
INITIAL INTEGRATION AND EVALUATION
OF SLATE AND STRUMPACK
Pieter Ghysels, Sherry Li

Asim YarKhan, Jack Dongarra

Introduction
The aim of the joint milestone STMS10-57 was to integrate Software for Linear Algebra Targeting Exascale
(SLATE) into the STRUctured Matrix PACKage (STRUMPACK). Two approaches were used to explore
the integration of STRUMPACK and SLATE. First, STRUMPACK developers updated their code to use
the SLATE’s C++ interface for a number of compute intensive matrix operations. Second, SLATE’s
runtime-interception scalapack_api (described later) was used to transparently route a subset of
ScaLAPACK calls to be executed by SLATE.

STRUMPACK
STRUMPACK is a library with dense and sparse linear algebra routines. STRUMPACK provides a sparse
direct solver based on a multifrontal formulation of sparse Gaussian elimination, i.e., LU factorization.
Compared to the algorithm used in SuperLU, a purely supernodal approach, the multifrontal Gaussian
elimination in STRUMPACK leads to BLAS operations on larger dense blocks, and to a simpler
communication pattern along the sparse elimination tree. For dense matrix algebra, STRUMPACK
implements hierarchical matrix representations, using the Hierarchically Semi-Separable (HSS),
Hierarchically Off-Diagonal Low-Rank (HODLR) and Block Low-Rank (BLR) formats.

SLATE
SLATE is a project that intends to provide basic dense matrix operations (e.g., matrix multiplication, rank-
k update, triangular solve), linear systems solvers, least square solvers, singular value and eigenvalue
solvers for current and future generation HPC architectures. SLATE aims to extract the full performance
potential and maximum scalability from modern, many-node HPC machines with large numbers of cores
and multiple hardware accelerators per node. As a part of SLATE’s ultimate objective to replace the
venerable Scalable Linear Algebra PACKage (ScaLAPACK) library, we are developing LAPACK and
ScaLAPACK APIs. These APIs were initially described in an ICL Technical Report (ICL-UT-18-07).

SLATE LAPACK Compatibility API
SLATE has implemented a LAPACK/BLAS compatibility API and a wrapper library, referred to as the
SLATE lapack_api. This API makes it possible for an application which uses the classic Fortran
LAPACK/BLAS calls to easily access the advantages of using SLATE.

The SLATE LAPACK/BLAS compatibility API will accept BLAS calls from a Fortran-style interface that
will then get executed using SLATE. This API is expressed by prepending a BLAS/LAPACK call with
SLATE_. A Fortran call can be replaced fairly directly. For example, DGEMM would be simply translated:

 DGEMM(transa, transb, m, n, standard parameters)

 SLATE_DGEMM(transa, transb, m, n, standard parameters)

The SLATE API maps the Fortran-style parameters as needed and call the appropriate SLATE routine.
However, some additional execution decisions need to be made that are not part of the standard API.

SLATE needs to know the execution target. The lapack_api library will set the execution target to GPU
devices if they are available, otherwise use it will use the CPUs (in HostTask mode). The execution target
can be overridden by the environment variable SLATE_TARGET.

The SLATE execution target is set in this order:

 if env SLATE_LAPACK_TARGET={HostTask,HostBatch,HostNest,Devices}, use it

 else if Devices are compiled in SLATE and available, use Devices

 else use HostTask

SLATE requires a tile size (nb) for execution. For GPU targets, the lapack_api library uses a default tile
size of 1024 and for CPU (HostTask) targets it sets a default tile size of 512. These values can overwritten
via the environment variable SLATE_NB.

 if env SLATE_LAPACK_NB=NNN is set, use NNN

 else if Target=HostTask, nb=512

 else if Target=Devices, nb=1024

For the lapack_api, SLATE does not intercept and override the original function names because SLATE
links with the default BLAS/LAPACK libraries to do node-level computation and the name symbols would
conflict. We will consider alternative interceptions methods (e.g., weak symbols with preloaded libraries)
based on the future needs of our application partners.

SLATE ScaLAPACK Compatibility API
SLATE provides a compatibility API and library for ScaLAPACK/PBLAS Fortran-style interfaces and data
layouts. This scalapack_api provides execution-time interception for routines that have been implemented
in SLATE. These calls are executed using SLATE on distributed memory nodes and can use any GPUs
available on those nodes. The transparent mapping of pre-existing ScaLAPACK/PBLAS calls to SLATE
should make it substantially easier for application developers to access SLATE functionality and adopt
SLATE usage.

In the scalapack_api library we create multiple names for each function, matching the standard Fortran
name mangling. For example, for PDGEMM we define three named functions interfaces: PDGEMM,
pdgemm, pdgemm_. These three interfaces call a SLATE routine that uses the data in the pre-existing

locations in memory. Note, there is no data copying required when using SLATE via the scalapack_api.
Other parameters required for SLATE are obtained from the ScaLAPACK call. SLATE algorithms use
tiled algorithms and the tiling is matched to the ScaLAPACK block size. Note: Users of the scalapack_api
interface should take into account that SLATE works better with larger block sizes than ScaLAPACK.

