Software-defined Events through PAPI

Anthony Danalis, Heike Jagode, Thomas Herault, Piotr Luszczek and Jack Dongarra
{adanalis | jagode | herault | luszczek | dongarra}@icl.utk.edu

Innovative Computing Laboratory
University of Tennessee
Knoxville, TN, USA

Abstract—The methodology and standardization layer pro-
vided by the PAPI performance monitoring library has played
a vital role in application profiling for over a decade. It has
enabled sophisticated performance analysis tool designers, and
performance conscious scientists to gain insights into their
applications by simply instrumenting their code using a handful
of PAPI functions that “just work” across different hardware
components.

In the past, PAPI development had focused primarily on
hardware-specific performance metrics. However, the rapidly
increasing complexity of software infrastructure raises new
measurement and analysis challenges for the developers of large-
scale applications. In particular, acquiring information regard-
ing the behavior of libraries and runtimes—used by scientific
applications—requires low-level binary instrumentation, or APIs
specific to each library and runtime. No uniform API for
monitoring events that originate from inside the software stack
has emerged.

In this paper, we present our efforts to extend PAPI’s
role so that it becomes the de-facto standard for exposing
performance-critical events, which we refer to as Software-
defined Events (SDEs), from different software layers. Upgrading
PAPI with SDEs enables monitoring of both types of performance
events—hardware- and software-related events—in a uniform
way, through the same consistent PAPI interface. The goal of
this paper is threefold. First, we motivate the need for SDEs
and describe our design decisions regarding the functionality we
offer through PAPIs new SDE interface. Second, we illustrate
how those events can be utilized by different software packages,
specifically, by showcasing their use in the task-based runtime
PaRSEC, and the HPCG supercomputing benchmark. Third, we
provide a thorough performance analysis of the overhead that
results from monitoring different types of SDEs and discuss the
trade-offs between overhead and functionality.

Index Terms—PAPI, SDE, Software-defined Events, libraries,
runtimes, instrumentation, performance, PARSEC, HPCG

I. INTRODUCTION

Developing applications using some form of a modular,
or layered design—where different logical operations are
performed by different, smaller units of a large, complex
application—is not only a good software engineering principle,
but is also common practice across diverse fields. Focusing on
the field of High Performance Computing (HPC), the commu-
nity has moved away from the large monolithic FORTRAN

This research was supported in part by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration. Additionally, some
of this material is based upon work supported in part by the National Science
Foundation NSF under grant 1642440 “SI2-SSE: PAPI Unifying Layer for
Software-Defined Events (PULSE)”.

codes that dominated the field a few decades ago, and has
adopted more structured designs which foster collaboration
between groups of people, and code reuse. Besides adhering
to good software engineering principles, this transition was ne-
cessitated by the increasing complexity of hardware platforms,
which transitioned from single node machines, to distributed
memory heterogeneous supercomputers. As a result, many
modern HPC applications are not only internally organized
in smaller units, but also use external libraries for functions
such as communication and synchronization (with MPI being
the leading choice), runtimes for on-node parallelism (such as
OpenMP), and a plethora of external libraries for functions
such as math, or access to accelerators. In the rest of this
document, we will discuss performance aspects of such ap-
plications, and we will use the term “module” for any code
entity, such as library, runtime, class, etc., which can be used
as a building block of a larger application.

In HPC, where application performance is critical, there
is a drawback to adopting a design that is non-monolithic.
Specifically, the developers of one module lack information
regarding the internal behavior of modules which they are
using, but they did not develop themselves. For example, when
using a communication library such as MPI, the application
developer does not know if the actual data transfer of a non-
blocking call took place after MPI_Wait () was called, or
earlier. Similarly, when using a task execution runtime, the
developer does not know how many tasks are available for
execution at any given time. In summary, when complex
applications are properly structured in multiple modules, then
lack of information exchange between different modules can
lead to sub-optimal interaction between different modules,
which can lead to loss of performance.

