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Abstract: The convergence of several unprecedented changes, including formidable new system design
constraints and revolutionary levels of heterogeneity, has made it clear that much of the essential software
infrastructure of computational science and engineering is, or will soon be, obsolete. Math libraries have
historically been in the vanguard of software that must be adapted first to such changes, both because these
low-level workhorses are so critical to the accuracy and performance of so many different types of applica-
tions, and because they have proved to be outstanding vehicles for finding and implementing solutions to the
problems that novel architectures pose. Under the Basic ALgebra LIbraries for Sustainable Technology with
Interdisciplinary Collaboration (BALLISTIC) project, the principal designers of the Linear Algebra PACK-
age (LAPACK) and the Scalable Linear Algebra PACKage (ScaLAPACK), the combination of which is
abbreviated Sca/LAPACK, aim to enhance and update these libraries for the ongoing revolution in processor
architecture, system design, and application requirements by incorporating them into a layered package of
software components—the BALLISTIC ecosystem—that provides users seamless access to state-of-the-art
solver implementations through familiar and improved Sca/LAPACK interfaces.

The set of innovations and improvements that will be made available through BALLISTIC is the result
of a combination of inputs from a variety of sources: the authors’ own algorithmic and software research,
which attacks the challenges of multi-core, hybrid, and extreme-scale system designs; extensive interactions
with users, vendors, and the management of large high-performance computing (HPC) facilities to help
anticipate the demands and opportunities of new architectures and programming languages; and, finally,
the enthusiastic participation of the research community in developing and offering enhanced versions of
existing dense linear algebra software components. Aiming to help applications run portably at all levels
of the platform pyramid, including in cloud-based systems, BALLISTIC’s technical agenda includes: (1)
adding new functionality requested by stakeholder communities; (2) incorporating vastly improved numerical
methods and algorithms; (3) leveraging successful research results to transition Sca/LAPACK (interfaces)
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to multi-core and accelerator-enabled versions; (4) providing user-controllable autotuning for the deployed
software; (5) introducing new interfaces and data structures to increase ease of use; (6) enhancing engineering
for evolution via standards and community engagement; and (7) continuing to expand application community
outreach. Enhanced engineering will also help keep the reference implementation for Sca/LAPACK efficient,
maintainable, and testable at reasonable cost in the future.

The Sca/LAPACK libraries are the community standard for dense linear algebra. They have been adopted
and/or supported by a large community of users, computing centers, and HPC vendors. Learning to use
them is a basic part of the education of a computational scientist or engineer in many fields and at many
academic institutions. No other numerical library can claim this breadth of integration with the community.
Consequently, enhancing these libraries with state-of-the-art methods and algorithms and adapting them for
new and emerging platforms (reaching up to extreme scale and including cloud-based environments) is set to
have a correspondingly large impact on the research and education community, government laboratories, and
private industry.

1 Introduction
The Linear Algebra PACKage (LAPACK) and the Scalable Linear Algebra PACKage (ScaLAPACK), referred
to in combination as Sca/LAPACK, are community standards for dense linear algebra and have been adopted
and/or supported by a large community of users, computing centers, and high-performance computing (HPC)
vendors. However, the convergence of several radical changes in microprocessor and system design has, un-
fortunately, also rendered most legacy software infrastructure—including numerical libraries—obsolete [1–4].
The Basic ALgebra LIbraries for Sustainable Technology with Interdisciplinary Collaboration (BAL-
LISTIC) project aims add these capabilities to Sca/LAPACK to provide legacy users with seamless access to
the appropriate implementations of state-of-the-art solvers without the user having to learn the details of a
new library interface.

Figure 1: The BALLISTIC software ecosystem: BALLIS-
TIC software within the context of applications, libraries,
and environments it supports and the hardware technologies
it must exploit.

Accordingly, BALLISTIC will create a layered
package of software components that is capable of
running at every level of the platform deployment
pyramid and achieve three complementary objec-
tives: (1) deliver seamless access to the most up-
to-date algorithms, numerics, and performance via
familiar Sca/LAPACK interfaces, wherever possible;
(2) make advanced algorithms, numerics, and perfor-
mance capabilities available through new interface
extensions, wherever necessary; and (3) provide a
well-engineered conduit through which new discov-
eries at the frontiers of research in these areas can
be channeled as quickly as possible to all applica-
tion communities that depend on high-performance
linear algebra libraries.

Building on a community engagement effort that
we plan to replicate in BALLISTIC, we have identi-
fied the improvements and innovations that we will
include in the project by combining input from various sources: (1) the results (including designs and well-
tested prototypes) of our own algorithmic and software research agenda, which has targeted multi-core, hybrid,
and extreme-scale system architectures; (2) extensive and ongoing interactions with users, vendors, and the
managers of large National Science Foundation (NSF) and US Department of Energy (DOE) supercomputing
facilities to help anticipate the demands and opportunities of new architectures and modern programming
languages; (3) through a survey of the Sca/LAPACK user base [5] and through cross-disciplinary engage-
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ment with other areas of computer science and engineering that have helped us anticipate the demands and
opportunities of new architectures and programming models; and from (4) the enthusiastic participation
of the research community in developing and offering enhanced versions of existing Sca/LAPACK codes.
Indeed, regarding item (4), papers proposing new algorithms typically compare their performance with that
of Sca/LAPACK, and, over the years, several researchers have developed better algorithms that they would
like to provide to us. In some cases, they have even done the same level of careful software engineering and
testing that we insist on; in other cases, we must do this; and in yet other cases, much of the mathematical
development remains. The opportunity to harvest this bounty of good ideas (and free labor) is not to be
missed, and the plan we developed for BALLISTIC incorporates this input.

1.1 Overview of Projected Contributions

Building on this community input, we expect that the BALLISTIC project will make contributions to the
whole spectrum of innovation—from concept to application. It is necessary, on the one hand, to develop
new ideas to revolutionize the underlying numerical methods and algorithms. Equally important, however, is
the need to implement the numerical algorithms in software and integrate them into real-world applications.
Indeed, only algorithms implemented in new software and integrated into real-world applications can have
any impact on the use of the extreme-scale HPC systems of the future. Hence, a project of this magnitude
must ambitiously attempt to contribute from concept to application. To make such a feat possible, the project
needs to be limited to a set of fundamental operations that are widely used in practice. BALLISTIC has been
designed in precisely this way. In particular, BALLISTIC has a focus on developing new ideas related to dense
and banded linear systems, least squares problems, and eigenvalue solvers into reusable software. Finally,
the results obtained from these developments will be integrated into a number of challenging real-world
applications by our application colleagues. In this way, BALLISTIC will develop new ideas and put them to
use in real applications within a very short span.

