
MAGMA Embedded: Towards a Dense Linear Algebra Library
for Energy Efficient Extreme Computing

Azzam Haidar, Stanimire Tomov, Piotr Luszczek
University of Tennessee

Knoxville, TN 37916
{haidar,tomov,luszczek,dongarra}@eecs.utk.edu

Jack Dongarra
University of Tennessee, Knoxville

Oak Ridge National Laboratory, USA
University of Manchester, UK
dongarra@eecs.utk.edu

Abstract—Embedded computing, not only in large systems
like drones and hybrid vehicles, but also in small portable
devices like smart phones and watches, gets more extreme
to meet ever increasing demands for extended and improved
functionalities. This, combined with the typical constrains for
low power consumption and small sizes, makes the design of
numerical libraries for embedded systems challenging. In this
paper, we present the design and implementation of embedded
system aware algorithms, that target these challenges in the area
of dense linear algebra. We consider the fundamental problems of
solving linear systems of equations and least squares problems,
using the LU, QR, and Cholesky factorizations, and illustrate
our results, both in terms of performance and energy efficiency,
on the Jetson TK1 development kit. We developed performance
optimizations for both small and large problems. In contrast to
the corresponding LAPACK algorithms, the new designs target
the use of many-cores, readily available now even in mobile
devices like the Jetson TK1, e.g., featuring 192 CUDA cores.
The implementations presented will form the core of a MAGMA
Embedded library, to be released as part of the MAGMA
libraries.

I. INTRODUCTION
While working on high performance linear algebra libraries

such as PLASMA [28], [4] and MAGMA [1] or their runtime
systems [29] we are often reminded of the shift that happened
a few years back: the shift to the “mobile first” market
strategy [8]. It has happened for at least the two most recent
generations of processors from AMD, Intel, and NVIDIA. As
we show below, responding to that trend with the adequate
software is a challenge due to a variety of hardware design
choices that are made differently on the mobile platforms. For
example, the balance between the processor and the accelerator
is skewed, the fractions of various performance points is
drastically different, and the entire software tool chain might
be missing essential pieces. Any of these obstacles would
constitute a serious impediment but taken together, they create
an environment that requires drastic shift in numerical software
design and implementation.

In this paper, we describe a methodology we used to port an
important numerical algorithm from a server-class accelerated
system to a mobile form factor. Namely, we are interested in
the fundamental problems of directly solving a linear system
of equations, or least squares problem. The main component
of these solvers is a direct factorization, be it sparse or dense,
illustrated in Figure 1.

To provide parallelism in these solvers, the computation
can be expressed as a Directed Acyclic Graph (DAG) of
tasks with labeled edges designating data dependencies, which
naturally leads to the need to handle many linear algebra

�  LU, QR, or Cholesky
on small diagonal matrices

Sparse / Dense Matrix
System

�  TRSMs, QRs, or LUs

�  TRSMs, TRMMs

�  Updates (Schur complement)
GEMMs, SYRKs, TRMMs

DAG-based factorization Batched LA

And many other BLAS/LAPACK, e.g., for application
specific solvers, preconditioners, and matrices

Fig. 1. Direct sparse or dense factorizations—a DAG approach that needs
efficient computation of many linear algebra tasks, varying in size along the
factorization process. Thin DAG edges represent data dependencies among
individual tasks. Small data-parallel tasks can also be grouped together, in
batches, and the thick edges represent dependencies among the resulting
batched tasks.

problems of varying sizes in parallel. To provide this in
a numerical library, we must design dense linear algebra
factorizations like LU, QR, and Cholesky, and tune them for
variable size problems. Our work with vendors (through vendor
recognition centers), collaborators (from the HPC community),
and application developers has resulted in the accumulation of
expertise, technologies, and numerical software [4], [18], [28],
[20], [1], [28], [26], [27], [21], [3], [19], [9], [5], [11] that we
leverage in this paper to develop state-of-the-art dense solvers
for embedded systems. We illustrate the approach using the
QR factorization.

