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We describe a new data format for storing triangular, symmetric, and Hermitian matrices called
Rectangular Full Packed Format (RFPF). The standard two-dimensional arrays of Fortran and C
(also known as full format) that are used to represent triangular and symmetric matrices waste
nearly half of the storage space but provide high performance via the use of Level 3 BLAS. Standard
packed format arrays fully utilize storage (array space) but provide low performance as there is
no Level 3 packed BLAS. We combine the good features of packed and full storage using RFPF to
obtain high performance via using Level 3 BLAS as RFPF is a standard full-format representation.
Also, RFPF requires exactly the same minimal storage as packed the format. Each LAPACK full
and/or packed triangular, symmetric, and Hermitian routine becomes a single new RFPF routine
based on eight possible data layouts of RFPF. This new RFPF routine usually consists of two calls to
the corresponding LAPACK full-format routine and two calls to Level 3 BLAS routines. This means
no new software is required. As examples, we present LAPACK routines for Cholesky factorization,
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Cholesky solution, and Cholesky inverse computation in RFPF to illustrate this new work and to
describe its performance on several commonly used computer platforms. Performance of LAPACK
full routines using RFPF versus LAPACK full routines using the standard format for both serial
and SMP parallel processing is about the same while using half the storage. Performance gains
are roughly one to a factor of 43 for serial and one to a factor of 97 for SMP parallel times faster
using vendor LAPACK full routines with RFPF than with using vendor and/or reference packed
routines.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
Linear systems (direct and interactive methods); G.4 [Mathematical Software]
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1. INTRODUCTION

A veryimportant class of linear algebra problems deals with a coefficient matrix
A that is symmetric and positive definite [Dongarra et al. 1998; Demmel 1997;
Golub and Van Loan 1996; Trefethen and Bau 1997]. Because of symmetry,
it is only necessary to store either the upper or lower triangular part of the
matrix A.

1.1 LAPACK Full and Packed Storage Formats

The LAPACK library [Anderson et al. 1999] offers two different kinds of sub-
routines to solve the same problem: POTRF! and PPTRF both factorize sym-
metric, positive definite matrices by means of the Cholesky algorithm. A major
difference in these two routines is the way they access the array holding the
triangular matrix (see Figures 1 and 2).

In the POTRF case, the matrix is stored in one of the lower left or upper
right triangles of a full square matrix (Anderson et al. [1999, pages 139 and
140], and IBM [1997], page 64), and? the other triangle is wasted (see Figure 1).
Because of the uniform storage scheme, blocked LAPACK and Level 3 BLAS
subroutines [Dongarra et al. 1990a, 1990b] can be employed, resulting in a fast
solution.

In the PPTRF case, the matrix is stored in packed storage (Anderson et al.
[1999], pages 140 and 141; Agarwal et al. [1994], and IBM [1997], pages 74 and

1Four names SPOTRF, DPOTRF, CPOTRF, and ZPOTRF are used in LAPACK for real symmetric
and complex Hermitian matrices [Anderson et al. 1999], where the first character indicates the
precision and arithmetic versions: S—single precision, D—double precision, C—complex and Z—
double complex. LAPACK95 uses one name LA_POTRF for all versions [Barker et al. 2001]. In this
article, POTRF and/or PPTRF express any precision, any arithmetic, and any language version of
the PO and/or PP matrix factorization algorithms.

2In Fortran column major, in C row major.
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Lower triangular case Upper triangular case
1 1 8 15 22 29 36 43
2 9 9 16 23 30 37 44
310 17 17 24 31 38 45
4 11 18 25 25 32 39 46
5 12 19 26 33 33 40 47
6 13 20 27 34 41 41 48
7 14 21 28 35 42 49 49

Fig. 1. The full format array layout of an order N symmetric matrix required by LAPACK.

Lower triangular case Upper triangular case
1 124 711 16 22
2 8 35 812 17 23
3 9 14 6 9 13 18 24
4 10 15 19 10 14 19 25
5 11 16 20 23 15 20 26
6 12 17 21 24 26 21 27
7 13 18 22 25 27 28 28

Fig. 2. The packed format array layout of an order 7 symmetric matrix required by LAPACK.

75), which means that the columns of the lower or upper triangle are stored
consecutively in a one-dimensional array (see Figure 2). Now the triangular
matrix occupies the strictly necessary storage space but the nonuniform storage
scheme means that use of full storage BLAS is impossible and only the Level 2
BLAS packed subroutines [Lawson et al. 1979; Dongarra et al. 1988] can be
employed, resulting in a slow solution.

To summarize: LAPACK offers a choice between high performance and wast-
ing half of the memory space (POTRF) versus low performance with optimal
memory space (PPTRF).

1.2 Packed Minimal Storage Data Formats Related to RFPF

Recently many new data formats for matrices have been introduced for improv-
ing the performance of dense linear algebra (DLA) algorithms.

1.2.1 Recursive Packed Format (RPF). [Andersen et al. 2001, 2002]. A
new compact way to store a triangular, symmetric or Hermitian matrix called
the Recursive Packed Format was described in Andersen et al. [2001], as was
novel ways to transform RPF to and from standard packed format. New algo-
rithms, called Recursive Packed Cholesky (RPC) [Andersen et al. 2001, 2002],
that operate on the RPF format were presented. The RPF format operates al-
most entirely by calling Level 3 BLAS GEMM [Dongarra et al. 1990a, 1990b]
but requires variants of algorithms TRSM and SYRK [Dongarra et al. 1990a,
1990b] that are designed to work on RPF. The authors called these algorithms
RPTRSM and RPSYRK [Andersen et al. 2001] and found that they do most
of their FLOPS by calling GEMM [Dongarra et al. 1990a, 1990b]. It follows
that almost all of the execution time of the RPC algorithm is done in calls to
GEMM.
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There are three advantages of this storage scheme compared to traditional
packed and full storage. First, the RPF storage format uses the minimum
amount of storage required for symmetric, triangular, or Hermitian matrices.
Second, the RPC algorithm is a Level 3 implementation of Cholesky factoriza-
tion. Finally, RPF requires no block size tuning parameter. A disadvantage of
the RPC algorithm was that it has a high recursive calling overhead as it uses
natural recursion or a block size of 1. Gustavson and Jonsson [2000] removed
this overhead and added other novel features to the RPC algorithm.