Targeting the scientific community in general, and the NSF community in particular, the technical focus
of our efforts include:
(1) science-driven development based on established collaborations (§2.1)
(2) adding new functionality requested by users and stakeholder communities to BALLISTIC (e.g., new

mathematical functions); (§2.2)
(3) incorporating vastly improved numerical methods and algorithms (these could be new algorithms for

existing mathematical functions); (§2.3)
(4) providing user-controllable autotuning capability for the deployed software; (§2.4)
(5) enhancing and maintaining collaborations with academia and industry (§2.5)
(6) continuing to expand interdisciplinary collaborations. (§2.6)
(7) enhancing engineering for evolution and growth via standards and community engagement; (§2.7)
(8) leveraging successful research (e.g., in Parallel Linear Algebra Software for Multi-core Architectures

[PLASMA] [6], the Matrix Algebra on GPU and Multi-core Architectures [MAGMA] library [7], and
Software for Linear Algebra Targeting Exascale [SLATE] [8]) to transition Sca/LAPACK (interfaces) to
multi-core and off-load, accelerator-enabled versions; (§2.8) and

(9) introducing new interfaces and data structures that make using the library easier (§2.9).
Enhanced engineering will also help us maintain the reference implementation for Sca/LAPACK, thereby
keeping the substantial code base efficient, maintainable, and testable at a reasonable cost in the future.

The BALLISTIC project, through the leading-edge research it channels into its software deliverables,
will lead to the introduction of tools that will simplify the transition to the next generation of extreme-scale
computer architectures. The main impact of the project will be to develop, push, and deploy software into
the scientific community to make it competitive on a world-wide scale and to contribute to standardization
efforts in the area.
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2 Proposed Work
BALLISTIC will transfer the research and development that went into our Sca/LAPACK, MAGMA,
PLASMA, and SLATE dense linear algebra libraries and engineer them specifically for HPC and cloud-based
environments. Applications that currently require any of these libraries will be able to seamlessly replace them
with BALLISTIC. We will provide routines for solving systems of linear equations, least-squares problems,
symmetric and non-symmetric eigenvalue problems, and singular-value problems. In all areas, similar func-
tionality will be provided for real and complex matrices in both single and double precision. New precisions
(lower and higher) will be added to support specific needs of some new applications. Mixed-precision,
iterative-refinement solvers will be available along with explicit matrix inversion routines.

To accomplish the above, our main objectives will be to (1) maintain and evolve the existing Sca/LAPACK
software base; (2) develop novel software that exposes as much parallelism as possible, exploits heterogeneity,
avoids communication bottlenecks, and helps meet emerging power constraints; (3) explore advanced
scheduling strategies and runtime systems, focusing on the extreme scale and strong scalability in multi/many-
core and hybrid environments; and (4) design and evaluate novel strategies and software support for both
offline and online autotuning.

Supported architectures will include multi-core CPUs and GPUs and extensions for cloud-based environ-
ments. Currently, different architectures are supported through different libraries. For example, LAPACK and
PLASMA are for shared-memory multi-core systems; MAGMA is for NVIDIA GPUs, with a Heterogeneous-
Compute Interface for Portability (HIP) port in progress for AMD GPUs; and ScaLAPACK and SLATE are
for distributed-memory systems. BALLISTIC will unify support for these architectures into a single package.
The BALLISTIC software stack, as we envision it in this context, is illustrated in Figure 1.

In summary, the proposed library will: (1) use the same calling sequence as Sca/LAPACK. (2) “Under the
hood,” the routines will decide when to use existing Sca/LAPACK software or when to switch to “modern”
implementations: (a) the user will be notified of a switch in routines via a flag; (b) the user can override the
switch via a flag; (c) the decision to change the underlying software invocation will be made based on the
size, architecture, and estimated time to solution; and (d) BALLISTIC will draw on PLASMA, MAGMA,
and SLATE routines if they provide the best fit, which (i) may require data motion to use the “best fit,”
and (ii) data motion may be taken into consideration when making the decision. (3) The user can call
the architecture-specific routines directly and bypass the legacy interface. (4) We will update the existing
Sca/LAPACK routines to the state of the art to enhance numerics where appropriate. (5) Finally, we will add
additional functionality to the existing Sca/LAPACK libraries, where the state of the art has changed.

The validation and dissemination of results will be done by maintaining and integrating new software
solutions into challenging scientific applications in computational science domains. A number of leading
application groups have agreed to collaborate in this effort. The deliverables also include a sustainable set of
methods and tools for cross-cutting issues, such as scheduling and autotuning, packaged into open-source
library modules.

BALLISTIC’s plan to overhaul the Sca/LAPACK software framework is split into seven thrusts outlined
in Section 1.1. The individual tasks corresponding to the thrusts are detailed throughout this section. These
tasks will update the Sca/LAPACK numerics and algorithmic foundations to accommodate multi-core and
hybrid architectures and allow for scalability, portability, high performance, and transparency for existing and
future users. The tasks are organized to be roughly orthogonal. For example, a new mathematical function
may require a different algorithm on each target architecture with its own corresponding performance tuning,
interfaces, and software engineering infrastructure. This naturally leads to a very large number of possible
tasks. This motivates us to: (1) reuse as much infrastructure as possible; (2) prioritize the many possible tasks
by engaging with the user community; and (3) encourage the community to make contributions.
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2.1 Science-Driven: Application Domains Benefiting from BALLISTIC Technology

Dense linear systems are found in many applications, including airplane wing design, radar cross-section
studies, molecular dynamics, electronic structure calculations, cloud computing, and machine learning. See
§2.6 for more details about some of our close collaborators and outreach to other communities.

2.1.1 Software libraries that use LAPACK. Many software libraries require an explicit link to an
LAPACK-interface library. Examples include (a) high-level interfaces: Armadillo [9], blaze [10], MATLAB,
NumPy [11], and R [12]; (b) solvers: Hypre [13], MUMPS [14], PETSc [15], SuperLU [16], and Trilinos [17];
(c) electronic-structure packages: ABINIT [18], Quantum ESPRESSO [19], and VASP [20]; and (d) finite
element packages: deal.II [21] (2007 Wilkinson Prize for Numerical Software) and OpenSees [22].

2.2 Innovation with New Algorithms, Functionality, and Approaches

2.2.1 Add new algorithmic functionality to BALLISTIC. Requests for new functionality fall into three
categories: (1) new mathematical functions, (2) new variants of existing functions, and (3) functionality
present in LAPACK but missing from our other libraries. We consider these in turn as subtasks below.

