarPU [5],
OmpSS [20], Cilk [9] and Jade [22], to just mention a
few.

Dynamic runtime scheduling plays an important role
in translating dependences annotated at the source
code level and discovered at runtime when the execu-
tion traverses the Direct Acyclic Graph of computa-
tional tasks. For example, one of the symbolic depen-
dences of tasks in Algorithm 1 could be:

PanelFactorizeCPU(Pi)

→ TrailingMatrixUpdateMIC(Pi+1)

At runtime, this dependence formula is repeatedly ap-
plied to form a sequence of tasks:

PanelFactorizeCPU(P1)

→ TrailingMatrixUpdateMIC(P2)

PanelFactorizeCPU(P2)

→ TrailingMatrixUpdateMIC(P3)

· · ·

The runtime environment for scheduling maintains the
current set of tasks and the future set of tasks. The com-
pleted tasks enable execution of their dependent tasks
and are discarded from the system.

6.6. Improving off-load mode communication

It is well known that the off-load transfer mode
copies only continuous chunks of data from and to the
coprocessors. However most of the scientific applica-
tion algorithms require to exchange data with 2D or

UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 9

J. Dongarra et al. / HPC programming on Intel Many-Integrated-Core hardware with MAGMA Port to Xeon Phi 9

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

3D storage and thus this may create an issue when us-
ing the off-load transfer mode. In particular, the one-
sided factorizations (Cholesky, LU and QR) require to
send the panel to the CPU and then receive it later af-
ter being factorized by the CPU. A simple implemen-
tation loops over one direction and calls the off-load
section to send and receive a contiguous vector. Such
an implementation behaves poorly and as a result the
communication will become expensive and will slow
down the algorithm. Indeed, another alternative is to
copy the 2D panel to a contiguous temporary space on
the MIC, and then to send it and vice versa. Hence,
there are two points that need to be taken into consid-
eration. Firstly, the copy needs to be implemented as a
multi-threaded operation in order to hide its cost. For
that, we implemented a parallel copy that uses all of
the 240 hardware threads of the MIC to perform the
copy. This might be against the common wisdom that
multi-threading is of little help for bandwidth-limited
operations such as a memory copy. This is not the ex-
perience on the MIC, where the clock frequency of the
compute cores is twice as low as that of the memory –
the exact opposite of what is the case in Intel x86 mul-
ticore processors. In addition to the low frequency, the
current MIC hardware is to a large degree an in-order
architecture with dual-pipeline execution and single-
issue fetch/decode units [16] which poses constraints
on the amount of bandwidth that can be utilized by a
single core. These can be overcome in multiple ways,
including the use of streaming loads and have the mul-
tiple threads requesting data. Secondly, when the MIC
copies data to or from the temporary space, it should
be the only kernel running, otherwise, it will run simul-
taneously with another executing kernel and this may
slow down both of the kernels. To that end, we repre-
sented the copy kernel as a task with high priority and
the scheduler is responsible for executing it as soon
as possible and to handle the dependencies such as no
other kernel will be running at the same time. Xeon Phi
requires multiple cores driving a single FPU, which is
similar to Hyperthreading in the recent Intel x86 pro-
cessors. In fact, the core-to-FPU ratio must be two-to-
one to satisfy the data rate that a single FPU can sus-
tain. If the ratio is lower, the FPU goes largely under-
utilized because the data request rate from memory is
too low.

Experiments showed that when using these opti-
mizations the performance of the off-load communica-
tion mode is comparable to both the SCIF and the COI
mode with a variance of less than 5%.

6.7. Trading extra computation for higher execution
rate

The optimization discussed here is MIC-specific but
is often valid for any hardware architecture with mul-
tilayered memory hierarchy. The dlarfb routine used
by the QR decomposition consists of two dgemms and
one dtrmm. Since coprocessors are better at handling
compute-bound tasks, for computational efficiency, we
replace the dtrmm by dgemm, yielding 5–10% perfor-
mance improvement. For the Cholesky factorization,
the trailing matrix update requires a dsyrk. Due to un-
even storage, the multi-device dsyrk cannot be assem-
bled purely from regular dsyrk calls on each device. In-
stead, each block column must be processed individu-
ally. The diagonal blocks require special attention. One
can use a dsyrk to update each diagonal block, and a
dgemm to update the remainder of each block column
below the diagonal block. The small dsyrk operations
have little parallelism and therefore their execution is
inefficient on MICs. This can be improved to some
degree by using pragma to run several dsyrk’s simul-
taneously. Nevertheless, because we have copied the
data to the device, we can consider the space above the
diagonal to be a scratch workspace. Thus, we update
the entire block column, including the diagonal block,
writing extra data into the upper triangle of the diago-
nal block, which is subsequently ignored. We do extra
computation for the diagonal block, but gain efficiency
overall by launching fewer BLAS kernels on the device
and using the more efficient dgemm kernels, instead of
small dsyrk kernels.