1.2.2 Square Block Packed Format (SBPF) [Gustavson 2003]. SBPF was
described in Section 4 of Gustavson [2003]. A strong point of SBPF is that
it requires minimum block storage and all its blocks are contiguous and of
equal size. If one uses SBPF with kernel routines then data copying is mostly
eliminated during Cholesky factorization.

1.2.3 Block Packed Hybrid Format (BPHF) [Andersen et al. 2005; Gustavson
et al. 2007b]. The authors considered an efficient implementation of the
Cholesky solution of symmetric positive-definite full linear systems of equa-
tions using packed storage. The authors took the same starting point as that
of LINPACK [Dongarra et al. 1979] and LAPACK [Anderson et al. 1999], with
the upper (or lower) triangular part of the matrix being stored by columns. Fol-
lowing LINPACK [Dongarra et al. 1979] and LAPACK [Anderson et al. 1999],
the authors overwrote the given matrix by its Cholesky factor. Andersen et al.
[2005] used the BPHF where blocks of the matrix are held contiguously. The
article compared BPHF versus conventional full format storage, packed format,
and the RPF for the algorithms. BPHF is a variant of SBPF in which the diag-
onal blocks are stored in packed format and so its storage requirement is equal
to that of packed storage.

We mention that for packed matrices SBPF and BPHF have become the for-
mat of choice for multicore processors when one stores the blocks in register
block format [Gustavson et al. 2007]. Recently, there have been many article
published on new algorithms for multicore processors. This literature is ex-
tensive. So we only mention two projects, PLASMA [Buttari et al. 2009] and
FLAME [Chan et al. 2007], and refer the interested reader to the literature for
additional references.

In regard to other references on new data structures, the survey article
by Elmroth et al. [2004] gives an excellent overview. However, since 2005 at
least two new data formats for Cholesky type factorizations have emerged, one
in Herrero [2006] and RFPF in Gustavson and Wasniewski [2007]. RFPF is
the subject matter of this article. In the next subsection, we highlight its main
features.

1.3 A Novel Way of Representing Triangular, Symmetric, and Hermitian
Matrices in LAPACK

LAPACK has two types of subroutines for triangular, symmetric, and Hermi-
tian matrices called the packed and full format routines. LAPACK has about
300 of these kind of subroutines. So, in either format, a variety of problems
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can be solved by these LAPACK subroutines. From a user point of view, RFPF
can replace both these LAPACK data formats. Furthermore, and this is impor-
tant, using RFPF does not require any new LAPACK subroutines to be written.
Using RFPF in LAPACK only requires the use of already existing LAPACK
and BLAS routines. RFPF strongly relies on the existence of the BLAS and
LAPACK routines for the full storage format.

1.4 Overview of the Article

First we introduce the RFPF in general, in Section 2. Second, we show how
to use RFPF on symmetric and Hermitian positive definite matrices, for ex-
ample, for the factorization (Section 3), solution (Section 4), and inversion
(Section 5) of these matrices. Section 6 describes LAPACK subroutines for the
Cholesky factorization, Cholesky solution, and Cholesky inversion of symmetric
and Hermitian positive definite matrices using RFPF. Section 7 indicates that
the stability results of using RFPF is unaffected by this format choice as RFPF
uses existing LAPACK algorithms which are already known to be stable. Sec-
tion 8 describes a variety of performance results on commonly used platforms
both for serial and parallel SMP executions. These results show that the per-
formance of LAPACK full routines using RFPF versus LAPACK full routines
using standard format for both serial and SMP parallel processing is about the
same while using half the storage. Also, performance gains are roughly 1 to a
factor of 43 for serial and 1 to a factor of 97 for SMP parallel times faster using
vendor LAPACK full routines with RFPF than with using vendor and/or ref-
erence packed routines. Section 9 explains how some new RFPF routines have
been integrated in LAPACK. LAPACK software for the Cholesky algorithm
(factorization, solution and inversion) using RFPF was released with LAPACK
Version 3.2 in November 2008. Section 10 gives a short summary and brief
conclusions.

2. DESCRIPTION OF RECTANGULAR FULL PACKED FORMAT

We describe Rectangular Full Packed Format (RFPF). It transforms a standard
Packed Array AP of size NT = N(N + 1)/2 to a full two-dimensional (2D) array
whose size is also NT. This means that the performance of LAPACK’s [Anderson
et al. 1999] packed format routines becomes equal to or better than their full
array counterparts. RFPF is a rearrangement of a standard full format rectan-
gular array SA of size LDA*N where LDA > N. LDA is the leading dimension of the
rectangular array SA. For more explanations on the leading dimension and its
use, we refer the reader to the LAPACK users’ guide [Anderson et al. 1999]. Ar-
ray SA holds a triangular part of a symmetric, triangular, or Hermitian matrix
A of order N. The rearrangement of array SA is equal to a compact full format
rectangular array AR of size LDA1 x N1 = N T, and hence array AR like array AP
uses minimal storage. (The specific values of LDA1 and N1 can vary depending on
various cases and they will be specified later in this text.) Array AR will hold a
full rectangular matrix Ar obtained from a triangle of matrix A. Note also that
the transpose of the rectangular matrix A% resides in the transpose of array AR
and hence also represents A. Therefore, Level 3 BLAS [Dongarra et al. 1990a,
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A of LAPACK full data format
LDA=N = 7, memory needed Apr of Rectangular full packed
LDA x N =49 a1 |as;s aes ars

a1 © o < o < o az,1 a22 (06,6 47,6
a1 a22 < <o <© <o <© az;1 a3,2 a3,3|a7,7
asz,1 a2 a3z3 < < <© < a4,1 G4,2 A4,3 A4.4
a4g,1 A4,2 Q4,3 A44| © <© <© as;1 G52 as53 454
as,1 452 a53 a4 (055 © <© ag,1 46,2 06,3 06,4
ag,1 46,2 06,3 06,4 06,5 6,6 < ar1 ar2 ar3 ara4
ar1 ar2 ar3 ara|ars are ar7 Matrix Agr

Matrix A

Fig. 3. The Cholesky factorization algorithm using the Rectangular Full Packed Format (RFPF)
if N is odd, uplo = ’lower’, and trans = ’no transpose’.