2.2.2 Add new mathematical functions. We will integrate new algorithms as they become available. We
have integrated the following new functionalities: (1) in LAPACK 3.9.0 (Nov 2019), we integrated QR-
preconditioned singular value decomposition (SVD), Householder reconstruction; (2) in LAPACK 3.8.0
(Nov 2017), we integrated 2-stage Aasen tridiagonalization; (3) in LAPACK 3.7.0 (Dec 2016), we integrated
TSQR and related functions, Aasen tridiagonalization, new data structure for Bunch-Kaufman and Rook-
pivoting, 2-stage tridiagonalization for eigenproblem, and improved complex Jacobi SVD; (4) in LAPACK
3.6.1 (June 2016), we integrated the new blocked-back transformation for the non-symmetric eigenvalue
problems [23]; (5) in LAPACK 3.6.0 (Nov 2015), we integrated the new blocked Hessenberg-triangular
reduction routines from Kågström et al. [24] and Jacobi SVD [25, 26]; (6) in LAPACK 3.5.0 (Nov 2013),
we integrated the rook pivoting LDLT factorization from Ashcraft et al. [27]; (7) in LAPACK 3.4.0 (Nov
2011), we integrated TPQRT and GEQRT3 [28]; and (8) in LAPACK 3.3.0 (Nov 2010), we integrated the
new CS decomposition from Sutton [29]. We strive for a short turnaround from research to software by
ensuring community involvement. In general, the authors of the new algorithm will contribute their research
code, and others will turn them into robust software. Below, we list algorithms that we plan to integrate into
BALLISTIC—some are recent discoveries, while others are older requests.
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Figure 2: Preliminary scalability results of a
new randomized QR algorithm with column
pivoting [30, 31] implemented in ScaLAPACK.
The new algorithm (orange) is much faster and
scales much better than our current PDGEQPF
and PDGEQP3. It scales as well and is almost
as fast as QR without pivoting (red).

2.2.3 Rank-revealing factorizations. The “gold standard” of
such factorizations is the (truncated) SVD, which is either too
expensive for many big-data applications or does not meet the
needs of users who prefer an “interpolative decomposition”
(sometimes called CX or CUR decompositions [32, 33]) that
factors the matrix A = CX, where C is a subset of the columns
of A. In either case, the performance goal, for matrices of low-
rank r � n = #cols ≤ m = #rows, is to perform O(rmn)
floating point operations per second (FLOP/s) while minimizing
communication (discussed in more detail below). A variety of
algorithms have been proposed for these factorizations—both
deterministic and randomized [30, 32, 34, 35]—that exhibit
various trade-offs between performance and the quality of the
factorization (Figure 2). We will decide which of these is most
important and should be implemented first.

2.2.4 Other randomized algorithms. We will also incorpo-
rate the functionality underlying recent advances in Random-
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ized Numerical Linear Algebra (RandNLA) [34, 36] to enable users to build future RandNLA methods
directly on our code. Given an m× n matrix A as input, existing RandNLA algorithms use an approximate
matrix-matrix multiplication of the form AΩ as a primitive, where Ω is an n× ` sketching or projection
matrix, and ` is an input parameter. If A is structured in such a way that an arbitrary matrix can be applied to
it quickly, then Ω can consist of Gaussian/normal random variables. If A is arbitrary, then Ω is typically
either (1) a Hadamard-based orthogonal transformation, to which fast Fourier techniques can be applied; (2) a
Rademacher-based random projection, which exploits discrete random variables; or (3) a CountSketch-based
random projection, which exploits structured random variables to achieve enhanced sparsity. Our focus
will be two-fold: first, we will provide implementations of core primitives from RandNLA; and second, we
will expose the appropriate information to the user to facilitate the diagnosis of potential failures caused by
randomness. For the former focus, where a high-quality form (e.g., Rademacher-based and CountSketch-
based sketches) is unavailable, we will provide implementations of these random projections. For the latter
focus, we will exploit the fact that there are two main use cases for RandNLA methods. The first is a
“sketch and solve” paradigm, in which there is a non-negligible chance of failure due to randomness in the
algorithm; here, we will expose information to the user to enable diagnosis. The second is a “sketch and
precondition” paradigm, in which the random sketch is used as a preconditioner, and thus the algorithms
(e.g., Blendenpik [37] and LSRN [38]) tend to be more traditional and more resistant to randomness-induced
failure. We will use these primitives in Section 2.3.5.

2.2.5 Low-rank updates. There are well-known algorithms that can take a one-sided matrix factorization
(e.g., LU, Cholesky, QR) of a matrix A and quickly compute the corresponding factorization of the matrix
A + B, where B has low-rank r, with cost O(rmn). These were requested recently.

2.3 Incorporating Improved Functionality to BALLISTIC.

We will incorporate improved variants of existing routines based on research results and reviewing/revising
existing implementations as described in this section.

2.3.1 Communication-avoiding methods based on our optimality results. In [39], which earned a SIAM
best paper award for linear algebra, we extended known communication lower bounds for O(n3) dense
sequential [40] and parallel [41] matrix multiplication to all direct linear algebra. This includes solving linear
systems, least squares, eigenvalue problems, and SVD and the sequences of such operations for dense or
sparse matrices on sequential or parallel machines. In another award-winning paper, [42, 43], we extended
these lower bounds to Strassen-like algorithms (see also [44]). Given these lower bounds, we asked whether
the current algorithms in Sca/LAPACK attained them, and in most cases they did not [39, Section 6], not even
for parallel matrix multiplication. This led us to systematically invent new communication-avoiding (CA)
algorithms that attain these lower bounds and can provide large speedups. These algorithms are described
in a long sequence of papers on dense linear algebra algorithms for the Basic Linear Algebra Subprograms
(BLAS), linear systems, least squares problems, eigenvalue problems, and SVD [45–69], as well as sparse-
direct linear algebra [70], sparse-iterative linear algebra [71–79], tensor contractions [80–82], and graph
theory [83]. We address both homogeneous and heterogeneous parallel machines in [58, 84–88].

2.3.2 Recursive algorithms. In dense linear algebra, recursive algorithms are communication avoiding
by nature and enable oblivious cache efficiency [89]. Recursive algorithms are of significant interest, and
we have already released three recursive algorithms in LAPACK, including Recursive LU (LAPACK 3.2,
2008), Recursive QR (LAPACK 3.4, 2011), and Recursive Cholesky (LAPACK 3.6, 2015). Recent work [90]
also stresses the importance of recursive algorithms in dense linear algebra, and, as part of our work in
BALLISTIC, we plan to include more recursive algorithms in LAPACK. The first step would be to rewrite
some of the BLAS functionalities and then move on to inversion subroutines, LDLT, and Householder
reflector application subroutines. In [69], we proved that cache-oblivious algorithms cannot be write avoiding,
so they may not be suitable for emerging nonvolatile memory technologies, where writes are much more
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expensive than reads. For this, we will need to implement new algorithms like those in [69]. So, while
recursive algorithms will not always be the best solution, they are a good solution in some important situations.

