Publications

Export 1298 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Danalis, A., H. Jagode, and J. Dongarra, PAPI: Counting outside the Box , Barcelona, Spain, 8th JLESC Meeting, April 2018.
Danalis, A., H. Jagode, H. Hanumantharayappa, S. Ragate, and J. Dongarra, Counter Inspection Toolkit: Making Sense out of Hardware Performance Events,” 11th International Workshop on Parallel Tools for High Performance Computing, Dresden, Germany, Cham, Switzerland: Springer, February 2019. DOI: 10.1007/978-3-030-11987-4_2  (216.39 KB)
Danalis, A., H. Jagode, G. Bosilca, and J. Dongarra, PaRSEC in Practice: Optimizing a Legacy Chemistry Application through Distributed Task-Based Execution,” 2015 IEEE International Conference on Cluster Computing, Chicago, IL, IEEE, September 2015.  (1.77 MB)
Danalis, A., H. Jagode, and J. Dongarra, Software-Defined Events through PAPI for In-Depth Analysis of Application Performance , Basel, Switzerland, 5th Platform for Advanced Scientific Computing Conference (PASC18), July 2018.
Danalis, A., G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra, PTG: An Abstraction for Unhindered Parallelism,” International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing (WOLFHPC), New Orleans, LA, IEEE Press, November 2014.  (480.05 KB)
Danalis, A., H. Jagode, T. Herault, P. Luszczek, and J. Dongarra, Software-Defined Events through PAPI,” 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, IEEE, May 2019. DOI: 10.1109/IPDPSW.2019.00069  (446.41 KB)
Danalis, A., H. Jagode, and J. Dongarra, Does your tool support PAPI SDEs yet? , Tahoe City, CA, 13th Scalable Tools Workshop, July 2019.  (3.09 MB)
Danalis, A., H. Jagode, and J. Dongarra, PAPI's new Software-Defined Events for in-depth Performance Analysis , Dresden, Germany, 13th Parallel Tools Workshop, September 2019.  (3.14 MB)
Danalis, A., H. Jagode, D. Barry, and J. Dongarra, Understanding Native Event Semantics , Knoxville, TN, 9th JLESC Workshop, April 2019.  (2.33 MB)
Davis, J., T. Gao, S. Chandrasekaran, H. Jagode, A. Danalis, P. Balaji, J. Dongarra, and M. Taufer, Characterization of Power Usage and Performance in Data-Intensive Applications using MapReduce over MPI,” 2019 International Conference on Parallel Computing (ParCo2019), Prague, Czech Republic, September 2019.
Demmel, J., J. Dongarra, J. Langou, J. Langou, P. Luszczek, and M. Mahoney, Prospectus for the Next LAPACK and ScaLAPACK Libraries: Basic ALgebra LIbraries for Sustainable Technology with Interdisciplinary Collaboration (BALLISTIC),” LAPACK Working Notes, no. 297, ICL-UT-20-07: University of Tennessee.  (1.41 MB)
Deshmukh, S., R. Yokota, and G. Bosilca, Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD, and Fujitsu Processors,” ACM Transactions on Mathematical Software, vol. 49, issue 3, pp. 1 - 29, September 2023. DOI: 10.1145/3595178
Deshmukh, S., R. Yokota, G. Bosilca, and Q. Ma, O(N) distributed direct factorization of structured dense matrices using runtime systems,” 52nd International Conference on Parallel Processing (ICPP 2023), Salt Lake City, Utah, ACM, August 2023. DOI: 10.1145/3605573.3605606
Donfack, S., S. Tomov, and J. Dongarra, Dynamically balanced synchronization-avoiding LU factorization with multicore and GPUs,” Fourth International Workshop on Accelerators and Hybrid Exascale Systems (AsHES), IPDPS 2014, May 2014.  (490.08 KB)
Donfack, S., J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek, and I. Yamazaki, A Survey of Recent Developments in Parallel Implementations of Gaussian Elimination,” Concurrency and Computation: Practice and Experience, vol. 27, issue 5, pp. 1292-1309, April 2015. DOI: 10.1002/cpe.3306  (783.45 KB)
Dong, T., A. Haidar, P. Luszczek, S. Tomov, A. Abdelfattah, and J. Dongarra, MAGMA Batched: A Batched BLAS Approach for Small Matrix Factorizations and Applications on GPUs,” Innovative Computing Laboratory Technical Report, no. ICL-UT-16-02: University of Tennessee, August 2016.  (929.79 KB)
Dong, T., V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra, Hydrodynamic Computation with Hybrid Programming on CPU-GPU Clusters,” University of Tennessee Computer Science Technical Report, no. ut-cs-13-714, July 2013.  (866.68 KB)
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, Optimizing the SVD Bidiagonalization Process for a Batch of Small Matrices,” International Conference on Computational Science (ICCS 2017), Zurich, Switzerland, Procedia Computer Science, June 2017. DOI: 10.1016/j.procs.2017.05.237  (364.95 KB)
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, Accelerating the SVD Bi-Diagonalization of a Batch of Small Matrices using GPUs,” Journal of Computational Science, vol. 26, pp. 237–245, May 2018. DOI: 10.1016/j.jocs.2018.01.007  (2.18 MB)
Dongarra, J., D. Gannon, G. Fox, and K. Kennedy, The Impact of Multicore on Computational Science Software,” CTWatch Quarterly, vol. 3, issue 1, February 2007.
Dongarra, J., M. Gates, J. Kurzak, P. Luszczek, and Y. Tsai, Autotuning Numerical Dense Linear Algebra for Batched Computation With GPU Hardware Accelerators,” Proceedings of the IEEE, vol. 106, issue 11, pp. 2040–2055, November 2018. DOI: 10.1109/JPROC.2018.2868961  (2.53 MB)
Dongarra, J., I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Hogg, P. Valero Lara, P. Luszczek, M. Zounon, et al., Batched BLAS (Basic Linear Algebra Subprograms) 2018 Specification , July 2018.  (483.05 KB)
Dongarra, J., S. Gottlieb, and W. T. Kramer, Race to Exascale,” Computing in Science and Engineering, vol. 21, issue 1, pp. 4-5, March 2019. DOI: 10.1109/MCSE.2018.2882574  (106.97 KB)

Pages