II. METHODOLOGY AND ALGORITHMIC DESIGN
The state-of-the-art methodology for server-class accel-

erated systems is based on hybrid algorithms that use the
DAG approach and properly schedule tasks for execution
over the available CPU and GPU hardware components [26],
[2], [6], [7], [12]. Benchmark software also uses hybridized
methods [10]. Typically, small or memory bound tasks on the
critical path of the algorithm are scheduled on the CPUs, and
large data-parallel tasks on the GPUs. This is what we denote
as the hybrid approach. While this methodology works very
well, it could have significant drawbacks when the balance
between the processor and the accelerator is skewed. A slow
CPU for example, even after tuning, can make a fast GPU
idle. For that we proposed another schema that use only the
GPU to perform either the memory bound or the compute
intensive tasks, in other term, that use only the GPU to perform
the whole computation. We have shown that both hybrid and
GPU-only high-performance linear algebra algorithms can be
designed so that the computation is performed by calls to
BLAS kernels, to the extent possible by the current BLAS
API. This is important since the use of BLAS has been crucial
for the high-performance sustainability of major numerical
libraries for decades, and therefore we can also leverage the
lessons learned from that success. However, to enable the

effective use of a BLAS based approach, there is a need to
develop highly efficient and optimized BLAS routines.

Our methodology to embedded systems, based on this
approach, but designed and tuned for a single task, is described
as follows.

A. Algorithmic Baseline
The QR factorization of an m-by-n matrix A (with mt =

m/nb and nt = n/nb) is of the form A = QR, where Q is
an m-by-m orthonormal matrix, and R is an m-by-n upper-
triangular matrix. The LAPACK routine GEQRF implements
a right-looking QR factorization algorithm, whose first step
consists of the following two phases:

1) Panel factorization: The first panel A:,1 is transformed
into an upper-triangular matrix.

a) GEQR2 computes an m-by-m Householder

matrix H1 such that HT
1 A:,1 =

(
R1,1

0

)
, and

R1,1 is an nb-by-nb upper-triangular matrix.
b) LARFT computes a block representation of

the transformation H1, i.e., H1 = I−V1T1V H
1 ,

where V1 is an m-by-nb matrix and T1 is an
nb-by-nb upper-triangular matrix.

2) Trailing submatrix update: LARFB applies the trans-
formation computed by GEQR2 and LARFT to the
submatrix A:,2:nt :(

R1,2:nt

Â

)
:= (I−V1T1V H

1)

(
A1,2:nt

A2:mt ,2:nt

)
.

Then, the QR factorization of A is computed by repeating
the same transformation to the submatrix Â and so on. The
transformations Vj are stored in the lower-triangular part of
A, while R is stored in the upper-triangular part. Additional
nb-by-nb storage is required to store Tj [25].

B. Optimized and parametrized BLAS kernels
We developed the most needed and performance-critical

Level 3 and Level 2 BLAS routines, tuned for small sizes.
Namely, we developed the gemm (general matrix-matrix mul-
tiplication), trsm (triangular matrix solver), and gemv (general
matrix-vector product) routines, as well as a number of Level
1 BLAS such as the dot product, the norm functionality, and
the scal scaling routine. There are a number of feasible design
choices for BLAS on small matrices, each best suited for
a particular case. Therefore, to capture as many of them as
possible, we designed a space for BLAS on small matrices that
includes parametrized algorithms enabling an ease of tuning
for modern and future hardware and taking into account the
matrix size. Thus, a parametrized-tuned approach can find the
optimal implementation within the confines of the said design
space.

We developed our kernel in a parametrized fashion, that
uses multiple levels of blocking, including shared memory and
register blocking, as well as double buffering techniques to
hide the data communication with the computation. This tech-
nique allowed us to optimize and tune the our BLAS routine
for differen matrix sizes — originally for Fermi GPUs [21],
and later for the Kepler GPUs. Recently, we extended it to a
small gemm and a batch of small gemms [14], [13], which
is now available through MAGMA 1.6.1 [15]. The extension
was done by autotuning the basic kernel, and, in the case of
batched execution, by adding one more thread dimension to

account for the batch count. Our goal is to develop optimized
components that can be used easily as a plug-in device routine
to provide many of the Level 3 and Level 2 BLAS routines.