1999b] can be used on array AR or its transpose. In fact, with the equivalent
LAPACK algorithm which uses the array AR or its transpose, the performance
is slightly better than the standard LAPACK algorithm which uses the array
SA or its transpose. Therefore, this offers the possibility of replacing all packed
or full LAPACK routines with equivalent LAPACK routines that work on array
AR or its transpose. For examples of transformations of a matrix A to a matrix
Ap see the figures in Section 6.

RFPF is closely related to the HFP format see Gunnels and Gustavson [2004],
which represents A as the concatenation of two standard full arrays whose total
size is also NT'. Let A be an order N symmetric matrix. Break A into a block

2-by—-2 form
_ All Agl _ A11 AlZ
A= |:A21 s orA= AT Ag | (1)

where A;; and Agy are symmetric. Note that we only need to store the lower
triangles of A;; and Agy as well as the full matrix Ag; = A{Z when we are
interested in a lower triangular formulation.

When N = 2k is even, the lower triangle of A;; and the upper triangle of AL
can be concatenated together along their main diagonals into a (¢ + 1)-by—£
dense matrix (see the figures where N is even in Section 6). The off-diagonal
block Ag; is k—by—k, and so it can be appended below the (2 + 1)-by—% dense
matrix. Thus, the lower triangle of A can be stored as a single (N +1)-by—£ dense
matrix Ag. In effect, each block matrix A1, A1, and Ay is now stored in “full
format.” This means all entries of matrix Ar in array AR of size LDA1 = N + 1 by
N1 = & can be accessed with constant row and column strides. So the full power
of LAPACK’s block Level 3 codes are now available for RFPF, which uses the
minimum amount of storage. Finally, matrix AL which has size 2~by—(N + 1)
is represented in the transpose of array AR and hence has the same desirable
properties. There are eight representations of RFPF. The matrix A can have
either odd or even order N, or it can be represented either in standard lower
or upper format or it can be represented by either matrix A or its transpose
A% giving 22 = 8 representations in all. In Figure 3, we represent the case
for N odd, uplo = ’lower’, and trans = ’no transpose’. All eight cases or
representations are presented in Section 6.
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3. CHOLESKY FACTORIZATION USING RECTANGULAR FULL
PACKED FORMAT

The Cholesky factorization of a symmetric and positive definite matrix A can
be expressed as

A =LLT or A=UTU(in the symmetric case),

2
A =LL" or A = UHU(in the Hermitian case), 2)

where L and U are lower triangular and upper triangular matrices, respec-
tively.

Break the matrices L and U into 2-by-2 block form in the same way as was
done for the matrix A in Equation (1):

_ Ln 0 _ U11 UlZ
L_|:L21 Lﬂ}andU_[ 0 Uzz]' (3)

We now have
) the s_ymmetric case:

[Liy O LY, L3

| Lor Loz || 0 LI

LLT = and UTU = |:

UL UL || 0 Uyl

uh o }[Uu Uss |

and the Hermitian case:
ppHE_|Lun 0 LY L{ and UHU — ufi o [Un Uig
| Lor Loz || 0 LI vl ull 0 Us |’
4)
where L11, Lag, U11, and Ugg are lower and upper triangular submatrices, and
Loy and Uy are square or almost square submatrices.

Using Equations (2) and equating the blocks of Equations (1) and Equa-
tions (4) give us the basis of a 2—by—2 block algorithm for Cholesky factorization
using RFPF. We can now express each of these four block equalities by calls to
existing LAPACK and Level 3 BLAS routines. In the real lower case, we obtain
three block equations: LuL{l = An, L21L{1 = A21, and LQngl +L22L§2 = Azg.
The first and second of these block equations are handled by calling LAPACK’s
POTRF routine Ly; < chol(A;;) and by calling Level 3 BLAS TRSM via
Loy < A21LIIT . In both these block equations, the Fortran equality of replace-
ment (<) is being used so that the lower triangle of A;; is being replaced by
L1 and the nearly square matrix Ao is being replaced by Lo;. The third block
equation breaks into two parts: Ags < Agg —Lgngl and Loy < chol(Asgs), which
are handled by calling Level 3 BLAS SYRK or HERK and by calling LAPACK’s
POTREF routine. At this point, we can use the flexibility of the LAPACK library.
In RFPF, Ajys is in upper format (upper triangle) while, in standard format,
Ay is in lower format (lower triangle). Due to symmetry, both formats of Agg
contain equal values. This flexibility allows LAPACK to accommodate both for-
mats. Hence, in the calls to SYRK or HERK and POTRF we set uplo = ’U’ even
though the rectangular matrix of SYRK and HERK comes from a lower trian-
gular formulation. The corresponding LAPACK code is given in Figure 4. (The
data layout for the array AR used here when N is odd can be seen in Figure 3.)
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Cholesky Factorization Algorithm (nl = [N/2],n2 =N —nl)

1) factor LllL?1 = A1

call POTRF('L/,nl, AR, N, info)
2) solve L21L1T1 = Aoy for Lo

call TRSM('R'/ L'/ T'/ N',n2,nl,one, AR, N, AR(n1 + 1,1), N)
3) update Lo := Agx — L21Lgl as Ugg := Aoy — LQngl

call SYRK/HERK('U',/ N',n2,nl, —one, AR(n1 + 1,1), N, one, AR(1,2), N)
4) factor L22L§2 = Loo as UQI;UQQ = Usa

call POTRF('U’,n2, AR(1,2), N, info)

Fig. 4. The Cholesky factorization algorithm using the Rectangular Full Packed Format (RFPF)
if N is odd, uplo = ’lower’, and trans = ’no transpose’.

The values of L are stored over the values of A. The code does not use any
temporary arrays. We have named the new LAPACK routine PFTRF. We have
chosen the prefix PF to designate a symmetric/Hermitian positive definite ma-
trix stored in a RFPF array to fit with LAPACK’s use of PO for full storage and
PP for packed storage.