2.3.3 Reduction to tridiagonal and biadiagonal. The most time-consuming phase of eigensolvers for
dense hermitian matrices involves a reduction of the input matrix to tridiagonal form. ELPA [91] implements
a two-step reduction that is efficient for large matrices and core counts. In turn, EigenEXA [92] implements
a reduction to pentadiagonal form and applies a modified version of divide-and-conquer [93]. We plan to
explore ideas introduced in [61] for band reduction to improve the performance of our parallel eigensolvers.

2.3.4 Small bulge multi-shift QZ algorithm. The QR algorithm is useful for computing the Schur form of
a nonsymmetric matrix, which in turn is useful for computing the eigen decomposition of a nonsymmetric
matrix, which is the algorithm behind Matlab’s eig(A) command. In LAPACK 3.1 (2006), we released a
new QR algorithm with a small bulge multi-shift and early aggressive deflation strategy following the work
of Braman, Byers, and Mathias [94, 95]. This algorithm provides a major speedup to the QR algorithm
for computing the eigenvalues of a nonsymmetric matrix. Kågström and Kressner [96] presented a similar
improvement for the QZ algorithm. The QZ algorithm is useful for computing the generalized Schur form
of a nonsymmetric pencil, which in turn is useful for computing the eigen decomposition of a generalized
nonsymmetric pencil, which is the algorithm behind Matlab’s eig(A,B) command. As part of our proposed
work, we plan to write a QZ algorithm with a small bulge multi-shift and early aggressive deflation.

2.3.5 Randomized Numerical Linear Algebra (RandNLA). RandNLA is an area, described as “arguably
the most exciting and innovative idea to have hit linear algebra in a long time” [37], that exploits randomness
for the development of improved matrix algorithms for problems like least-squares regression and low-rank
matrix approximation [36]. Implementations of these algorithms can beat LAPACK in wall-clock time [37],
and the randomness has also been used to obtain improved communication properties [38]. As part of our
proposed work, we plan to incorporate recent developments from RandNLA to improve the performance of
our core algorithms for least-squares and low-rank matrix approximation, building on our randomization
developments in Section 2.2.

2.4 Autotuning Facilities

BALLISTIC’s autotuning efforts will expand on our ongoing work to build the GPTune autotuner [97],
which is based on machine learning—specifically multitask and transfer learning. GPTune is designed to
tune codes as “black-boxes,” running them for carefully chosen tuning parameter values and building a
performance model based on measured runtimes that can then be optimized; and it can also be guided by
existing (approximate) performance models. We have achieved a performance improvement of up to 1.5×
over the existing Opentuner [98] and HpBandSter [99] autotuners for tuning ScaLAPACK’s PDGEQRF
on the Edison supercomputer. Our Python interface also enables easy use of these autotuners, in case one
is better than another. The clear separation of the libraries and the autotuner will also enable others (e.g.,
vendors) to develop their own autotuners without the need to augment the libraries’ codes. We plan to use
autotuning to improve performance, and performance improvement over previously developed software and
packages will be one of our metrics in determining and demonstrating that the software being developed has
been an improvement over other software packages.

2.5 Close Collaboration Among Stakeholders: Academia and Industry

2.5.1 Engaging the community and providing leadership on standards. As noted in Section 1, the
authors have a strong track record of reaching out to, and receiving the input from, various stakeholders in the
success of their software. This project will energetically continue that tradition. Our work with the community
to establish new standards deserves special attention. Because of the velocity of change in both hardware and
software, the field of numerical libraries has historically received strong benefits from adopting standards.
Therefore, one of BALLISTIC’s objectives is to promote the creation, in a fast and flexible way, of standards
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related to the project through close collaboration between the project partners, other prominent research
groups, and industry leaders. Accordingly, we plan to engage with the stakeholder community in community-
based standardization efforts—specifically to formulate requirements for specialized high-performance linear
algebra kernels for small matrices (Batched BLAS) for heterogeneous systems, which would help a variety of
emerging data-intensive applications. In conjunction with our application collaborators, we will work with
hardware vendors and seek other agency funding to support the workshops required to create a new standard
API for Batched BLAS. Also, the standardization efforts will extend to runtime system interoperability issues
and the interface to autotuning frameworks.

2.5.2 Groups that provide “improved” (sometimes proprietary) versions of LAPACK. Various groups
provide improved versions of LAPACK or at least “binaries” for easy installation. In this category, we
include IBM ESSL, Intel MKL, Cray LibSci, Debian, Cygwin, Red Hat/Fedora, and the Apple Accelerate
Framework. We collaborate with some of these groups, helping them with the particularities of our software
or incorporating their patches and suggestions into ours.

We are certainly not opposed to a rewrite of our software. Indeed, within the context of the DOE Exascale
Computing Project (ECP), PI Dongarra initiated the SLATE project [8] as a modern C++ replacement for
ScaLAPACK, targeting modern HPC machines with multi-core CPUs and multiple hardware accelerators per
node. While SLATE has an entirely new C++ interface, it also maintains a ScaLAPACK compatible interface
where possible. BALLISTIC will leverage the developments in SLATE and maximize communication with
the SLATE team for collaboration. We also have C++ prototypes of a new templated LAPACK library and
intend to pursue this further. In fact, BLAS++ and LAPACK++ libraries, that the SLATE project exclusively
depends on, are already used in scientific applications such as NwChemEx. However, we believe that
maintaining and improving our existing software base is essential to the sustainability of the HPC software
ecosystem, since it has long served as a basic reference software implementation and a reliable indicator
of progress. To wit, not only is LAPACK an essential building block of other libraries (e.g., MAGMA and
SLATE), some of this work also provides the building blocks for patents filed by others [100].

