
Heterogenous Acceleration for Linear Algebra in
Mulit-Coprocessor Environments?

Azzam Haidar1, Piotr Luszczek1, Stanimire Tomov1, and Jack Dongarra1,2,3

1 University of Tennessee Knoxville, USA
2 Oak Ridge National Laboratory, USA

3 University of Manchester, Manchester M13 9PL, UK

Abstract. We present an efficient and scalable programming model for
the development of linear algebra in heterogeneous multi-coprocessor en-
vironments. The model incorporates some of the current best design and
implementation practices for the heterogeneous acceleration of dense lin-
ear algebra (DLA). Examples are given as the basis for solving linear sys-
tems’ algorithms – the LU, QR, and Cholesky factorizations. To generate
the extreme level of parallelism needed for the efficient use of coproces-
sors, algorithms of interest are redesigned and then split into well-chosen
computational tasks. The tasks execution is scheduled over the computa-
tional components of a hybrid system of multi-core CPUs and coproces-
sors using a light-weight runtime system. The use of light-weight runtime
systems keeps scheduling overhead low, while enabling the expression of
parallelism through otherwise sequential code. This simplifies the devel-
opment efforts and allows the exploration of the unique strengths of the
various hardware components.

1 Programming Models for the Off-Load Mode

The Intel Xeon Phi coprocessor is a hardware accelerator that made its debut
in the late 2012 as a platform for high-throughput technical computing, some-
times known under an alternative name of Many Integrated Cores (MIC). The
common mode of operation for the device is called off-load but the stand-alone
and reverse off-load are also possibilities. When in off-load mode, the device
receives work from the host processor and reports back as soon as the compu-
tational task completes. Any such assignment of work proceeds and completes
without the host device (commonly an Intel CPU such as Sandy Bridge or Ivy
Bridge) being involved. The CPU may monitor the activity of communication
and/or computation through an event-based interface and can also pursue its
own computational activities between events. This is very similar to the opera-
tion of hardware accelerators based on compute-capable GPUs and FPGAs that

? This research was partially supported by the National Science Foundation under
Grants OCI-1032815, ACI-1339822, and Subcontract RA241-G1 on NSF Prime
Grant OCI-0910735, DOE under Grants DE-SC0004983 and DE-SC0010042, and
Intel.



Programming model/API Status Portability Overhead Language Support

SCIF Mature No None No
COI Mature Yes Minimal Yes
OpenMP 4.0 Early Yes Varies Yes
OpenCL Experimental Yes Minimal No

Table 1. Programming models for the Intel Xeon Phi coprocessors and their current
status and properties.

Xeon Phi 2

Xeon Phi 1

CPU

critical path

Fig. 1. DLA algorithm as a collection of BLAS-based tasks represented as rectan-
gles and their dependences represented as arrows. The algorithm’s critical path is, in
general, scheduled on the CPUs, and large data-parallel tasks on the Xeon Phi copro-
cessors.

are specialized for certain types of workloads beyond what could be achieved on
standard multicore CPUs. In fact, Xeon Phi is often considered to be an alterna-
tive to the hardware accelerators from AMD and NVDIA despite the fact that
there exist many technical differences between the three.

The off-load mode for the Xeon Phi devices has direct support from the
compiler in that it is possible to issue requests to the device and ascertain the
completion of tasks directly from the user’s C/C++ code. The support for this
mode of operation is offered by the Intel compiler through Phi-specific pragma
directives: offload, offload attribute, offload transfer, and offload wait [3]. This is
very closely related to the off-load directives now included in the OpenMP 4
standard. In fact, the two are syntactically and semantically equivalent, barring
the difference in the “omp” prefix for the OpenMP syntax. A similar standard
for GPUs is called OpenAcc. A summary of various programming methods on
Xeon Phi is provided in Table 1.

For many scientific applications, the offload model offered by the Intel com-
piler and OpenMP 4 is sufficient. Until recently, this was not the case for a port
of the MAGMA library to the Xeon Phi because of the very rich functional-
ity that MAGMA inherits from both its CUDA and OpenCL ports. We had to
use the LLAPI (Low-Level API) based on Symmetric Communication InterFace
(SCIF) that offers, as the name suggests, a very low-level interface to the host
and device hardware. The use of this API is discouraged for most workloads as it
tends to be error-prone and offers very little abstraction on top of the hardware
interfaces. The motivation to use SCIF is to take advantage of the capability of



asynchronous events that allows the user for low-latency messaging between the
host and the device as well as to notify about completion of kernels on Xeon
Phi. This enabled the possibility of hiding the cost of data transfer between
the host and the device which requires the transfer of submatrices to overlap
with the computation. The direct access to the DMA (Direct Memory Access)
engine allowed us to maximize the bandwidth of data transfers over the PCI
Express bus. The only requirement was that the memory regions for transfers
to be page-aligned and pinned to guarantee their fixed location in the physical
memory.