4. SOLUTION

In Section 3 we obtained the 2-by—2 Cholesky factorization (3) of matrix A.
Now, we can solve the equation AX = B:

—If A has lower triangular format then

LY = B and L”X = Y (in the symmetric case),

5
LY = B and L” X = Y (in the Hermitian case). )

—If A has an upper triangular format then
UTY = B and UX =Y (in the symmetric case), ©)

UHY = Band UX = Y (in the Hermitian case).

B, X ,andY are either vectors or rectangular matrices. B contains the right-
hand side (RHS) values. X and Y contain the solution values. B, X, and Y are
vectors when there is one RHS and matrices when there are many RHSs. The
values of X and Y are stored over the values of B.

Expanding (5) and (6) using (3) give the forward substitution equations

in the symmetric case:
Ly O Yi|_ B and Uuj o Yi|_| B
Loy Log || Yo By UL UL [ Y2 By |’
and in the Hernlitian case:
[ 2[5 ]=[B] = (oh on |[32]-[3]
Loy Ly || Y, By UEL UB || Y2 By |’
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Cholesky Solution Algorithm,
where B(LDB,nr) and LDB > N (here LDB = N) :

Solve LY = B
1.1) solve L11Y; = B

call TRSM('L'/ L'/ N’/ N’ ,nl,nr,one, AR, N, B, N)
1.2) update By = Bz — L21Y1

call GEMM('N’,/ N',n2,nr,nl, —one, AR(nl + 1,1), N, B, N, one, B(nl + 1,1), N)
1.3) solve Ly2Yz = By as ULY> = Bs

call TRSM('L'/U'/T'/ N',n2,nr,one, AR(1,2), N, B(nl + 1,1), N)
Solve LTX =Y
2.1) solve LZ;XQ =Yy as UsxYo = B

call TRSM('L',/ U’/ N’/ N’,n2,nr,one, AR(1,2), N, B(nl + 1,1), N)
2.2) update Y} = Y; — LI X5

call GEMM('T’/ N',nl,nr,n2, —one, AR(n1 + 1,1), N, B(nl + 1,1), N, one, B, N)
2.3) solve LTle =Y

call TRSM('L'/ L'/ T'/ N',nl,nr,one, AR, N, B, N)

Fig. 5. The Cholesky solution algorithm using the Rectangular Full Packed Format (RFPF) if N
is odd, uplo = ’lower’, and trans = ’no transpose’.

and the back substitution equations

in the symmetric case:

LY, L3, -X1_=_Y1_ and-Un U12_-X1_:_Y1_
0 LL || X2]| [Y2] | 0 Uz |[[X2] | Y2’
(8
) ) and in the Hermitian case:
L LY -Xl-:-Yl- and-Ull U12__X1_:_Y1_
0 LE |[X2] [Yo | 0 Uz || X2| | Yo

The Equations (7) and (8) give the basis of a 2 x 2 block algorithm for Cholesky
solution using the RFPF format. We can now express these two sets of two block
equalities by using existing Level 3 BLAS routines. As an example, the first set
of these two block equalities is L11Y1 = By and L91Y 1 + LogYs = Bs. The first
block equality is handled by Level 3 BLAS TRSM: Y; <« LIllBl. The second
block equality is handled by Level 3 BLAS GEMM and TRSM: By <~ By —Lo1Y1
and Y, <« L§21B2. The backsolution routines are similarly derived. One gets
Xo <« L)Yy, Y1 <Y1 —LEXyand X1 < LY.

The corresponding LAPACK code is given in Figure 4. In RFPF, Lo, is stored
as an upper triangular matrix while it represents a lower triangular one. (See
Figures 3, 7, and 8.) Hence, in the calls to TRSM using Loy (see lines 1.3 and
2.1 in Figure 5), we set uplo = *U’.

New LAPACK-like routine PFTRS performs these two solution computations
for the eight cases of RFPF. PFTRS calls a new Level 3 BLAS TFSM in the same
way that POTRS calls TRSM.

5. INVERSION
We consider the following three stage procedures:

(1) Factorize the matrix A and overwrite A with either L or U by calling PFTRF;
see Section 3.
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(2) Compute the inverse of either L or U. Call these matrices W or V and
overwrite either L or U with them. We wrote a new routine named TFTRI
available in LAPACK version 3.2 for this purpose.

(3) Calculate either the product WZW or VVT and overwrite either W or V
with them.

Asin Sections 3 and 4 we examined 2—-by—2 block algorithms for steps two and
three above. In Section 3 we obtained either matrices L or U in RFPF. Like LA-
PACK inversion algorithms for POTRI and PPTRI, this is our starting point for
our LAPACK inversion algorithm PFTRI using RFPF. The LAPACK inversion
algorithms for POTRI and PPTRI also follow from steps 2 and 3 above by first
calling in the full case LAPACK TRTRI and then calling LAPACK LAUUM.

Take the inverse of Equation (2) and obtain

A 1=WTW or A~ = VVT(in the symmetric case),

9
A1 =WHW or A-! = VVH(in the Hermitian case), ®)

where W and V are lower and upper triangular matrices.
Using the 2—by—2 blocking for either L or U in Equations (3), we obtain the
following 2—by—2 blocking for W and V:

. W11 0 _ Vll V12
W_|:W21 WZQ]andV_[O V22i|. (10)

From the identities WL = LW =1 and VU = UV = I and the 2-by-2 block
layouts of Equations (10), we obtain three block equations for W and V which
can be solved using LAPACK routines for TRTRI and Level 3 BLAS TRMM.
To illustrate the procedure, we consider the three block equations L1 Wy =1,
LoiWi1 + LogWe; = 0, and LogWos = I. The first and third of these block
equations are handled by LAPACK TRTRI routines as W1y <« L;ll and Woy «
Lz’zl. In the second inverse computation, we use the fact that Lggy is equally
represented by its transpose ng, which is Usg in RFPF. So we get Vo <« U2’21.
The second block equation leads to two calls to Level 3 BLAS TRMM via Wy, <«
—Lo1W1; and Wy < WouWo;. In the second call, compute Wg; <« V2T2W21 as
the Vio matrix is in upper format when using RFPF. In the last two block
equations, the Fortran equality of replacement (<) is being used so that Wy, <«
—W22L21 W11 is replacing L21.