In particular, let us consider the QR decomposition. We
developed the equivalent of LAPACK’s geqr2 routine to
perform the Householder panel factorizations. For a panel
of nb columns, it consists of nb steps where each step calls
a sequence of the larfg and the larf routines. At every
step (to compute one column), the larfg involves a norm
computation followed by a scal that uses the results of the
norm computation in addition to some underflow/overflow
checking. These Level 1 BLAS kernels have been developed
as device component routines to all for easy plug-in when
needed. The norm computation is a sum reduce and thus a
synchronization step. To accelerate it, we implemented a two-
layer tree reduction where, for sizes larger than 32, all 32
threads of a warp progress to do a tree reduction similar to
the MPI REDUCE operation, and the last 32 elements are
reduced by a single thread. Our parametrized technique lets
us run our autotuner and tune these kernels. As a result,
custom implementations of both larfg and the larf have been
developed. When the panel size is small enough, we use the
shared memory to load the whole panel and to perform its
computation in fast memory. For larger panel sizes, we load
only the vector that is annihilated at each step, meaning that
the norm, scal, and thus the larfg computation operate on data
in shared memory; the larf reads data from shared memory, but
writes data in main memory since it cannot fit into the shared
memory. When the panel is large, the BLAS kernel operates
using many thread-blocks and an atomic synchronization.

C. Development of GPU-only LAPACK algorithms
The development of GPU-only LAPACK algorithms and

implementations is our main example of how to use the
small BLAS for higher-level algorithms. We show an approach
based on small BLAS and architecture-specific algorithmic
improvements that overcomes the challanges for solving small-
size problems on embedded systems. Similarly to the small
BLAS, we build a design space for GPU-only LAPACK that
includes parametrized algorithms that are architecture and
matrix size aware. An autotuning approach is used to find the
best implementation within the provisioned design space.

We developed technologies for deriving high-performance
from GPU-only implementations to solve single small prob-
lems, sets of small linear algebra problems (as in LAPACK)
in parallel, as well as single large problems. Note that GPU-
only implementations have been avoided up until recently in
numerical libraries, especially for small and difficult to paral-
lelize tasks like the ones targeted by here. Indeed, hybridization
approaches were at the forefront of developing large scale
solvers as they were successfully resolving the problem by
using CPUs for the memory bound tasks [26], [2], [6], [7],
[12]. For large problems, the panel factorizations (the source
of memory bound, not easy to parallelize tasks) are always
performed on the CPU. For small problems, as we already
mentioned, this is not possible, and our experience has shown
that hybrid algorithms would not be as efficient as they are for
large problems.

1) Recursive Multilevel Nested Blocking.: The panel factor-
izations (geqr2) described above factorize the nb columns one
after another, similarly to the LAPACK algorithm. At each of
the nb steps, a rank-1 update is required to update the vectors

to the right of the factorized column i. This operation is done
by the larf kernel. Since we cannot load the entire panel into
the shared memory of the GPU, the columns to the right are
loaded back and forth from the main memory at every step
except for the very small size cases (e.g., size less than 32×8).
Thus, one can expect that this is the most time consuming part
of the panel factorization.

Our analysis using the NVIDIA Visual Profiler [22] shows
that a large fraction of even a highly optimized small-size
factorization is spent in the panels, e.g., 40% of the time
for the QR decomposition. The profiler reveals that the larf
kernel requires more than 75% of the panel time by itself. The
inefficient behavior of these routines is also due to the memory
access. To resolve this challenge, we propose to improve the
efficiency of the panel and to reduce the memory access by
using a two-level nested blocking technique as depicted in
Figure 2. First, we recursively split the panel to an acceptable
block size nb as described in Figure 2a. In principle, the panel
can be blocked recursively until a single element remains. Yet,
in practice, 2-3 blocked levels (an nb = 32 for double precision
was the best) are sufficient to achieve high performance. Then,
the routine that performs the panel factorization (geqr2) must
be optimized, which complicates the implementation. This
optimization can bring between 30% to 40% improvement
depending on the panel and the matrix size. In order to reach
our optimization goal, we also blocked the panel routine using
the classical blocking fashion to small blocks of size ib (ib = 8
was the optimized choice for double precision) as described in
Figure 2b. More than a 25% boost in performance is obtained
with this optimization.