With the continuous improvements in the APIs that conceptually reside
above SCIF, the overheads and functionality afforded by SCIF is no longer ex-
clusive, and we are able to achieve very much comparable performance and
asynchronous interface using higher-level APIs, while gaining portability as an
important added bonus.

2 Efficient and Scalable Programming Model Across
Multiple Devices

In this section, we describe a programming model that raises the level of ab-
straction above the hardware specifics while still allowing us to capture the
strengths of the various hardare components in a heterogeneous system and de-
velop highly efficient algorithms. We present the accompanying software stack
and the techniques developed for the effective use of both single and multi Xeon
Phi coprocessors. Our proposed techniques consider both the higher ratio of
execution and the hierarchical memory model of the new emerging coprocessors.

2.1 Hardware Capability Task Distribution

Programming models that raise the level of abstraction are of great importance
for reducing software development efforts. A traditional approach has been to
organize algorithms in terms of BLAS calls, where hardware specific optimiza-
tions would be hidden in BLAS implementations such as Intel’s MKL or AMD’s
ACML. This is still valid and used but has shown some drawbacks on new ar-
chitectures. In particular, parallelization is achieved using a fork-join approach
since each BLAS call, e.g., a matrix-matrix multiplication, can be performed in
parallel (fork) but a synchronization is needed before performing the next call
(join). The number of synchronizations thus can become a prohibitive bottle-
necks for performance on highly parallel devices such as the MICs. This type
of programming has been popularized under the Bulk Synchronous Processing
name [9, 8].

Instead, the algorithms (like matrix factorizations) are broken into compu-
tational tasks (e.g., panel factorizations followed by trailing submatrix updates)
and pipelined for execution on the available hardware components (see below).
Moreover, particular tasks are scheduled for execution on the hardware com-
ponents that are best suited for them. Thus, this task distribution based on



hardware capability allows the user for the efficient use of each hardware compo-
nent. In the case of DLA factorizations, the less parallel panel tasks are scheduled
for execution on multicore CPUs, and the parallel updates mainly on the MICs.
We illustrate this in Algorithm 1.

Algorithm 1: Two-phase factorization of A = [P1, P2, . . .] with lookahead
of depth 1. Matrix A and the result are assumed to be on the MIC memory.

PanelStartReceiving on CPU (P1) ;
for Pi = P1, P2, . . . do

PanelFactorize on CPU (Pi) ;
PanelSend to MIC(Pi) ;
TrailingMatrixUpdate on MIC(Pi+1) ;
PanelStartReceiving on CPU (Pi+1) ;
TrailingMatrixUpdate onMIC(Pi+2, . . .) ;

2.2 Task Based Runtime Model

The scheduling of tasks for execution can be static or dynamic. In either case,
the small and not easy to parallelize tasks from the critical path (e.g., panel
factorizations) are executed on CPUs, and the large and highly parallel task
(like the matrix updates) mostly on the MICs.

The use of multiple coprocessors complicates the development using static
scheduling. Instead, the use of a light-weight runtime system is preferred as it
can keep scheduling overhead low, while enabling the expression of parallelism
through sequential-like code. The runtime system relieves the developer from
keeping track of the computational activities that, in the case of heterogeneous
systems, are further exacerbated by the separation between the address spaces of
the main memory of the CPU and the MICs. Our runtime model is build on the
QUARK [10] superscalar execution environment that has been originally used
with great success for linear algebra software on just multicore platforms [5].
The conceptual work though could be replicated within other models such as
StarPU [1], OmpSS [6], Cilk [2], and Jade [7], to just mention a few.

2.3 Improving offload mode communication

It is well known that the off-load transfer mode copies only continuous chunks
of data from and to the coprocessors. However most of the scientific application
algorithms require to exchange data with 2D or 3D storage and thus this may
create an issue when using the off-load transfer mode. In particular, the one-sided
factorizations (Cholesky, LU, and QR) require to send the panel to the CPU and
then receive it later after being factorized by the CPU. A simple implementation
loop over one direction and call the off-load section to send/receive a contiguous



vector. Such implementation behaves poorly and as a result the communication
will become expensive and slow down the algorithm. Indeed, another alternative
is to copy the 2D panel to a contiguous temporary space on the MIC, and
then to send it and vice versa. Hence, there are two points that need to be taken
into consideration. Firstly, the copy needs to be implemented as a multi-threaded
operation in order to hide its cost. For that, we implemented a parallel copy that
uses all of the 240 hardware threads of the MIC to perform the copy. Secondly,
when the MIC copies data to or from the temporary space, it should be the only
kernel running, otherwise, it will run on top of other kernel running and this may
slow down both of the kernels. For that, we represented the copy kernel as a task
with high priority and the scheduler is responsible for executing it as soon as
possible and to handle the dependencies such as no other kernel will be running
at the same time. Experiments showed that when using these optimizations the
performance of the off-load communication mode is comparable to both the SCIF
and the COI mode with a variance of less than 5%.