2.6 Continue to expand interdisciplinary collaborations.

Over the years, the Sca/LAPACK libraries have been very successful by providing the foundational dense
linear algebra that many computational science and engineering domains require. The identification of
these needs has been established through user surveys, workshops, meetings, and other user/developer
interactions. More importantly, the development of new functionalities for emerging needs in computational
science and engineering domains has been accomplished through interdisciplinary collaborations. We are
building on this track record in BALLISTIC. As mentioned earlier, we have conducted a survey to identify
needs and have established a number of interdisciplinary collaborations for their development in areas like:
(1) complex flows in multi-scale systems using adaptive, finite volume methods (Chombo-Crunch [101]);
(2) molecular dynamics (GROMACS [102]); (3) electronic structure calculations (Quantum ESPRESSO [19]);
(4) geophysical imaging technologies combined with seismic methods for fossil fuel deposits and reservoir
studies (EMGeo package [103]); (5) lattice QCD (Chroma library [104]); (6) DFT (BerkeleyGW [105]
and MADDNESS [106]); (7) high order FEM (tensor contractions in packages like MFEM [107] and
Nektar++ [108]); and (8) problems in magnetism, disordered alloys, and bulk amorphous metals with the
LSMS method [109]. Interdisciplinary work is required, because new requirements for dense linear algebra
algorithms are usually linked with application specifics that domain scientists can provide and must be
exploited for the development of high-performance algorithms. Examples include specific matrix sizes
(e.g., QR for tall-skinny matrices) that may require special versions that cannot be generated by autotuning
generic parameterized implementations and must select arithmetic precision based on application specifics,
applicability of low-rank approximations, design of new data abstractions and algorithms (e.g., for tensor
contractions [82]), batch computations, and others.
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2.7 Enhance engineering for evolution and growth via standards and community engagement.

We will ensure the longevity of BALLISTIC beyond the individual tasks and will continue to incorporate
new software standards and update current software standards by: (1) using the OpenMP standard for
multithreading to ensure portability between current and future multi-core architectures (e.g., Intel x86, ARM,
IBM POWER); (2) using the OpenMP standard for accelerator offload to guarantee portability between
current and future hardware accelerators (e.g., NVIDIA, AMD, and Intel); (3) ensuring that all code is
compliant with recent language standards C (C11 and C18) and C++ (C++11, C++14, and C++17) and
providing standard-compliant Fortran (2003, 2008, and 2018) interfaces; and (4) by maximizing the use of
standard numerical library components like BLAS.

The long-term growth of the software will be supported through involving the broader community in the
software development and maintenance process, specifically by: (1) hosting the project in a public repository
that allows for immediate community feedback and community contributions through the mechanism of pull
requests; (2) by engaging hardware vendors in the package adoption process (e.g., Intel MKL, Cray LibSci,
and IBM ESSL); (3) by engaging software companies in the the package adoption process (e.g., MathWorks’
MATLAB); and (4) by engaging the broader community through a public mailing list, including the hardware
and software industry and academic institutions.

2.8 Leveraging Successful Research and Building on Established Technology

It is important to note that Sca/LAPACK are used in many-higher level tools (e.g., MATLAB, NumPy, SciPy,
Julia, R, PETSc, and Trilinos). When an application scientist types A\b or eig(A) or svd(A), they are
most probably using one of the BALLISTIC packages in the background. BALLISTIC packages are well
integrated, and the industry cares deeply about supporting them, because many application domains benefit
from these packages. Section 4.1 describes how BALLISTIC fits into the national research infrastructure.

2.9 Project Plans and System and Process Architecture

In addition to the innovations in Section 2.2, BALLISTIC will pursue the following.

2.9.1 Extend scope and applicability of existing functions. The next three categories are topics involving
the relaunched BLAS Standard Committee [110]. The first meeting was held in May of 2016 and included
participants from industry (Intel, ARM, NVIDIA, Cray, MathWorks, and NAG), government laboratories
(Sandia National Laboratories and Rutherford Appleton Laboratory), and universities (UTK, UCB, UIUC,
LSU, University of Manchester, Umea University, and KAUST).

2.9.2 Batched BLAS and higher-level operations. Many users, including 35% of those in our survey [5],
want to perform the the same operation—simultaneously—on many independent problems (e.g., matrix-
multiplications or Cholesky). When the problems are small or medium sized, this approach can enable
efficient parallelization and avoid overhead. We had already been, along with several vendors, working
on these “batched” operations, and so we now have an opportunity to agree on a standard interface and
semantics.

2.9.3 Reproducible BLAS and higher-level operations. Floating-point reproducibility is no longer guar-
anteed, because dynamically scheduled parallel resources may compute sums in different orders from run
to run, and floating-point summation is not associative because of roundoff. This has serious implications
for debugging and correctness, and 78% of the users in our survey said reproducibility was important, very
important, or critical, and wanted it as an option for debugging, code validation, and verification—even with
a (modest) performance penalty.

We recently developed an algorithm for summing floating-point numbers reproducibly, and also dot
products and higher-level BLAS, that—unlike prior work—satisfies the design goals of making one pass over
the data [111]. We propose to provide complete reference implementations of our reproducible BLAS on
various target architectures, determine which higher-level operations are then automatically reproducible,
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and—for those that are still not reproducible—try to create reproducible versions of them, too. To partially
address this need, Intel recently released a (nonscalable) reproducible version of MKL [112]. Also, PI
Demmel recently served on the IEEE 754 Floating Point Standard Committee and proposed a new floating
point instruction (AugmentedAddition) to accelerate this algorithm [113], which was adopted in the standard.

2.9.4 New precisions (lower, higher, and mixed) and mixed types (real and complex). In previous work,
we highlighted the advantages of algorithms that use mixed precision to save time and energy by using
32-bit arithmetic for most operations and 64-bit for the few operations that required the 64-bit accuracy [114–
119]. Much remains to do in this area (e.g., extending this approach to more recent architectures and other
algorithms). There are also new mixed-precision algorithms, where higher precision can be applied to a small
but critical segment of a calculation to improve the numerical stability of the entire algorithm [120, 121].

Motivated by “big data,” vendors have already begun to offer low-precision (16-bit) versions of BLAS.
On the other hand, in our survey, some users have requested quad (128-bit) or arbitrary precisions of
our libraries. Since the number of possible input, output, and internal precisions and types can lead to a
combinatorial explosion in software that needs to be written, tested, and performance tuned, we have already
begun collaborating with Intel (at their request) on refining the Extended Precision BLAS (XBLAS) standard
developed by the previous BLAS standard effort [122]. Again, based on interactions with the user community,
we will prioritize which operations need to be done at which precisions (starting with the BLAS).