The per-kernel improvement in performance ex-
ceeds 20% and for the entire factorization a 5–10% im-
provement levels may be observed.

7. Performance results

This section presents the performance results ob-
tained by our hybrid CPU–Xeon Phi implementation
in the context of the development of the state-of-the-art
numerical linear algebra libraries.

7.1. Experimental environment

Our experiments were performed on a system
equipped with Intel Xeon Phi formerly known as
Knights Corner. It is representative of a vast class of
servers and workstations commonly used for computa-
tionally intensive workloads. We benchmarked all im-

UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 10

10 J. Dongarra et al. / HPC programming on Intel Many-Integrated-Core hardware with MAGMA Port to Xeon Phi

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

plementations on an Intel multicore system with dual-
socket, 8 core Intel Xeon E5-2670 (Sandy Bridge) pro-
cessors, each running at 2.6 GHz. Each socket has a
24 MB shared L3 cache, and each core has a private
256 KB L2 and 64 KB L1. The system is equipped with
52 Gbytes of memory. The theoretical peak for this ar-
chitecture in double precision is 20.8 Gflop/s per core,
giving 332 Gflops in total. The system is also equipped
with an Intel Xeon Phi cards with 7.7 Gbytes per card
running at 1.09 GHz, and giving a double precision
theoretical peak of 1046 Gflops.

There are a number of software packages available.
On the CPU side we used the MKL (Math Kernel Li-
brary) [15] which is a commercial software package
from Intel that is a highly optimized numerical library.
On the Intel Xeon side, we used the MPSS 2.1.5889-
16 as the software stack, icc 13.1.1 20130313 which
comes with the composer_xe_2013.3.163 suite as the
compiler and the Level 3 BLAS routine GEMM from
MKL 11.00.03.

7.2. Experimental results

Figure 4 reports the performance of the three linear
algebra factorization operations, the Cholesky, QR and
LU factorizations with our hybrid implementation and
compare it to the performance of the CPU implementa-
tion of the MKL libraries. For our implementation, the
blocking factor has been chosen to be flexible in order
to achieve the best performance. A detailed descrip-
tion of how to choose this factor is included in Sec-
tion 6.4 and in the results presented in this section we
choose the factor to be in the range between 480 and
960. As a general rule, we use smaller blocking fac-
tors for smaller matrices and larger ones for the larger
matrices. The graphs show the performance measured
using all the cores available on the system (i.e., 60 for
the Intel Phi and 16 for the CPU) with respect to the
problem size. In order to reflect the time to completion,
for each algorithm the operation count is assumed to be
the same as that of the LAPACK algorithm, i.e., 1

3N
3,

2
3N

3 and 4
3N

3 for the Cholesky factorization, the LU
factorization and the QR decomposition, respectively.

Figure 4(a), (b) and (c) provides the common type
of information that is characteristic of dense linear al-
gebra computations. Clearly, our algorithms from the
MIC MAGMA library, that employ hybrid techniques,
deliver higher execution rates than their CPU counter-
parts optimized by the vendor. This is in correspon-
dence with the difference of the peak performance rates
between the two hardware components. It should be

(a)

(b)

(c)

Fig. 4. Comparison of the performance versus the optimized
CPU version of the MKL libraries for the three one-sided
factorizations. (a) Cholesky factorization (magma_zpotrf_mic).
(b) LU factorization (magma_zgetrf_mic). (c) QR factorization
(magma_zgeqrf_mic). (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-140404.)

obvious from the graphs that the combination of a CPU
and a Phi coprocessor with a tuned implementation

UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 11

J. Dongarra et al. / HPC programming on Intel Many-Integrated-Core hardware with MAGMA Port to Xeon Phi 11

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

provides substantial performance benefits as opposed
to a CPU-only implementation. The figures show that
the MIC MAGMA hybrid algorithms are capable of
completing any of the three factorization algorithms as
much as twice as fast as the CPU optimized version
for a matrix of size larger than 10,000; and more than
three times faster when the matrix size is large enough
(larger than 20,000). The actual curves of Fig. 4 illus-
trates the efficiency of our hybrid techniques where we
note that the performance obtained by our implementa-
tion, achieves a very close level to the practical peak of
the Intel Xeon Phi coprocessor computed by running
the GEMM routine (which is around 850 Gflop/s). This
gain is mostly obtained by two improvements. First,
the nature of the operations involved on the Phi side
which are mostly BLAS Level 3 operations were re-
designed and implemented as a combination of ven-
dor’s DGEMM calls. For more details we denote below
the routines executed on the Xeon Phi coprocessor:

• The DSYRK operations for the Cholesky factor-
ization where the DSYRK has been redesigned as
a combination of DGEMM’s routines;

• The DGEMM for the LU factorization;
• The DLARFB for the QR decomposition where

also its has been redesigned as a combination of
DGEMM’s.