2.4 Data Distribution to Minimize Communication

Data distribution formats for multi-device computations can drastically affect
the performance. In particular, swapping rows (the dlaswp routine) in LU, or the
dlarfb trailing matrix update routine in QR, may require unnecessary data move-
ments in certain data formats. Therefore, to minimize the amount of communi-
cation between devices, our implementation uses a 1D block cyclic distribution.
Indeed, using the well known 2D block cyclic distribution among multi-devices
will enforce an extra amount of communication between them in order to per-
form the dlaswp in LU, while using 1D block cyclic distribution will not need any
of these communication. Another example is the dlarfb routine used in the QR
factorization to perform (I−V TTV T )Ã. Here V holds the Householder reflectors
generated during the panel factorization at step k, and Ã is the trailing matrix
at step k. A 2D block cyclic distribution will require a sum between the devices
in order to compute V T Ã, while a 1D block cyclic distribution will again not
need any communications. Note that the overall workload is well spread among
the multi-coprocessors when using 1D block cyclic distribution.

2.5 Trading Extra Computation for Higher Execution Rate

The optimization discussed here is MIC-specific but is often valid for any hard-
ware architecture with multilayered memory hierarchy. The dlarfb routine used
by the QR decomposition consists of two dgemms and one dtrmm. Since copro-
cessors are better at handling compute-bound tasks, for computational efficiency,
we replace the dtrmm by dgemm, yielding 5-10% performance improvement. For
the Cholesky factorization, the trailing matrix update requires a dsyrk. Due to
uneven storage, the multi-device dsyrk cannot be assembled purely from regular
dsyrk calls on each device. Instead, each block column must be processed indi-
vidually. The diagonal blocks require special attention. One can use a dsyrk to
update each diagonal block, and a dgemm to update the remainder of each block



2k4k6k8k 12k 16k 20k 24k 28k 32k 36k 40k
0

400

800

1200

1600

2000

2400

Matrix size

G
flo

p/
s

 

 
DPOTRF_3 XeonPhi
DPOTRF_2 XeonPhi
DPOTRF_1 XeonPhi

Fig. 2. Performance of DPOTRF (Cholesky factorization) on up to 3 Xeon Phi cards.

column below the diagonal block. The small dsyrk operations have little paral-
lelism and therefore their execution is inefficient on MICs. This can be improved
to some degree by using pragma to run several dsyrk’s simultaneously. Neverthe-
less, because we have copied the data to the device, we can consider the space
above the diagonal to be a scratch workspace. Thus, we update the entire block
column, including the diagonal block, writing extra data into the upper triangle
of the diagonal block, which is subsequently ignored. We do extra computation
for the diagonal block, but gain efficiency overall by launching fewer BLAS ker-
nels on the device and using the more efficient dgemm kernels, instead of small
dsyrk kernels, resulting in overall 5-10% improvement in performance.

3 Experimental Results

We present performance results on an Intel dual-socket multicore system with
three Intel Xeon Phi cards. Each CPU processor is eight-core Intel Xeon E5-2670
(Sandy Bridge), running at 2.6 GHz, and has a 24 MB shared Level 3 cache.
Each core has a private 256 KB Level 2 and 64 KB Level 1 caches. The system
is equipped with 52 GB of memory. Its theoretical peak in double precision is
332 Gflop/s. The Intel Xeon Phi cards have 15 GB memory each, running at
1.09 GHz, and yielding a double precision theoretical peak of 1, 046 Gflops.

On the CPU side we use the MKL (Math Kernel Library) [4], version 11.00.03.
The Intel Xeon Phi is running the MPSS 2.1.5889-16 software stack and the icc
13.1.1 20130313 compiler. These come with the composer xe 2013.3.163 suite.