2) Block Recursive dlarft Algorithm.: The larft is used to
compute the upper triangular matrix T that is needed by the
QR factorization in order to update either the trailing matrix
or the right hand side of the recursive portion of the QR
panel. The classical LAPACK computes T column by column
in a loop over the nb columns as described in Algorithm 1.
Such an implementation takes up to 50% of the total QR
factorization time. This is due to the fact that the kernels
needed – gemv and trmv – require implementations where
threads go through the matrix in different directions (horizontal
vs. vertical, respectively). An analysis of the mathematical
formula of computing T allowed us to redesign the algorithm
to use Level 3 BLAS and to increase the data reuse by putting
the column of T in shared memory. One can observe that
the loop can be split into two loops – one for gemv and
one for trmv. The gemv loop that computes each column of
T̂ (see the notation in Algorithm 1) can be replaced by one
gemm to compute all the columns of T̂ if the triangular upper
portion of A is zero and the diagonal is made of ones. For our
implementation, replacing a gemv loop with one gemm is
already done for the trailing matrix update in the larfb routine,
and thus can be exploited here as well. For the trmv phase,
we load the T matrix into shared memory as this allows all
threads to read/write from/into shared memory during the nb
steps of the loop. The redesign of this routine is depicted
in Algorithm 2. Since we developed a recursive blocking
algorithm, we must compute the T matrix for every level
of the recursion. Nevertheless, the analysis of Algorithm 2
leads us to conclude that the portion of the T ’s computed
in the lower recursion level are the same as the diagonal
blocks of the T of the upper level (yellow diagonal blocks

in Figure 3), and thus we can avoid their (re-)computation.
For that we modified Algorithm 2 in order to compute either
the whole T or the upper rectangular portion that is missed
(red/yellow portions in Figure 3). Redesigning the algorithm
to block the computation using Level 3 BLAS accelerated the
overall algorithm on average by about 20− 30% (depending
on various parameters).

for j ∈ {1,2, . . . ,nb} do
dgemv to compute T̂1: j−1, j = AH

j:m,1: j−1×A j:m, j

dtrmv to compute T1: j−1, j = T1: j−1,1: j−1× T̂1: j−1, j
Tj, j = τ j

Algorithm 1: Classical implementation of the dlarft
routine.

dgemm to compute T̂1:nb,1:nb = AH
1:m,1:nb

×A1:m,1:nb

load T̂1:nb,1:nb to the shared memory. for
j ∈ {1,2, . . . ,nb} do

dtrmv to compute T1: j−1, j = T1: j−1,1: j−1× T̂1: j−1, j
Tj, j = τ j

write back T to the main memory.
Algorithm 2: Block recursive dlarft routine.

3) Trading extra computation for higher performance.: The
goal here is to replace the use of low performance kernels with
higher performance ones—often for the cost of more flops,
e.g., trmm used by the larfb can be replaced by gemm. The
QR trailing matrix update uses the larfb routine to perform
A = (I−V T HV H)A. The upper triangle of V is zero with ones
on the diagonal, and also the matrix T is upper triangular. The
classical larfb uses trmm to perform the multiplication with T
and with the upper portion of V . If one can guarantee that the
lower portion of T is filled with zeroes and the upper portion of
V is filled with zeros and ones on the diagonal, then the trmm
can be replaced by gemm. Thus we implemented a GPU-only
larfb for small-size problems that uses three gemm kernels by
initializing the lower portion of T with zeros, and filling up the
upper portion of V with zeroes and ones on the diagonal. Note
that this brings 3n3

b extra operations. The benefits again depend
on various parameters, but on current architectures we observe
an average of 10% improvement, and see a trend where its
effect on the acceleration grows from older to newer systems.

III. EXPERIMENTAL RESULTS
A. Hardware platforms

In our experiments we use NVIDIA’s Jetson K1 platform
(for Tegra K1 embedded applications). It features a Kepler
GPU with 192 CUDA cores running at 0.85 GHz and a 4-
Plus-1 quad-core ARM Cortex A15 CPU at 1.5 GHz. The GPU
contributes over 300 Gflop/s worth of performance and CPU
only about 10 Gflop/s. With the factor of 30 more performance
coming from the accelerator, the balance for this mobile
platform is heavily skewed when compared with the server-
based Kepler GPUs and their CPU counterparts such as Intel
Haswell – the difference is at most 3-to-1 in favor of the
accelerator. With such a GPU-CPU performance ratio, it is
imperative to distribute the workload much differently on the
mobile platform than on the server.