Second, all of the Level 2 BLAS routines that are
memory bound and that represent a limit for the per-
formance (i.e., DPOTF2, DGETF2 and DGEQR2 for
Cholesky, LU and QR factorization, respectively) are
executed on the CPU side while being overlapped with
the Phi coprocessor execution as described in Sec-
tion 6.4.

An important remark has to be made here for the
Cholesky factorization: the left-looking algorithm as
implemented in LAPACK is considered as well opti-
mized for memory reuse but at the price of less par-
allelism and thus is not suitable for massively multi-
core machines. This variant delivers poor performance
when compared to the right-looking variant that allows
more parallelism and thus run at higher speed.

8. Conclusions and future work

In this article, we have shown how to extend our
hybridization methodology from existing systems to a
new hardware platform. The challenge of the porting
effort stemmed from the fact that the new coproces-
sor from Intel, the Xeon Phi, featured programming

models and relative execution overheads, that were
markedly different from what we have been targeting
on GPU-based accelerators. Nevertheless, we believe
that the techniques used in this paper adequately adapt
our hybrid algorithm to best take advantage of the new
heterogeneous hardware. We have derived an imple-
mentation schema of the dense linear algebra kernels
that also can be applied to either the two-sided factor-
ization used for solving the eigenproblem and the SVD
or to the sparse linear algebra algorithms. We plan to
further study the implementation of multi-Xeon Phi al-
gorithms in a distributed computing environment. We
think that the techniques presented will become more
popular and will be integrated into dynamic runtime
system technologies. The ultimate goal is that this in-
tegration will help to tremendously decrease develop-
ment time while retaining high-performance.

In addition, we see an opportunity in fully automat-
ing the tuning process of various algorithmic param-
eters of our implementation including the blocking
factor nb, the number of threads used in various com-
putational kernel, etc. This will become even more im-
portant as the number of linear algebra operations in-
cluded in MIC MAGMA grows.

Acknowledgements

Work was funded in part by the Ministry of
Education and Science of the Russian Federation,
Agreement N 14.607.21.0006 (unique identifier
RFMEFI57714X0020).

The authors would like to thank the National Sci-
ence Foundation for supporting this work under Grant
No. ACI-1339822, the Department of Energy and
ISTC for Big Data for supporting this research effort.

References

[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Lan-
gou, H. Ltaief, P. Luszczek and S. Tomov, Numerical linear al-
gebra on emerging architectures: The PLASMA and MAGMA
projects, J. Phys.: Conf. Ser. 180(1) (2009).

[2] AMD, AMD Core Math Library (ACML), available at: http://
developer.amd.com/tools/.

[3] AMD, clMath libraries: clBLAS 2.0, 13 August 2013, avail-
able at: https://github.com/clMathLibraries.

[4] E. Anderson, Z. Bai, C. Bischof, S.L. Blackford, J.W. Demmel,
J.J. Dongarra, J. Du Croz, A. Greenbaum, S.J. Hammarling,
A. McKenney and D.C. Sorensen, LAPACK User’s Guide, 3rd
edn, SIAM, Philadelphia, 1999.

UNCORRECTED P
ROOF

SPR ios2a v.2014/09/16 r101 arttype:RA Prn:4/11/2014; 16:18 F:spr404.tex; VTEX/Audrone p. 12

12 J. Dongarra et al. / HPC programming on Intel Many-Integrated-Core hardware with MAGMA Port to Xeon Phi

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

[5] C. Augonnet, S. Thibault, R. Namyst and P.-A. Wacrenier,
StarPU: A unified platform for task scheduling on heteroge-
neous multicore architectures, Concurrency and Computation:
Practice and Experience 23(2) (2011), 187–198.

[6] Barcelona Supercomputing Center, SMP Superscalar (SMPSs)
User’s Manual, Version 2.0, 2008, available at: http://www.
bsc.es/media/1002.pdf.

[7] R. Barik, Z. Budimlic, V. Cavè, S. Chatterjee, Y. Guo,
D. Peixotto, R. Raman, J. Shirako, S. Taşırlar, Y. Yan, Y. Zhao
and V. Sarkar, The habanero multicore software research
project, in: Proceedings of the 24th ACM SIGPLAN Confer-
ence Companion on Object Oriented Programming Systems
Languages and Applications, OOPSLA’09, ACM, New York,
NY, USA, 2009, pp. 735–736.

[8] S.L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I.S. Dhillon, J.J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker and R.C. Whaley, ScaLA-
PACK Users’ Guide, SIAM, Philadelphia, PA, 1997, available
at: http://www.netlib.org/scalapack/slug/.