Now we turn to part 3 of the three stage LAPACK procedure above. For this
we use the 2-by—2 blocks layouts of Equations (10) and the matrix multiplica-
tions indicated by following block Equations (12) giving

the symmetric case: ~
WIW — |:W1Tl W2Tl:| |:W11 0 ] and VVT — |:V11 VIZ] |:V17; 0 ,

0 WL | W W 0 Ve || VL V] |
and the Hermitian case: (11)
WE WHrw.,. o Vi V. VH o ]
WEW — 11 Va1 [ 11 } dVVEH — [ 11 12} 11
|: 0 WI [ Wa W an 0 V|| VEVHE
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Cholesky Inversion Algorithm

Inversion
1) invert Wi = Ll_ll

call TRTRI('L’) N’,n1, AR, N,info)
2) multiply Wa; = —Lo1 Wi1

call TRMM('R'/ L'/ N’/ N',n2,nl, —one, AR, N, AR(n1 + 1,1), N)
3) invert Was = L2_21 as Voo = U2_21

call TRTRI('U’/ N’,n2, AR(1,2), N,info)
4) multiply W21 = W22W21 as W21 = V;;ng

call TRMM('L',/U'/T"/ N',n2,nl1,one, AR(1,2), N, AR(n1 + 1,1), N)
Triangular matrix multiplication
1) triang. mult. Wi = WSWU

call LAUUM('L’,n1, AR, N,info)
2) update Wi; = Wi1 + ngng

call SYRK/HERK('L'/ T',n1,n2,one, AR(nl + 1,1), N,one, AR, N)
3) multiply Wa1 = WasWa; as Way = Voo Wog

call TRMM('L'/ U’/ N'/ N',n2,nl,one, AR(1,2), N, A(n1 + 1,1), N)
4) triang. mult. Was = W27;W22 as Voo = V22V2€

call LAUUM('U’,n2, AR(1,2), N,info)

Fig. 6. The Cholesky inversion algorithm using the Rectangular Full Packed Format (RFPF) if N
is odd, uplo = ’lower’, and trans = ’no transpose’.

where W11, Wos, Vi1, and Voo are lower and upper triangular submatrices,
and Wy, and V7, are square or almost square submatrices. The values of the
indicated block multiplications of W or V' in Equations (12) are stored over the
block values of W or V.

Performing the indicated 2-by—2 block multiplications of Equations (12)
leads to three block matrix computations. To illustrate the procedure, we con-
sider the three block computations WlT1 Wi + W2T1 Wo1, W27;W21, and W2T2W22.
Additionally, we want to overwrite the values of these block multiplications
on their original block operands. Block operand Wi; only occurs in the (1, 1)
block operand computation and hence can be overwritten by a call to LAPACK
LAUUM, Wi1 <« WlT1 W11, followed by a call to Level 3 BLAS SYRK or HERK,
Wi <~ Wi + WZT1 Wa1. Block operand Wy, now only occurs in the (2, 1) block
computation and hence can be overwritten by a call to Level 3 BLAS TRMM,
Wo1 <« W2T2W21. Finally, block operand Wse can be overwritten by a call to
LAPACK LAUUM, Wy < WL Ws,. Note that in the RFPF format Way « L;zl
will be Vo <« U;21, also supported by LAPACK TRTRI, as RFPF stores Ay
in the upper format instead of in the lower format. LAPACK POTRI supports
both the UPLO formats. For this reason, no new LAPACK software is needed
to support the RFPF format. The corresponding LAPACK code is given in
Figure 6. The new LAPACK routine, PFTRI, performs this computation for
the eight cases of RFPF.

6. GENERALIZATIONS

6.1 RFP Data Format: The Eight Variants

This section contains two figures.
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(1) Figure 7 shows the transformation from full to RFPF of all “no transpose”
cases.

(2) Figure 8 depicts all eight cases of RFPF.

The data format for A has LDA = N. Matrix Ag has LDAR = N if N is odd and
LDAR = N + 1if N is even and nl columns where nl = [N/2]. Hence, matrix
Ap always has LDAR rows and n1l columns. Matrix A% always has nl rows and
LDAR columns and its leading dimension is equal to nl. Matrix Ar always has
LDAR x n1 = NT = N(N + 1)/2 elements, as does matrix A%.

The order N of matrix A in both figures is six or seven.

6.2 From Full Packed Format Algorithm to RFPF Algorithm

We now consider the performance benefits of the RFP format in the context of
using LAPACK routines on triangular matrices stored in RFP format. Let X
be a Level 3 LAPACK routine that operates either on standard packed or full
format. X has a full 2-by-2 Level 3 LAPACK block algorithm, call it FX. Write a
simple related partition algorithm (SRPA) with partition sizes nl and n2. Apply
the new SRPA on the new RFP data structure. The new SRPA almost always
has four major steps consisting entirely of calls to the full format LAPACK
routine X in two steps and calls to level 3 BLAS in the remaining two steps.
We give below an illustration in the case where N is odd, uplo is *lower’, and
trans is ’no transpose’.

call FX(°L’ ,n1,AR,1dar) ! step 1

call L3BLAS(’parms’,nl,n2,AR,ldar,AR(n1+1,1),1dar) ! step 2

call L3BLAS(’parms’,n1,n2,AR(n1+1,1),1dar,AR(1,2),1dar) ! step 3
call FX(°U’,n2,AR(1,2),1dar) ! step 4

7. STABILITY OF THE RFPF ALGORITHM

The RFPF Cholesky factorization (Section 3), Cholesky solution (Section 4), and
Cholesky inversion (Section 5) algorithms are equivalent to the traditional al-
gorithms in the books [Dongarra et al. 1998; Demmel 1997; Golub and Van Loan
1996; Trefethen and Bau 1997]. The whole theory of the traditional Cholesky
factorization, solution, inversion, and BLAS algorithms carries over to these
three Cholesky and BLAS algorithms described in Sections 3, 4, and 5. The er-
ror analysis and stability of these algorithms was very well described in Higham
[1996]. The difference between LAPACK algorithms PO, PP, and RFPF? is how
inner products are accumulated. In each case a different order is used. They
are all mathematically equivalent, and stability analysis shows that any sum-
mation order is stable.