P	

a	

n	

e	

L	

Trailing 	

matrix	

update	

sub panel 1a	

Factored part of A	

128	

sub trailing m
atrix 1b	

sub trailing m
atrix 2b	

sub panel 2a	

64	

32	
 32	

sub trailing m
atrix 1b	

64	

(a) Recursive nested blocking fashion.

P	

a	

n	

e	

L	

32	

done	

4	

done	

sub trailing m
atrix 	

done	

sub panel 	

8	

sub trailing m
atrix 	

sub panel 	

8	

done	

sub panel 	

4	

done	

done	

sub trailing m
atrix 	

sub panel 	

8	

8	

(b) Classical blocking fashion.
Fig. 2. The recursive two-level nested blocking fashion is used in our implementation to achieve high-performance small-size kernels.

level 2	
level 1	

level 3	

Fig. 3. The shape of the matrix T for different level of the recursion during
the QR decomposition.

For completeness, it is worth explaining the word core that
might easily become ambiguous if used interchangeably in
different context. We primarily use the word in two primary
ways: CPU core and CUDA core. The former represents an
independent processing unit, a processor of yore, that features
a complete set of circuit to issue, dispatch, execute, and retire
instructions. From the numerical software perspective, a CPU
core features 2 (Intel), 1 (ARM), half (AMD) floating-point
unit (FPU), which may feature short vector extension ,for
example, AltiVec, SSE or AVX. CUDA cores are specific
to NVIDIA GPUs and may be considered an equivalent of
single precision FPU. It is sometimes suggested that a more
appropriate equivalent of a CPU core is a GPU SMX – a
streaming multiprocessor that features many CUDA cores. In
fact, in case of the Kepler GPUs, mobile or server, a single
SMX features 192 CUDA cores.

For our energy efficiency measurements we used power and
energy estimators built into the modern hardware platforms.
In particular, on the tested CPU, an Intel Xeon E5-2690,
we used RAPL (Runtime Average Power Limiting) hardware
counters [17], [24]. Given the caveat that these counters are
only an estimate, we can report that the idle power of the
tested Sandy Bridge CPU, running at a fixed frequency of
2.6 GHz, is 20 W per socket. For the GPU measurements,
we use NVIDIA’s NVML (NVIDIA Management Library)
library [23]. NVML provides a C/C++ API – a programmatic
interface – for monitoring and managing various states within
NVIDIA Tesla-grade GPUs. On the Fermi and Kepler GPUs,

2k3k4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Matrix size

G
flo

p/
s

dgeqrf hybrid
dgeqrf native

Fig. 4. Performance comparison of hybrid CPU+GPU vs. GPU-only
approaches (QR factorization in double precision).

such as the K40c that we used in our tests, the readings are
reported to be accurate to within ±5% of the current power
draw. The idle state of the K40c GPU consumes about 20 W,
but when the GPU is initialized the power goes up to 62 W.

B. Hybrid vs. GPU-only approaches
Figure 4 shows the performance of the QR factorization

on server-class Kepler GPU paired with a server class Intel
CPU with only the latency-bound workload executing on
the CPU. For comparison, performance of double precision
matrix-matrix multiply DGEMM is highly tuned on this platform
and reaches over 1100 Gflop/s which is nearly 90% of the
peak performance of the accelerator. The difference between
the two approaches is considered to be small, it is around
100 Gflop/s. The GPU-only implementation is about 10% to
15% slower, but it does not use any CPU resources, while the
hybrid algorithm use the CPU for the panel phase. The panel
factorization consists of memory bound operations. For the
hybrid routine, it is performed on the CPU in an overlapped
fashion which mean the CPU factorize factorize the panel of
step k+1 the GPU is doing the update of step k. The cost of the
panel is hidden and we can see that the hybrid QR performance
reach very close to the one obtained by the DGEMM routine.