2.9.5 Target architectures and frameworks. As industry, academia, and the computational science com-
munity in general prepare for exascale systems, we will target the prevailing hardware platforms and their
future versions, which promise new and unprecedented levels of performance that will unfortunately be accom-
panied by new programmability issues stemming from the increased parallelism and multi-way heterogeneity.
We plan support for modern computing hardware, including HPC CPUs, self-hosted accelerators, and off-load
accelerators, which implies either unified or off-chip memory. Recent processors include the IBM POWER9,
AMD Zen, and ARM v8a that further increase the complexity of what is regarded as a general-purpose
processor. Advanced vectorization necessary for nearing peak performance, complicated cache hierarchy
with a range of sharing/inclusion/eviction rules at different levels and cores, hardware multithreading, and
functional unit sharing are among the many challenges faced by numerical linear algebra libraries—especially
the ones dealing with dense matrices, because they are expected to deliver performance close to the machine’s
peak. Offloading the software burden to Level-3 BLAS proves challenging, as new algorithms require new
computational kernels that require time for vendor optimization. Level-1 and Level-2 BLAS rely on high
memory bandwidth, and the hardware complicates the programming with new technologies such as 3-D
stacked memory, including High Bandwidth Memory (HBM) developed by AMD and Hynix and the Hybrid
Memory Cube (HMC) developed by Micron. GPU vendors NVIDIA and AMD use HBM. CPU vendors
IBM and Intel have lined up behind HMC, while Intel is developing its own variant of HMC, Multi-Channel
DRAM (MCDRAM), designed specifically for Intel processors. We will need to combine these advances
with already available NUMA memory structures. Finally, we will support the interconnects; including the
system bus standards like PCI Express and NVLink for connecting CPUs and GPUs and multiple GPUs,
as well as distributed-systems interconnects like Infiniband and Omni-Path; and we will work around their
relative bandwidth deficiencies compared to on-node performance (over 10 TFLOP/s per single GPU with
only 80 GB/s NVLink connection and 200 Gbps of NIC bandwidth).

2.9.6 Target cloud and container platforms. Spark is a widely used platform for in-memory analysis of
large data sets [123]. Many computational scientists have been interested in using Spark to analyze their
scientific data, whether it is collected from sensors or it is output from large simulations. In collaboration with
Cray and Berkeley Lab, we compared the performance of HPC implementations (including ScaLAPACK)
of various common linear algebra operations used for data analysis with native versions in Spark, and we
measured up to a 20× speedup versus native Spark [124]. We are continuing work on an interface called
Alchemist [125, 126], which enables Spark users call out to high-performance MPI library implementations,
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including ScaLAPACK and many others, and—depending on user requirements—extends the interface to
enable using our other linear algebra libraries. Alchemist will serve as the natural deployment platform to
interface with cloud computing systems. The interface is general, and future development plans include
extending it to enable ipython notebook users to call out to high-performance MPI library implementations
directly from ipython. This is a new context in which our software will be used, quite different, in fact,
from the ecosystem of established HPC software like MPI and OpenMP. Cloud frameworks like Hadoop and
(more recently) Spark present a challenge for HPC libraries mainly due to different provisioning scenarios.
We first plan to provide suitable wrappers to bridge the software interface gap. Recent proof-of-principle
work in this direction was performed by PI Mahoney [127], in which newly developed interfaces for Python,
Dask, and PySpark that enable the use of Alchemist with additional data analysis frameworks are described.
For example, this work described the combination of Alchemist with RLlib, an increasingly popular library
for reinforcement learning, and it considered the benefits of leveraging HPC simulations in reinforcement
learning, another very non-traditional application area. In addition to this, we plan specific optimizations and
tuning that would allow our libraries to take better advantage of the hardware—whatever the cloud scheduler
chooses. With BALLISTIC supporting multiple architectures, users will be able move their applications
seamlessly between various computer systems.

2.9.7 Implement user-controllable performance tuning for BALLISTIC components. All dense linear
algebra packages need some level of tuning to achieve good performance, and currently none possesses
any autotuning capabilities. This applies equally to both the legacy packages and the newer packages. The
prime examples are: (1) the algorithmic blocking factor NB in LAPACK and ScaLAPACK and (2) the shape
and order of the process grid P×Q in ScaLAPACK. Although the performance of those packages depends
critically on those settings, no facilities are provided to the user for making the right choice.

The situation is identical in the newer packages. MAGMA, for the most part, inherits the algorithmic
blocking parameter NB from LAPACK. PLASMA, on the other hand, uses NB to describe 2-D tiling of the
matrix while introducing another parameter, internal blocking IB, to describe the algorithmic blocking within
tiles and also exposing other tuning parameters (e.g., different shapes of reduction trees in tall-and-skinny
matrix factorizations). At the same time, what both libraries do is use default settings and enable the user to
change them to his or her liking. For BALLISTIC, we will develop configuration and autotuning facilities.

Configuration facilities enable the user to provide values for tuning parameters in a configuration file,
pointed to by an environment variable. The user will be able to specify values of tunable parameters: per
routine and per precision in a multidimensional space. The file will be in a human-readable but also parse-able
format like JSON, TOML, YAML, or XML, depending on the integration platform.

2.9.8 Improve BALLISTIC interfaces and usability. Our periodic user surveys, conducted regularly over
the history of this collaborative effort, have generated a long list of possible improvements that, after further
prioritization, need to be made to fully satisfy our large user community. Below, we list the most notable
items and propose ways to address them.

Automate data layout in ScaLAPACK (and other libraries): We propose improved ease of use by
providing a wrapper around ScaLAPACK that would take input matrices stored in simpler, user-friendlier
formats (e.g., 1-D blocked), automatically convert them to the more complicated 2-D block cyclic layouts
needed for high performance, and then convert the output back, if requested.

More general matrix layouts, with details hidden or exposed: Some users requested that matrices be
represented more simply, while others requested more general (and complicated) layouts. To satisfy these
contradictory demands requires building several wrappers, each of which exposes the desired level of detail.

32 bit vs. 64 bit: Several users pointed out that there are inter-language incompatibilities between the
data types used for integers, and also that 32-bit integers were often too small to hold the necessary values
without overflow (e.g., workspace size). Based on a careful survey analysis, current linking practice, and ABI
standards, the appropriate version will be delivered for the target platforms.
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Automatic workspace allocation: This was requested by many users, and specifically rejected by others,
since their applications required more complete and careful control over system resources (e.g., embedded
systems). This speaks to having multiple wrappers that provide different functionality levels.

Optional arguments for requesting more information: We propose wrappers to enable the users who
want more information to have it. We could use arguments to retrieve error bounds and other numerical
quantities, or use flags to indicate internal decisions made by the code or how much work space was used.

Access via other languages and frameworks: Several users requested C++ wrappers to, for example,
have one way to call our code for all data types. We can leverage and extend the BLAS++ and LAPACK++
wrappers that SLATE provides [128] for this purpose. Another example is Spark, as mentioned earlier.