8. A PERFORMANCE STUDY USING RFP FORMAT

The LAPACK library [Anderson et al. 1999] routines POTRF/PPTREF,
POTRI/PPTRI, and POTRS/PPTRS were compared with the RFPF routines

3full, packed and rectangular full packed.
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7.1 The matrices

A of order N and Ap of size LDAR by nl, here N = 7.

7.1.1 Full Format
[a1n ¢ o oo o o
a1 a2 © <o <o o o
as,;1 asz,2 as,3 <& <& <o <o
4,1 Q4,2 Q4,3 Q44| © <o <o
as1 as52 G53 As4|055 < <
ae¢,1 06,2 06,3 A6,4|06,5 6,6 <
L ar,1 ar2 ar3 ar4|ars are ar,7 |

7.2 The matrices

ai
a1

as,i

a4,1
as,1
ag,1

7.3 The matrices

7
ai,2
O az2
o 0
o 0
o 0
o 0
L o ©
7.4 The matrices

aii
o

S OO0

A of order N and Apr of size LDAR by nl, here N = 6.

7.2.1 Full format

<o <o <o <o <o
azz2 < < < <
as2 as,3 < < <&
a42 Q43044 O ¢
as2 a53|054 a55 <
ae,2 a6,3|06,4 06,5 06,6

A of order N and Apr of siz

7.1.2 RFPF

ai
az;1 42,2
as,1 as,2

G4,1 Q4,2

5 ar,5

as,s
a4,3

G4,4

as,;1 as,2

ae,1 ae,2

L ar,1 ar,2

as.3 45,4

a6,3 06,4

ar,3 ar4 |

7.2.2 RFPF

a4.4

as, 4

ai|as;s

az1 Q22

as,;1 as,2
a41 Q4,2

as,1 as,2

ae,1 06,2

a6, |
as,s
ae,6
as,s
4,3
as,3

ae,3

e LDAR by nl, here N = 7.

.3.1 Full format 7.3.2 RFPF
aizlais ais aie aiy | [a1,4 a15 a6 a7 ]
a2,3(02,4 Q25 Q26 02,7 a2,4 QG25 G26 A27
a3,3|a3,4 a3,5 a3,6 43,7 as,4 a3,5 ase as,;7
O |Q4,4 Q45 Q46 Q4,7 4,4 Q4,5 Q4,6 Q4,7
¢ o as5 as,6 a5,7 ai1|ass ase as,7
¢ <¢ ¢ ae,6 G6,7 a12 Q22066 46,7
<o <& <& o arr | L a1,3 a2,3 a3 3|ar7 |

A of order N and Apr of size LDAR by nl, here N = 6.

7.4.1 Full format

ai2 ai3|ai4 ais aie
az2,2 a23|0G24 A25 A26
¢ a33(a3,4 a3,5 A3,6
< O |G4,4 Q45 Q4.6
<& < & as5 G56
<& < < o a6

ai,2
ai,3

as,619

7.4.2 RFPF
[a14 a15 aie ]
az4 Q25 Qa26
as,4 Qg5 Aase
4.4 Q45 Q4,6

ae,6

as.3

Fig. 7. Eight two-dimensional arrays for storing the matrices A and Ag that are needed by the
LAPACK subroutine POTRF (full format) and PFTRF RFPF, respectively. The leading dimension
LDA is N for LAPACK, and LDAR for RFPF. LDAR = N for N odd, and N + 1 for N even. Here N
is 7 or 6. The memory needed is LDAxN for full format and LDAR x nl = (N + 1)N /2 for RFPF,
here 49 and 36 for full format and 28 and 21 for RFPF. The column size of RFPF is n1 = [N /2],

here 4 and 3.
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8.1 RFPF for the matrices of rank odd, here N =7 and nl =4
Lower triangular
LDAR=N

ai,i

transpose, lda = nl
a1 2,2

ai;l a2;1 as;1 a4,1(0as;1 Ae,1 Ar,1

as;l a3,2 as,s

az2 Q32 Q422|052 06,2 Q7,2

a4,1 Q4,2 Q4,3 A4,4

ae,5 06,6 Q3,3 A4,3|05,3 A6,3 A7,3
as,1 Q52 @53 54
ars are Qr,;7(Q4,4 (054 A6,4 Q7,4

as,1 06,2 06,3 06,4

ar1 ar2 Q73 QA74

Upper triangular
LDAR=N

ai4 a1 aie a1,7

transpose, lda = nl
G2,4 Q25 Q2,6 42,7
a1,4 Q2,4 Q3,4 Q4,4
a3,4 Q35 3,6 3,7

ais Q25 A3,5(04,5
Q4,4 Q45 Q4,6 Q4,7

aie A26 A3,6(04,6

as5 as,6 as,7

ai7 Q27 Q3,7|Qa,7 As5,7 A7 Q7,7
a2 a2

ae,6 a6,7

L a1,3 Q2,3 a3,3|a7,7

8.2 RFPF for the matrices of rank even, here N =6 and nl = 3.
Lower triangular

LDAR=N+1

[as4 asa asa’]

as.s 6.5 transpose, lda = nl

aii

az1 Q22|06,6 a4,4|Q1,1 Q2,1 A3,1|04,1 As5,1 G6,1

as,1 a3;2 as,3 a5,4 Q55 (02,2 43,2 (04,2 05,2 06,2
4,1 Q4,2 Q4,3 ae,4 Q6,5 06,6 |QA3,3(04,3 05,3 46,3

as,1 as52 Aas5;3

a6,1 6,2 06,3
Upper triangular

LDAR=N+1

[a1,4 a15 aie |

a2,4 Q2,5 Q2,6 transpose, lda = nl

as4 azss  Aase ai4 Q24 A34|044 Q1,1 A1,2 A1,3
a4,4 Q4,5 Q4,6 ais5 a25 G35(04,5 A55 (02,2 2.3

ai,1(0as5,5 45,619 aie a6 a36|0a4,6 as56 6,6 |0A3,3

ai2 a22| 46,6

L 1,3 G2,3 Q3,3

Fig. 8. Eight two-dimensional arrays for storing the matrices Ar and A% in RFPF. The leading
dimension LDAR of Ag is N when N is odd and N + 1 when N is even. For the matrix Ag, it
is nl1 = [N /2]. The memory needed for both Ar and Ag is (N + 1)/2 x N. This amount is 28 for
N =7 and 21 for N = 6.
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PFTRF, PFTRI, and PFTRS for Cholesky factorization (PxXTRF), Cholesky in-
verse (PxTRI), and Cholesky solution (PxTRS), respectively. In the previous
sentence, the character “x” can be “O” (full format), “P” (packed format), or “F”
(RFPF). In all cases, long real precision arithmetic (also called double preci-
sion) was used. Results were obtained on several different computers using
everywhere the vendor Level 3 and Level 2 BLAS. The sequential performance
results were done on the following computers:

—Sun Fire E25K (newton). UltraSPARC IV+ dual-core node (1800-MHz; 2-MB
shared L2-cache; 32-MB shared L3-cache). The theoretical peak for a node is
6.0 GFlop/s.