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

Times (sec)

Po
w

er
 (W

at
ts

)

Hybrid: total power
Hybrid: GPU power
Hybrid: CPU power
Native: total power
Native: GPU power
Native: CPU powernative: 1288 joules

hybrid: 1760 joules

Fig. 5. Comparison of the power consumption for the QR decomposition
of the GPU-only and the hybrid routine for a matrix of size 16000 in double
precision).

Therefore, it is because of the panel computation that the GPU-
only implementation cannot match the hybrid one. However,
the results shown are considered attractive, the GPU profiler
show that it is fully busy doing either the panel factorization
or the trailing matrix update.

Figure 5 shows the comparison of the power consumption
required by our two implementations of the QR decomposition.
The problem solved here is of size 16,000. The red curve
shows the power required by the hybrid CPU-GPU imple-
mentation. It includes the power of the GPU and the power
consumption of the CPU as measured by the software through
the hardware counters. Note, that the panel factorization phase
is performed by the CPU using the multithreaded DGEQRF rou-
tine form the Intel MKL [16] library on the 16 Sandy Bridge
cores while the compute intensive operations are handled by
the GPU. Here, the panel operations raise the consumption
of the CPU to about 105 W for the two sockets and about
30 W for the DRAM package making the total CPU power
reaching a level of about 135 W. The GPU operation is mainly
preoccupied by the DGEMM routine, that reaches the highest
fraction of the peak performance, and it raises the power draw
to about 225 W. The blue curve shows the power required by
the GPU-only implementation. We also included the power of
the CPUs (which are ”idles”) which is about 20 W in addition
to the DRAM power which is about 8 W. Both the panel
and the trailing matrix update phases are computed by the
GPU and we can observe the saw-like behavior of the curve.
When the GPU is working on the panel, the power goes to
around 160 W and when it performs the DGEMM, the power
goes up to about 215 W. We also illustrate the total energy
required by each approach of the QR decomposition From
Figures 4 and 5, we can compute the performance per Watt
of both implementations. Our results showed that the hybrid
implementation is able to reach about 3 Gflop/s/Watt while the
GPU-only one can reach about 4 Gflop/s/Watt.

C. Performance and energy consumption on embedded sys-
tems

Figure 6 shows the performance of the QR factorization
on the mobile development board – NVIDIA Jetson, which
combines a mobile version of the Kepler GPU with a mobile
ARM CPU. We show the performance of three different codes:
the hybrid CPU-GPU one, GPU-only, and, for comparison, raw
SGEMM performance. Of note is the performance of the hybrid
code, that might be considered a direct port of the implementa-
tion that works extremely well on server-class hybrid systems.

2k 3k 4k 6k 8k 10k
0

10

20

30

40

50

60

70

80

90

100

110

120

Matrix size

G
flo

p/
s

sgeqrf native
sgeqrf hybrid
sgemm

Fig. 6. Performance of QR factorization on a Jetson TK1 (single precision).

Minimum idle Maximum idle N = 3000 N = 4000 N = 5000 N = 6000
0

1

2

3

4

5

6

7

8

P
ow

er
 [W

]

Fig. 7. Temporal (total) power measurement on the NVIDIA Jetson board
for single precision matrix-matrix multiply (SGEMM).

This kind of port of code may be achieved with minimal effort
and the reported performance is meant to show little value of
sharing the code between the two hardware platforms. The
next curve represents performance of the specialized GPU-
only code that is meant to counteract the deficiencies of the
mobile CPU and highlight the superior performance available
from the GPU across a spectrum of workloads: latency-bound
and bandwidth-sensitve panel factorization as well as compute-
bound trailing matrix update that combines matrix-matrix
product (SGEMM) and triangular matrix product (STRSM). The
GPU-only implementation asymptotically reaches close to the
SGEMM performance which highlights the efficiency of our
kernels. The hybrid routine cannot achieve high performance,
or any reasonable performance for that matter, and in the figure
its graph is very close to the horizontal axis due to the fact
that the panel computation on the ARM Cortex A15 is very
slow and the total time becomes prohibitive and bound by the
CPU computation, which makes the overall performance close
to zero. We would like to note, that this situation could be
somewhat mitigated by a careful tuning of some of the latency-
sensitive and bandwidth-bound computational kernels for the
ARM CPU. However, with 30-fold difference in performance
between the mobile CPU and GPU, we see no prospects of
significant improvements.