Figures 2, 3, and 4 show the performance results for the Cholesky, LU, and
QR factorizations respectively. The figures show a scalability study for up to 3
Xeon Phi devices. The first observation is the large matrix sizes (beyond 5000)
required to take advantage of the benefits that the devices offer and, conse-
quently, outperform the peak performance of the CPU. Similarly, adding the
second Xeon Phi is beneficial for matrix sizes larger than 10, 000 for Cholesky,
12, 000 for LU, and QR factorizations. Finally, the addition of the third Xeon
Phi benefits all three factorizations only beyond matrices of size 16, 000. This



2k4k6k8k 12k 16k 20k 24k 28k 32k 36k 40k
0

400

800

1200

1600

2000

2400

Matrix size

G
flo

p/
s

 

 
LU 3 XeonPhi
LU 2 XeonPhi
LU 1 XeonPhi

Fig. 3. Performance of DGETRF (LU factorization) on up to 3 Xeon Phi cards.

2k4k6k8k 12k 16k 20k 24k 28k 32k 36k 40k
0

400

800

1200

1600

2000

2400

Matrix size

G
flo

p/
s

 

 
QR 3 XeonPhi
QR 2 XeonPhi
QR 1 XeonPhi

Fig. 4. Performance of DGEQRF (QR factorization) on up to 3 Xeon Phi cards.

behavior is to be expected from a compute-oriented device that is connected to
the CPU through a high-latency, low-bandwidth bus such as the PCI Express.
Each matrix panel is factorized on the CPU and for that must make its way from
the Xeon Phi device to the CPU and back, thus suffering the communication
penalty twice. While the dynamic scheduling allows us to hide this overhead
at the beginning of the factorization when the trailing matrix updates carry
enough of a computational load, the final steps are squarely dominated by the
panel computation and very little can be done about it since the Xeon Phi is a
throughput oriented device and in our attempts delivered low performance for
latency-bound workloads such as the panel factorization.

As far as scaling and parallel efficiency are concerned, Figures 2, 3, and 4
show that once the matrix sizes grow beyond the aforementioned threshold, the
scaling from one to two and from two to three Xeon Phi devices remains steady
and progresses as expected.

Another important aspect of the performance behavior that we observed on
our Xeon Phi cards can be seen in Figure 2. The figure shows extra data points
to underscore the variability of the performance with respect to the problem



size. In particular, when the matrix sizes are not divisible by a particular value,
a blocking factor for the underlying BLAS library, the resulting performance
might not follow a smooth path and experience variations. However, we are
finding this behavior to continuously become less of a burden with every new
release of the software stack for the Xeon Phi card.

4 Conclusions and Future Work

We designed algorithms and a programing model for developing high-performance
dense linear algebra in co-processors environments. Further, despite the com-
plexity of the hardware, acceleration was achieved at a surprisingly low software
development effort using a high-level methodology of developing hybrid algo-
rithms. In particular, we obtained high fraction of the peak performance for
the entire heterogeneous system. The promise shown so far motivates and opens
opportunities for future research and extensions, e.g., tackling more complex al-
gorithms and hybrid hardware. When a complex algorithm needs to be executed
on a complex heterogeneous system, scheduling decisions have a dramatic im-
pact on performance. Therefore, new scheduling strategies must be designed to
fully benefit from the potential of future large-scale machines.

References

1. C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A unified
platform for task scheduling on heterogeneous multicore architectures. Concur-
rency and Computation: Practice and Experience, 23(2):187–198, 2011.

2. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou. Cilk: An efficient multithreaded runtime system. SIGPLAN Not.,
30:207–216, August 1995.

3. Intel. Intel xeon phi coprocessor system software developers guide.
http://software.intel.com/en-us/articles/.

4. Intel. Math Kernel Library. http://software.intel.com/intel-mkl/.
5. J. Kurzak, P. Luszczek, A. YarKhan, M. Faverge, J. Langou, H. Bouwmeester, and

J. Dongarra. Multithreading in the PLASMA Library. In Handbook of Multi and
Many-Core Processing: Architecture, Algorithms, Programming, and Applications,
Computer and Information Science Series. Chapman and Hall/CRC, April 26 2013.

6. J. M. Pérez, R. M. Badia, and J. Labarta. A dependency-aware task-based pro-
gramming environment for multi-core architectures. In Proceedings of the 2008
IEEE International Conference on Cluster Computing, 29 September - 1 October
2008, Tsukuba, Japan, pages 142–151. IEEE, 2008.

7. M. C. Rinard, D. J. Scales, and M. S. Lam. Jade: a high-level, machine-
independent language for parallel programming. Computer, 26(6):28–38, 1993.
DOI: 10.1109/2.214440.

8. L. G. Valiant. Bulk-synchronous parallel computers. In M. Reeve, editor, Parallel
Processing and Artificial Intelligence, pages 15–22. John Wiley & Sons, 1989.

9. L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8), Aug. 1990. DOI 10.1145/79173.79181.

10. A. YarKhan. Dynamic Task Execution on Shared and Distributed Memory Archi-
tectures. PhD thesis, University of Tennessee, December 2012.