—SGI Altix 3700 (freke). Intel Itanium2 node (1.5-GHz; 6-MB L3-cache). The
theoretical peak for a node is 3.6 GFlop/s.

—DMI NEC SX-6. (Vector register length: 256; 8 CPU’s per node.) The theoret-
ical peak for a node is 8.0 GFlop/s per CPU or 64 GFlops/s for the whole node
composed of 8 CPU.

—Intel Tigerton (zoot). Quad-socket quad-core Intel Tigerton 2.4-GHz (16 total
cores) node with 32 GB of memory. The theoretical peak is equal to 9.6 GFlop/s
per core or 153.2 GFlop/s for the whole node, composed of 16 cores. We used
Intel MKL 10.0.1.014.

The performance results are given in Figures 9 to 14.

Figure 9 (double precision) presents results for the Sun UltraSPARC IV+
computer. Figure 10 (double precision) presents results for the SGI Altix
3700 computer. Figure 11 (double precision) presents results for the NEC SX-
6 computer. Figure 12 (double precision) presents results for the quad-socket
quad-core Intel Tigerton computer using reference LAPACK-3.2.0.4.* Figure 13
(double precision) presents results for the quad-socket quad-core Intel Tigerton
computer using the vendor LAPACK library (MKIL-10.0.1.14).

Figure 14 shows the SMP parallelism of these subroutines on the IBM
Power4 (clock rate: 1300 MHz; two CPUs per chip; L1 cache: 128-kB (64-
kB/CPU) instruction, 64-kB two-way (32-kB/CPU) data; L2 cache: 1.5-MB eight-
way shared between the two CPUs; L3 cache: 32 MB eight-way shared (off-chip);
TLB: 1024 entries) and SUN UltraSPARC-IV (clock rate: 1350 MHz; L1 cache:
64-kB four-way data, 32-kB four-way instruction, and 2 kB Write, 2-kB Prefetch;
L2 cache: 8-MB; TLB: 1040 entries) computers, respectively. They compare SMP
times of PFTRF, vendor POTRF and reference PPTRF.

The RFPF packed results greatly outperformed the packed and more often
than not were better than the full results. Note that our timings do not include
the cost of sorting any LAPACK data formats to RFPF data formats and vice
versa. We think that users will input their matrix data using RFPF. Hence, this
is our rationale for not including the data transformation times.

For all our experiments, we used vendor Level 3 and Level 2 BLAS. For all
our experiments except Figures 12 and 14, we use the provided the vendor
libraries for LAPACK and BLAS.

4From netlib.org.
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Factorization — SUN UltraSPARC IV+ Inversion — SUN UltraSPARC IV+ Solution — SUN UltraSPARC IV+
3500 3500 3500
3000 3000 3000
3

2500 4 2500 2500
0
£ 2000 € 2000 £ 2000
k<] o k<]
= 1500 = 1500 = 1500

1000

500 ﬂ\’_‘\‘
b ]

. : 0 . . . 0 . . .
2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
problem size problem size problem size

1000 1000

500 500

0 1000

Fig. 9. Performance in Mflop/s of Cholesky factorization/inversion/solution on SUN UltraSPARC
IV+ computer, long real arithmetic. For the solution phase, nrhs = max(100,n/10). B: PF_N_U;
o PF_N_L; A:PF_T_U; Vv: PF_T_L; ll: PO_U; : PO_L; l: PP_U; o: PP_L.

Factorization — SGI Altix 3700 Inversion — SGI Altix 3700 : :

6000 6000 6000 Solution — SGI Altix 3700

5000 K 5000 5000 &

4000 4000 4000 |- 4
£ 2 @ 4
2 3000 K 8 3000(7 S 3000
s = %

2000 2000 2000 -

1000 1000 j 1000

0 ‘ ol b ‘
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 0 1000 2000 3000 4000
problem size problem size

problem size

Fig. 10. Performance in Mflop/s of Cholesky factorization/inversion/solution on SGI Altix 3700,
Intel Itanium 2 computer, long real arithmetic. For the solution phase, nrhs = max(100,n/10).
l: PF_N_U; e: PF_N_L; A: PF_T_U; V: PF_T_L; ll: PO_U; o: PO_L; l: PP_U; o: PP_L.

We include comparisons with reference LAPACK for the quad-socket quad-
core Intel Tigerton machine in Figure 12. In this case, the vendor LAPACK
library packed storage routines significantly outperformed the LAPACK refer-
ence implementation from netlib. In Figure 13, you find the same experiments
on the same machine but, this time, using the vendor library (MKL-10.0.1.014).
We think that MKL is using the reference implementation for inverse Cholesky
(packed and full format). For Cholesky factorization, we see that both packed
and full format routines (PPTRF and POTRF) were tuned. But even in this
case, our RFPF storage format results were better.