D. Temporal Power Measurement
Figure 7 shows temporal power draw for the Jetson mobile

development board as measured at the DC power input. Thus
the power measurement includes everything that consumes

electricity on the board with only the power supply power
dissipation excluded.

The performance of 120 Gflop/s of SGEMM for some matrix
sizes translates to 16 Gflop/s per Watt and this counts all the
board components combined – not just the GPU.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the methodology of imple-

menting numerical linear algebra routines on the contemporary
mobile hardware platforms that feature accelerators. We have
provided sufficient evidence that the much different perfor-
mance balance between the mobile CPU and mobile GPU gives
rise to new techniques for writing and optimizing code on the
mobile parts. We show our methodology successfully applied
on the mobile development board.

ACKNOWLEDGEMENTS
This material is based upon work supported by the National

Science Foundation under Grant ACI-1339822, the Department
of Energy, and NVIDIA. The results were obtained in part with
the financial support of the Russian Scientific Fund, Agreement
N14-11-00190.

REFERENCES
[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,

H. Ltaief, P. Luszczek, and S. Tomov. Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects. J. Phys.:
Conf. Ser., 180(1), 2009.

[2] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief,
Raymond Namyst, Samuel Thibault, and Stanimire Tomov. Faster,
Cheaper, Better – a Hybridization Methodology to Develop Linear
Algebra Software for GPUs. In Wen mei W. Hwu, editor, GPU
Computing Gems, volume 2. Morgan Kaufmann, September 2010.

[3] Emmanuel Agullo, Jack Dongarra, Rajib Nath, and Stanimire Tomov.
Fully empirical autotuned qr factorization for multicore architectures.
CoRR, abs/1102.5328, 2011.

[4] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julien Langou, Piotr
Luszczek, and Stanimire Tomov. The impact of multicore on math
software. In Bo Kågström, Erik Elmroth, Jack Dongarra, and Jerzy
Wasniewski, editors, Applied Parallel Computing. State of the Art in
Scientific Computing, 8th International Workshop, PARA, volume 4699
of Lecture Notes in Computer Science, pages 1–10. Springer, 2006.

[5] C. Cao, J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov.
clmagma: High performance dense linear algebra with opencl. In The
ACM International Conference Series, Atlanta, GA, may 13-14 2013.
(submitted).

[6] Tingxing Dong, Jack Dongarra, Thomas Schulthess, Raffaele Solca,
Stanimire Tomov, and Ichitaro Yamazaki. Matrix-vector multiplication
and tridiagonalization of a dense symmetric matrix on multiple GPUs
and its application to symmetric eigenvalue problems. Parallel Comput.,
July 2012. (submitted).

[7] J. Dongarra, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and
A. YarKhan. Model-driven one-sided factorizations on multicore
accelerated systems. International Journal on Supercomputing Frontiers
and Innovations, 1(1), June 2014.

[8] Jack Dongarra and Piotr Luszczek. Anatomy of a globally recursive
embedded linpack benchmark. In HPEC, pages 1–6. IEEE, 2012.

[9] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory
Peterson, and Jack Dongarra. From CUDA to OpenCL: Towards a
performance-portable solution for multi-platform GPU programming.
Parallel Comput., 38(8):391–407, August 2012.

[10] Massimiliano Fatica. Accelerating LINPACK with CUDA on heteroge-
nous clusters. In Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU-2), pages 46–51.
ACM, New York, NY, USA, 2009. DOI 10.1145/1513895.1513901.

[11] A. Haidar, S. Tomov, J. Dongarra, R. Solca, and T. Schulthess. A
novel hybrid CPU-GPU generalized eigensolver for electronic structure
calculations based on fine grained memory aware tasks. International
Journal of High Performance Computing Applications, September 2012.

[12] Azzam Haidar, Chongxiao Cao, Asim Yarkhan, Piotr Luszczek, Sta-
nimire Tomov, Khairul Kabir, and Jack Dongarra. Unified develop-
ment for mixed multi-gpu and multi-coprocessor environments using a
lightweight runtime environment. In Proceedings of the 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, IPDPS
’14, pages 491–500, Washington, DC, USA, 2014. IEEE Computer
Society.