Better exception handling: Exception handling (dealing with inputs containing Inf’s and NaN’s or
runtime FP exceptions) was important/very important for 67% of survey responders. We carefully formulated
the semantics of correct exception handling.1 The reference BLAS implementations do not satisfy this
criterion, and, consequently, we plan to produce a reference implementation suitable for debugging that
propagates exceptions correctly, and a tuned implementation that at least guarantees termination.

2.9.9 Add LAPACK functionality not currently in our other libraries to these libraries. Of the 1, 755
functions in LAPACK (including all precisions), only 696 are also in ScaLAPACK, 546 in PLASMA
(including statically as well as dynamically scheduled versions), 716 in MAGMA (including versions with
CPU and GPU interfaces), and 238 in SLATE. Efforts are ongoing to add the missing functions deemed
most important to these other libraries. This often means changing the algorithm or choosing one of
several possibilities to best match the target architecture. Based on the user survey [5], the current wish
list (top priority) consists of functions for (1) nonsymmetric eigenproblems (GEEV) in ScaLAPACK and
PLASMA; (2) QR with column pivoting in ScaLAPACK and PLASMA using Level-3 BLAS, as in LAPACK’s
GEQP3; (3) band matrix factorizations and solvers in PLASMA and MAGMA (needed in 25% of the survey
applications); (4) SVD in PLASMA (SVD is reportedly used in 42% of the survey applications); and (5) LDLT

factorizations and solvers in ScaLAPACK and PLASMA.

2.9.10 Improving the existing software base. For historic reasons, the existing software base for
Sca/LAPACK is written in Fortran and uses archaic software engineering techniques. Most scientific
software written today is not based in Fortran, and a recent study of programming languages ranks Fortran
38th, with the top-3 programming languages listed as Python, Java, and C [129]. As part of the BALLISTIC
effort, we plan to develop a new prototype library in C. We will involve the community at large (open source,
industry, users, contributors) in the design of the interfaces and the library as a whole.

3 Deliverables
Software development in BALLISTIC will be focused on quality, robustness, efficiency, portability, maintain-
ability, and open-source collaborations. As described below, we will follow successful techniques proven in
the context of other software packages developed by our respective groups.

Abide by coding standards: We will follow language standards for all future development and will
strive to make all existing codes standards compliant. Specifically, all C/C++ codes will be compliant with
C11 (with C18 corrections) and C++11 standards and their contemporary replacements, and all Fortran
interfaces will be compliant with Fortran 2003’s ISO C binding which will serve the newer Fortran compilers.

We will follow parallel programming standards, specifically, MPI for message passing and OpenMP for
multithreading. For the development of GPU-accelerated codes, we will put emphasis on the use of OpenMP
and OpenACC standards and only resort to NVIDIA CUDA where absolutely necessary.

We will follow a set of coding guidelines based on best industry practices [130] (e.g., Google C/C++ Style
Guide, open-source codes by Intel and NVIDIA). The codes will be self documenting through extensive use of

1Briefly, the code always terminates, and any exception that causes an erroneous answer must somehow propagate to the output,
either by having an Inf or NaN appear in the output and/or via an error flag.
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the Doxygen system, which allows for automatic generation of interactive, browseable, and searchable online
documentation. For auxiliary documentation, we will utilize Markdown to create Wikis and automatically
produce HTML and LATEX/PDF documentation.

We will only rely on established and standardized numerical libraries as components. Specifically, we
will make it a priority to maximize the use of BLAS. At the same time, we will participate in the creation of
new standards (e.g., Batched BLAS) and adopt them in our software as they mature.

Continue regular testing and continuous integration: The extremely wide adoption of our software
over many years is testimony to its reliability and the trust of the community. This takes constant effort on
our part, with a capability for users to upload bug reports (and track our responses), including very difficult
and rare examples of eigenvalue or singular value problems, where a user encounters a convergence failure,
floating point exception, or similar problem. We have maintained a cumulative list of all these “torture
test” cases over many years and use them to help validate new releases. Our philosophy is also to provide
optional condition numbers and/or error bounds for any problem we solve (linear systems, least squares,
eigenproblems, etc). For details, see the chapter on Accuracy and Stability in the LAPACK Users’ Guide [131,
ch. 4]. Another trustworthiness issue is better floating exception handling, discussed further in Section 2.9.8

The BALLISTIC team will implement a software development process based on instant delivery through
a public Bitbucket repository, where downloading or cloning the current state of the repository is the intended
method of delivery. This will allow for fast responses to bug reports and feature requests, which are assisted
by the online issue tracking system. Major releases will be marked bi-annually, to coincide with the ISC
conference, held in Germany in June/July, and the SC conference, held in the United States in November.

Going forward, we will apply continuous integration (i.e., frequent [daily] commits), which is required to
pass the build process and unit testing in the developer’s local environment before committing to the main
line. This will be facilitated through a testing harness, which allows for stress testing each computational
routine. Every computational routine will be accompanied by one or more unit tester(s) and accept a range
of input configurations (different matrix/vector sizes and properties). Our model for all testing suites for
BALLISTIC libraries will be the strenuous testing suites of LAPACK and ScaLAPACK.

3.1 Compatibility with Other Popular Software Packages

Eigen [132], now in version 3, is a linear algebra library that originated in expression templates’ imple-
mentation of BLAS routines. It has since expanded its scope include both dense and sparse functionality.
The dense matrix factorization, decompositions, and solvers include common one-sided (Cholesky, LU,
QR, LDLT) and two-sided algorithms (eigenvalues and singular values) with orthogonality utilities for
Givens, Householder, and Jacobi rotations. The CPU parallelism is implemented through a thread-pool
abstraction. For computational performance by means of accelerator offload, Eigen includes routines that
are capable of using either NVIDIA’s CUDA or OpenCL’s SYCL backends. The latter implemented by
triSYCL. In that sense, the execution scopes targeted by Eigen are more limited in comparison with that of
BLAS, Sca/LAPACK, PLASMA, MAGMA, and SLATE libraries that cumulatively cover multicore CPUs,
multi-GPUs, and distributed memory of hardware accelerated nodes.

In addition to the standard BLAS and LAPACK data types (32-bit and 64-bit floating point, real and
complex variants), Eigen also includes newer formats such as FP16 (16-bit floating point with limited
exponent range) and BFloat16 (16-bit floating point with extended exponent range). The support of all
floating-point data types across all the available algorithms is not uniform but grows over time and often
depends on the support available in the software packages and libraries that Eigen interfaces. Also, the
basic vector and matrix data types are now accompanied by a tensor type with contraction and convolution
operations implemented directly or with FFT and its inverse.