When we compared RFPF with full storage, the results were mixed. However,
both codes were rarely far apart. Most of the performance ratios were between
0.95 to 1.05 overall. But note that the RFPF performance was more uniform
over its versions (four presented; the other four were for n odd). For LAPACK
full (two versions), the performance variation was greater. Moreover, in the case
of the inversion on quad-socket quad-core Tigerton (Figures 12 and 13), RFPF
clearly outperformed both variants of the full format.
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Factorization —— SX-6 NEC Inversion —— SX-6 NEC Solution —— SX-6 NEC
8000 0 8000
7000 * 7000 . 7000
6000 6000 = 6000
« 5000 ) 5000 ® 5000
Q. Q. Q.
2 4000 2 4000 2 4000
= = =

3000 3000

2000 R 2000

1000 1000;

. . 0 . . . 0 . . .
2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
problem size problem size problem size (nrhs=100 to 400)

1000

Fig. 11. Performance in Mflop/s of Cholesky factorization/inversion/solution on SX-6 NEC com-
puter, long real arithmetic. For the solution phase, nrhs = max(100,n/10). B: PF_N_U; e: PF_N_L;
A:PF_T_U; V: PF_T_L; l: PO_U; o: PO_L; l: PP_U; o: PP_L.

Factorization —— Intel Tigerton (ref. LAPACK) Inversion —— Intel Tigerton (ref. LAPACK) Solution —- Intel Tigerton (ref. LAPACK)
60 60 900
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0 @ 5
s 3 500
Q30 S
6] S 400
20 e i 300
200
10
100

0 : : 0 : : 0 ; : ;
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
problem size problem size problem size (nrhs=100)

Fig. 12. Performance of Cholesky factorization/inversion/solution on quad-socket quad-core Intel
Tigerton computer, long real arithmetic. We used reference LAPACK-3.2.0 (from netlib) and MKL-
10.0.1.014 multithreaded BLAS. For the solution phase, nrhs was fixed to 100 for any n. Due to
time limitations, the experiment was stopped for the packed storage format inversion at n = 4000.
l: PF_N_U; e: PF_N_L; V: PF_T_U; A: PF_T_L; ll: P0O_U; o: PO_L; l: PP_U; o: PP_L.

Factorization —— Intel Tigerton (MKL) Inversion —— Intel Tigerton (MKL) Solution —— Intel Tigerton (MKL)
50 200
80 1 40 :
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Fig. 13. Performance of Cholesky factorization/inversion/solution on quad-socket quad-core Intel
Tigerton computer, long real arithmetic. We used MKL-10.0.1.014 multithreaded LAPACK and
BLAS. For the solution phase, nrhs was fixed to 100 for any n. Due to time limitations, the ex-
periment was stopped for the packed storage format inversion at n = 4000. ll: PF_N_U; e: PF_N_L;
A:PF_T_U; v: PF_T_L; l: PO_U; o: PO_L; l: PP_U; o: PP_L.
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Factorization —— IBM Power 4 Factorization —— SUN UltraSPARC-IV

40

number of processors number of processors

Fig. 14. Performance in Gflop/s of Cholesky factorization on IBM Power 4 (left) and SUN
UltraSPARC-IV (right) computer, long real arithmetic, with a different number of processors, test-
ing the SMP parallelism. The implementation of PPTRF of sunperf did not show any SMP par-
allelism. UPLO = “L.” N = 5,000 (strong scaling experiment). The dashed line represents perfect
scalability from one to 15 processors. ll: PF_L; l: PO_L; l: PP_L;

9. INTEGRATION IN LAPACK

As mentioned in the introduction, as of release 3.2 (November 2008), LAPACK
supports a preliminary version of RFPF. Ultimately, the goal would be for RFPF
to support as many functionalities as full format or standard packed format do.
The 44 routines included in release 3.2 for RFPF are given in Table I. The names
for the RFPF routines follow the naming nomenclature used by LAPACK. We
have added the format description letters: PF for symmetric/Hermitian positive
definite RFPF (PO for full, PP for packed); SF for symmetric RFPF (SY for full,
SP for packed); HF for Hermitian RFPF (HE for full, HP for packed), and TF
for triangular RFPF (TR for full, TP for packed).

Currently, for the complex case, we assume that the transpose complex-
conjugate part is stored whenever the transpose part is stored in the real case.
This corresponds to the theory developed in this present article. In the future,
we will want to have the flexibility to store the transpose part (as opposed to
transpose complex conjugate) whenever the transpose part is stored in the real
case. In particular, this feature will be useful for complex symmetric matrices.

10. SUMMARY AND CONCLUSIONS

This article describes RFPF as a standard minimal full format for representing
both symmetric and triangular matrices. Hence, from a user point of view, these
matrix layouts are a replacement for both the standard formats of DLA, namely,
full and packed storage. These new layouts possess three good features: they
are efficient, they are supported by Level 3 BLAS and LAPACK full format
routines, and they require minimal storage.
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Table I. LAPACK 3.2 RFPF Routines

Functionality Routine Names and Calling Sequence

Cholesky factorization CPFTRF DPFTRF SPFTRF ZPFTRF
(TRANSR, UPLO, N, A, INFO)

Multiple solve after PFTRF CPFTRS DPFTRS SPFTRS ZPFTRS
(TRANSR, UPLO, N, NR, A, B, LDB, INFO)

Inversion after PFTRF CPFTRI DPFTRI  SPFTRI = ZPFTRI
(TRANSR, UPLO, N, A, INFO)

Triangular inversion CTRTRI DTRTRI  STRTRI = ZTRTRI
(TRANSR, UPLO, DIAG, N, A, INFO)

Sym/Herm matrix norm CLANHF DLANSF SLANSF ZLANHF
(NORM, TRANSR, UPLO, N, A, WORK)

Triangular solve CTFSM DTFSM STFSM ZTFSM

(TRANSR,SIDE,UPLO,TRANS,DIAG,M,N,ALPHA,A,B,LDB)
Sym/Herm rank-k update CHFRK DSFRK SSFRK ZHFRK
(TRANSR,UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C)

Conv. from TP to TF CTPTTF _ DTPTTF  STPTTF  ZTPTTF
(TRANSR,UPLO,N,AP,ARF,INFO)

Conv. from TR to TF CTRTTF  DTRTTF  STRTTF  ZTRTTF
(TRANSR,UPLO,N,A,LDA,ARF,INFO)

Conv. from TF to TP CTFTTP  DTFITP STFITP  ZIFTTP
(TRANSR,UPLO,N,ARF,AP,INFO)

Conv. from TF to TR CTFTTR DTFITR STFITR ZTFTTR

(TRANSR,UPLO,N,ARF,A,LDA,INFO)
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