Using these three Fortran name mangling schemes allows the API to intercept calls from programs
expecting libraries that provide Fortran-style interface. To make usage transparent, we use the
LD_PRELOAD capabilities of the linker to preload this library and capture the calls before they go to
ScaLAPACK. Any functions that are not implemented in the SLATE scalapack_api simply resolve to their
ScaLAPACK implementations. The scalapack_api obtains parameters like the execution target from
environment variables.

For testing we use the testers provided within the ScaLAPACK distribution. Our testing uses a slightly
modified data file, focusing on larger problems sizes and excluding some cases that are designed to trigger
errors. Our current testing is as simple as

 cd ./scalapack/trunk/PBLAS/TIMING;

 env LD_PRELOAD=${SLATEDIR}/lib/libslate_scalapack_api.so mpirun -np 4 ./xspblas3tim

This preloading causes a subset of ScaLAPACK/PBLAS calls to execute using SLATE.

Integration and Evaluation

STRUMPACK with the SLATE C++ API
The initial integration of STRUMPACK and SLATE was done by the STRUMPACK team and required
changes in STRUMPACK to call the SLATE C++ API for matrix multiplication, LU factorization and LU
solves. However, it is to be noted that the the SLATE LU solver is still being tuned and optimized. This
first version of the STRUMPACK-SLATE integration was timed on 4 nodes of summitdev, where each
node contains 20 POWER8 cpus. The STRUMPACK example executable that we used
(testPoisson3dMPIDist 100) creates 3D k x k x k meshes where the largest dense matrices will be k^2 x
k^2. However, as the testPoisson3dMPIDist computation continues, the matrix sizes decrease and much
of the computation is done on much smaller matrices.

The initial version of the merged code
(strumpack+slate_c++:cpu_only:nb_32) uses a
ScaLAPACK tile size of 32, and the execution
took much longer than using STRUMPACK
alone (strumpack:cpu_only:nb_32); the execution
time was actually increasing as we increased the
number of nodes. Since SLATE tends to perform
better on larger tile size, we attempted to improve
performance by moving to a larger tile size of
1024 (strumpack+slate_c++:cpu_only:nb_1024).
The larger tile size did decrease the time taken but

it still lagged far behind using STRUMPACK alone. Our observation is that SLATE is not yet tuned to
perform well on the smaller matrix sizes that dominate most of this computation.

We turn to the SLATE ScaLAPACK compatibility API to capture a subset of the dense linear algebra calls
(avoiding the LU factorizations) and send the larger matrix problems to SLATE to be evaluated using
GPUs. The smaller matrix sizes are kept to be executed via standard ScaLAPACK.

STRUMPACK with ScaLAPACK compatibility API
The SLATE ScaLAPACK compatibility API can intercept ScaLAPACK function calls and create the
necessary structures to execute the calls using SLATE. For the second integration effort, we use the
unaltered STRUMPACK implementation and capture the ScaLAPACK functions via the SLATE
scalapack_api. Working with the STRUMPACK executable, we realized that it is useful to be able to
choose the functions that are intercepted and to specify the data sizes that benefit from this interception.
We will incorporate this ability as standard in SLATE after determining the appropriate way for a user give
their specifications.

We use 4 nodes on summitdev to run some timing experiments. Each node on summitdev contains 20
Power8 cpus and 4 Nvidia P100 GPUs. The experiments are executed so that each process is bound to one
GPU and 5 cpus. In earlier work we have found that this process binding configuration gives good memory
locality for local data movement and provides a high throughput rate for MPI traffic. The STRUMPACK
code is modified to use a large block-tile size of 1024 which tends to improve GPU performance. The
SLATE ScaLAPACK compatibility API was modified to constrain which calls are redirected to SLATE
GPU execution. Using the compatibility API is a matter of preloading the scalapack_api library.

 export LD_PRELOAD=$SLATE_HOME/lib/libslate_scalapack_api.so

 export SLATE_SCALAPACK_TARGET=Devices

 mpirun -n16 -a1 -c5 -g1 ./testPoisson3dMPIDist 150

The STRUMPACK example that we use
(testPoisson3dMPIDist 150) generates large
matrices on the order of 150^2 = 22500. Using
the modified SLATE ScaLAPACK
compatibility interface, we capture problems
that are considered large enough (M>8000 and
N>8000) to benefit from execution via SLATE.
The value of 8000 is currently an arbitrary
constraint, and it results in approximately 49%
of the PDGEMM calls being sent to SLATE.
Capturing just a subset of the PDGEMM calls
and sending them to be executed via SLATE on
GPUs results in a very modest time improvement
for larger problems.

There are a large number of LU factorizations in STRUMPACK that we are currently not executing via
SLATE. When SLATE has completed the optimization of LU on GPUs, these factorization can also be
handled by SLATE and we will experimentally evaluate the performance.

Summary
The initial STRUMPACK-SLATE integration experiments described here showed that SLATE needs to
substantially improve performance for small matrix sizes. The SLATE ScaLAPACK compatibility API
enabled STRUMPACK to use GPUs for execution, however an improved LU implementation should
provide more GPU based speedup. One unexpected outcome from these experiments is that we discovered
the need for changes to the SLATE ScaLAPACK API so that it can dynamically switch from executing via
SLATE or via the default ScaLAPACK implementation. These changes will soon be incorporated into
SLATE’s compatibility API’s.