[9] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson,
K.H. Randall and Y. Zhou, Cilk: An efficient multithreaded
runtime system, ACM SIGPLAN Notices 30 (1995), 207–216.

[10] J. Dongarra, J. Bunch, C. Moler and G.W. Stewart, LINPACK
Users’ Guide, SIAM, Philadelphia, PA, 1979.

[11] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson and
J. Dongarra, From CUDA to OpenCL: Towards a performance-
portable solution for multi-platform GPU programming, Par-
allel Computing 38(8) (2012), 391–407.

[12] K. Fatahalian, D.R. Horn, T.J. Knight, L. Leem, M. Houston,
J.Y. Park, M. Erez, M. Ren, A. Aiken, W.J. Dally and P. Han-
rahan, Sequoia: Programming the memory hierarchy, in: Pro-
ceedings of the 2006 ACM/IEEE Conference on Supercomput-
ing, SC’06, ACM, New York, NY, USA, 2006.

[13] C.H. González and B.B. Fraguela, A framework for argument-
based task synchronization with automatic detection of depen-
dencies, Parallel Computing 39(9) (2013), 475–489.

[14] Intel, Intel® Xeon Phi™ coprocessor system software de-
velopers guide, available at: http://software.intel.com/en-us/
articles/.

[15] Intel, Math Kernel Library, available at: http://software.intel.
com/en-us/articles/intel-mkl/.

[16] J. Jeffers and J. Reinders, Intel® Xeon Phi™ Coprocessor
High-Performance Programming, Morgan Kaufmann, 2013.

[17] Khronos OpenCL Working Group, The OpenCL specification,
Version 1.0, document revision: 48, 2009.

[18] J. Kurzak, P. Luszczek, A. YarKhan, M. Faverge, J. Lan-
gou, H. Bouwmeester and J. Dongarra, Multithreading in the
PLASMA library, in: Handbook of Multi and Many-Core Pro-
cessing: Architecture, Algorithms, Programming, and Appli-
cations, Computer and Information Science Series, Vol. 26,
Chapman & Hall/CRC, 2013.

[19] NVIDIA Corporation, NVIDIA CUDA C Programming
Guide, 13 February 2014, retrieved 1 May 2014, available
at: http://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html.

[20] J.M. Pérez, R.M. Badia and J. Labarta, A dependency-aware
task-based programming environment for multi-core architec-
tures, in: Proceedings of the 2008 IEEE International Confer-
ence on Cluster Computing, Tsukuba, Japan, 29 September–
1 October 2008, IEEE, 2008, pp. 142–151.

[21] Proposed additions for OpenACC 2.0, OpenACC™ applica-
tion programming interface, November 2012.

[22] M.C. Rinard, D.J. Scales and M.S. Lam, Jade: A high-
level, machine-independent language for parallel program-
ming, Computer 26(6) (1993), 28–38.

[23] Software distribution of MAGMA MIC, Version 1.0, 3 May
2013, available at: http://icl.cs.utk.edu/magma/software/.

[24] P.E. Strazdins, Lookahead and algorithmic blocking tech-
niques compared for parallel matrix factorization, in: 10th In-
ternational Conference on Parallel and Distributed Computing
and Systems, IASTED, Las Vegas, USA, 1998.

[25] The OpenACC™ application programming interface, Version
1.0, November 2011.

[26] S. Tomov and J. Dongarra, Dense linear algebra for hybrid
GPU-based systems, in: Scientific Computing with Multicore
and Accelerators, J. Kurzak, D.A. Bader and J. Dongarra, eds,
Chapman & Hall/CRC, 2010.

[27] L.G. Valiant, Bulk-synchronous parallel computers, in: Paral-
lel Processing and Artificial Intelligence, M. Reeve, ed., Wiley,
1989, pp. 15–22.

[28] S. Williams, D.D. Kalamkar, A. Singh, A.M. Deshpande,
B. Van Straalen, M. Smelyanskiy, A. Almgren, P. Dubey,
J. Shalf and L. Oliker, Optimization of geometric multigrid
for emerging multi- and manycore processors, in: SC’12,
Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis,
IEEE Computer Society Press, Los Alamitos, CA, USA,
2012, pp. 96:1–96:11, available at: http://dl.acm.org/citation.
cfm?id=2388996.2389126.

[29] M.M. Wolf, M.A. Heroux and E.G. Boman, Factors im-
pacting performance of multithreaded sparse triangular solve,
in: VECPAR’10, Proceedings of the 9th International Con-
ference on High Performance Computing for Computational
Science, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 32–
44, available at: http://dl.acm.org/citation.cfm?id=1964238.
1964246.

[30] A. YarKhan, Dynamic task execution on shared and distributed
memory architectures, PhD thesis, University of Tennessee,
2012.