The sparse functionality in Eigen spans both direct as well as iterative Krylov subspace methods, matrix
reordering, and preconditioning. The former class of direct solvers uses SuiteSparse for general sparsity
patterns and KLU for special-structure sparsity patterns. The latter class includes CG, BiCGSTAB, and
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least-squares CG.
Owing to a custom typing and naming, it would be impractical to insist on compatibility with the Eigen

convention. As a trivial example, consider dense Cholesky factorization test in test/cholesky.cpp file:

LLT<SquareMatrixType,Lower> chollo(symmLo);
LLT<SquareMatrixType,Upper> cholup(symmUp);

The first line is for a lower-triangular Cholesky factorization LLT, and hence the LLT datatype is intuitive for
this purpose. On the other hand, the second line is for upper-triangular Cholesky factorization UTU, and the
name LLT could be counter-intuitive for some users. Using a trivial type alias called UTU could be helpful
here. In ether case, these naming conventions are far removed from LAPACK’s xPOTRF() or MATLAB’s
chol or even Trilinos’s Teuchos syntax. Reconciling these issues might be excessively burdensome in practice.

For brevity, we did not differentiate supported and unsupported components of Eigen, assuming that
both could be potentially beneficial to some users to an equal extent. For example, the tensor data type and
operations are in the unsupported directory and might not share the code quality and testing coverage with
the established Eigen components.

3.2 Evaluation Plan

We will evaluate the success of BALLISTIC using the following metrics: (1) Growth of the contributor base:
to facilitate community participation and allow us to record and track the relevant activity (e.g, number of
branches, number of pull requests, and contributors) that measures the community’s involvement beyond
the developers’ groups, we have already transfered all BALLISTIC components to GitHub or BitBucket.
(2) Number of sotware releases: we plan two major releases each year, along with point releases of component
libraries, with additions and improvements, and we will closely monitor standard metrics (e.g., new lines
of code produced, test coverage, cyclomatic complexity). (3) Number of downloads and citations: we will
continue to monitor the number of downloads and citations, as they provide a rough lower bound of our
number of users. (4) Level of users’ satisfaction: we will continue to survey our users [5] to solicit their
comments and criticisms and determine how happy they are with the software.

3.3 Sustained and Sustainable Impacts

Sustain commitments to community engagement: An important aspect of BALLISTIC sustainability is
our interaction with the community and our openness to feedback and contributions in particular. To build
and maintain the community needed for long-term self sustainability, we maintain active users’ forums for
all of our software efforts. For instance, the ScaLAPACK Users’ Forum [133] provides an online portal for
posting messages and answering questions related to Sca/LAPACK. The forum has different branches dealing
with installation, linking, data format, algorithms, and performance. For the Sca/LAPACK Users’ Forum,
there are over 7,000 members and 1,600 topics. These mechanisms will help facilitate the incorporation of
Sca/LAPACK into our interdisciplinary partners’ applications and also garner feedback.

LAPACK already has a good track record of external contributions, and a significant portion of our
software improvements come from contributions from faculty in various universities, researchers in labs,
industry partners, and volunteers. One goal of BALLISTIC is to further develop and nourish a community of
developers. The software is critical, and so we believe that it would be irresponsible to let it loose. However,
the goal is to delegate as much as possible, and we will always need to support our contributors and moderate
their contributions. Community growth is vital to our sustainability.

The trends we have seen recently include the following. (1) We are seeing more and more non-numerical
people contributing. After we moved the software into a GitHub repository, people have contributed with
Git and Travis CI [134], which is a rather new method of contribution. (2) We are seeing more and more
industry interest and contributions, and we are in regular contact with Intel and MathWorks. Recently, Intel
collaborated with us on LAPACKE, which is a C interface for LAPACK. MathWorks and Oracle have also
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contributed several patches. It is also worth noting that these new contributors are in addition to our existing
contributors from academia.

Use permissive software license: The goal of BALLISTIC, as with all of our previous work, is to (1)
enable anyone (individual, industry, government) to contribute to the software growth and to (2) enable
anyone to integrate the software, without hesitation, into their individual projects. For these reasons, we will
continue to use the BSD 3-Clause License [135] for all of the software released under this project, since it
has served this purpose well for all of our previous work over many years.

4 Potential Project Impacts
4.1 Contribution of BALLISTIC to National Research Infrastructure

The Sca/LAPACK libraries are the community standard for dense linear algebra, which is foundational for
many computational science and engineering domains domains. They have been adopted and/or supported
by a large community of users, computing centers, and HPC vendors, including: the National Center for
Supercomputing Applications, the San Diego Supercomputer Center, the Texas Advanced Computing Center,
the Pittsburgh Supercomputing Center, Intel, AMD, Cray, IBM, HP, Fujitsu, NEC, Numerical Algorithms
Group, and MathWorks. Learning to use them, either natively or as part of a vendor package, is a basic
component of the education of many, if not most computational scientists and engineers. No other numerical
library can claim such breadth of integration with the community. Consequently, enhancing these libraries
with state-of-the-art methods and algorithms and adapting them for new and emerging platforms (reaching up
to extreme scale), should be expected to have a correspondingly broad and significant impact on the research
and education community, government laboratories, and private industry.

BALLISTIC will offer benefits for computational science education by offering an extreme scale–ready
set of components—for application developers by giving them a single point of contact for registering their
requirements, and for vendors by organizing a community to help them assemble the complete software
environment that their systems need for success. Our strong record of achievement in delivering robust,
high-quality, high-performance software—and in leading previous community efforts of this kind—argue
strongly for the prospects of widespread and positive effects of this project. Moreover, having helped lead
community-developed standards efforts in numerical linear algebra software for decades, the developers
are also well positioned to re-energize that standardization process to address the new functionalities (e.g.,
Batched BLAS) that many new applications require, and BALLISTIC’s community engagement will provide
opportunities to organize workshops to bring together leaders from the different stakeholder communities to
achieve agreement on such standards.

4.2 Community Outreach and Education

At our home institutions, this project will have educational impact by involving undergraduate and graduate
students. This situation presents excellent opportunities for interaction with postdoctoral and professional
research staff, as well as with colleagues in academic, government, and industry research labs. Furthermore,
the developers have taught and will continue to teach special topics courses and workshops in their areas
of research. Outside our home institutions, we plan to contribute to relevant tutorials at conferences and
industry workshops. We have previously taught performance and architecture related tutorials at various
international conferences and user group meetings, and we expect performance engineering for emerging
hybrid and multi/many-core architectures to be in great demand as a tutorial topic in the future. In addition,
the developers’ experience and association with various hardware and software should ensure rapid uptake of
the freely available software that will result from BALLISTIC.
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