[13] Azzam Haidar, Piotr Luszczek, Stanimire Tomov, and Jack Dongarra.
Optimization for performance and energy for batched matrix computa-
tions on gpus. In 8th Workshop on General Purpose Processing Using
GPUs (GPGPU 8) co-located with PPOPP 2015, PPoPP 2015, San
Francisco, CA, 02/2015 2015. ACM, ACM.

[14] Azzam Haidar, Piotr Luszczek, Stanimire Tomov, and Jack Dongarra.
Towards batched linear solvers on accelerated hardware platforms. In
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, San Francisco, CA,
02/2015 2015. ACM, ACM.

[15] Matrix algebra on GPU and multicore architectures (MAGMA),
MAGMA Release 1.6.1, 2015. Available at http://icl.cs.utk.edu/magma/.

[16] Intel Math Kernel Library, 2014. Available at http://software.intel.com/
intel-mkl/.

[17] Intel R© 64 and IA-32 architectures software developer’s manual, July
20 2014. Available at http://download.intel.com/products/processor/
manual/.

[18] Y. Li, J. Dongarra, and S. Tomov. A note on auto-tuning GEMM
for GPUs. In Proceedings of the 2009 International Conference on
Computational Science, ICCS’09, Baton Roube, LA, May 25-27 2009.
Springer.

[19] R. Nath, S. Tomov, T. Dong, and J. Dongarra. Optimizing symmetric
dense matrix-vector multiplication on GPUs. In Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, nov 2011.

[20] R. Nath, S. Tomov, and J. Dongarra. Accelerating GPU kernels
for dense linear algebra. In Proceedings of the 2009 International
Meeting on High Performance Computing for Computational Science,
VECPAR’10, Berkeley, CA, June 22-25 2010. Springer.

[21] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An improved magma
gemm for fermi graphics processing units. Int. J. High Perform.
Comput. Appl., 24(4):511–515, November 2010.

[22] Nvidia visual profiler.
[23] NVIDIA management library, 2014. Available at https://developer.

nvidia.com/nvidia-management-library-nvml.
[24] Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Ananthakrishnan,

and Eliezer Weissmann. Power-management architecture of the intel
microarchitecture code-named sandy bridge. IEEE Micro, 32(2):20–27,
March/April 2012. ISSN: 0272-1732, 10.1109/MM.2012.12.

[25] R. Schreiber and C. Van Loan. A storage efficient WY representation for
products of Householder transformations. SIAM J. Sci. Stat. Comput.,
10(1):53–57, 1989.

[26] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra
for hybrid GPU accelerated manycore systems. Parellel Comput. Syst.
Appl., 36(5-6):232–240, 2010.

[27] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense linear algebra
solvers for multicore with GPU accelerators. In Proc. of the IEEE
IPDPS’10, pages 1–8, Atlanta, GA, April 19-23 2010. IEEE Computer
Society. DOI: 10.1109/IPDPSW.2010.5470941.

[28] Stanimire Tomov and Jack Dongarra. Scientific Computing with
Multicore and Accelerators, chapter Dense Linear Algebra for Hybrid
GPU-based Systems. Chapman and Hall/CRC, 2010.

[29] Asim YarKhan, Jakub Kurzak, and Jack Dongarra. QUARK Users’
Guide: QUeueing And Runtime for Kernels. University of Tennessee
Innovative Computing Laboratory Technical Report ICL-UT-11-02,
2011.

http://icl.cs.utk.edu/magma/
http://software.intel.com/intel-mkl/
http://software.intel.com/intel-mkl/
http://download.intel.com/products/processor/manual/
http://download.intel.com/products/processor/manual/
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
http://dx.doi.org/10.1109/MM.2012.12

	Introduction
	Methodology and Algorithmic Design
	Algorithmic Baseline
	Optimized and parametrized BLAS kernels
	Development of GPU-only LAPACK algorithms
	Recursive Multilevel Nested Blocking.
	Block Recursive dlarft Algorithm.
	Trading extra computation for higher performance.

	Experimental Results
	Hardware platforms
	Hybrid vs. GPU-only approaches
	Performance and energy consumption on embedded systems
	Temporal Power Measurement

	Conclusions and Future Work
	References