Some projects with wide adoption, such as MPI
and OpenMP, have been developing a “tools’ interface”
(MPL_T [1] and OMPT [2] respectively). This is an effort
to create custom hooks inside the libraries which implement
these standards, such that external performance analysis tools
can use these hooks to extract information about the internal
behavior of these libraries. These efforts offer a solution to the
problem of exchanging information between modules, without
breaking the modularity of complex applications. However,
developing library specific APIs is not a scalable approach. It
is not feasible for every library developer group to establish
their own API and expect that application developers, or
performance analysis toolkits will adopt them all. As a solution

to this problem, we have developed an API for exporting
software-defined events (SDEs) through PAPI. Being the de-
facto standard middleware layer for hardware performance
events, with wide adoption by toolkits and application codes,
and wide availability on most software stacks, PAPI is the
perfect vehicle for supporting and delivering generic SDEs.

In the rest of this paper, we discuss the high level decisions
we have made in the design of PAPI SDEs, we describe
example uses which illustrate the usefulness of SDEs in
modern libraries, and discuss the performance effect of adding
PAPI SDEs in HPC libraries.

II. DESIGN AND FUNCTIONALITY

The main functionality of PAPI Software-defined Events is
that of revealing internal information of black-box modules of
the software stack to other modules, or performance analysis
toolkits. PAPI has a near ubiquitous presense on modern
systems, and wide support by performance analysis tools.
Consequently, if the developers of a library use PAPI SDEs to
export internal information about their library to the outside
world, they can expect this information to be used for more
sophisticated performance analysis of applications which use
the library. Furthermore, developers of applications which
use multiple external libraries, can use SDEs found in these
libraries to understand and fix performance issues due to
poor coordination between the different libraries used in their
applications.

The developers of a given software module are experts in
both the semantics of their module and its implementation.
For this reason, we designed our SDE functionality so the
experts can export whatever information they deem important,
and wherever they think it should be exported from. We do
not attempt to dictate the type of information which will be
exported as an SDE. We simply offer the mechanisms and
middleware layer for any kind of information to be exported.

For example, a task scheduling runtime could export the
number of available tasks at different points in time, but a
climate code could export a performance metric of emulated-
years per second. PAPI SDEs were not designed for a per-
formance expert to annotate a third party code so they can
measure how long it took for a code segment to execute. There
are other tools for this type of annotation. Rather, PAPI SDEs
are meant to be used by the developers who write a software
module so that the internal behavior of their module can be
understood better by those that use it.

A. Design decisions

Since the early design and development stages of PAPI
SDEs, we interacted heavily with members of the performance
analysis toolkit community, as well as developers of libraries
and runtimes which would make natural targets for early
adoption. These interactions revealed two principal concerns.

« Performance analysis toolkit communities strongly em-
phasized the importance of preserving the existing API
which is currently exported by PAPI for measuring hard-
ware events.

o Library and runtime communities were mostly concerned
with the performance overhead caused by the introduc-
tion of SDEs in their codes.

Since our project is positioned as a middleware layer,
success depends on adoption by other software modules and
toolkits. As a result, we used the concerns raised by the
community to guide our design decisions.

To address the requests made by developers of toolkits,
we implemented SDE support in PAPI as a new component
which provides an API for registering SDEs into the existing
PAPI framework. After SDEs have been registered, they can
be accessed using the same API which has always been used
for accessing the hardware events that PAPI supports. In other
words, we created a new API for library writers to register their
software events with PAPI, but we maintained the existing API
(e.g. PAPI_start (),PAPI_read(),PAPI_stop ()) for
users and toolkits to monitor these events.

Satisfying the performance concerns of library developers
was more challenging, since there is often a tradeoff between
overhead and functionality. Our approach to handling the
tradeoff is multi-faceted and enables the library developers
to make the choices that best fit the requirements of their
code. Specifically, we provide several types of SDEs that strike
a different balance between overhead and functionality. We
discuss these SDE types in the following sections.

B. PAPI SDE counter types

1) Registered counters offer developers the ability to
register an existing internal variable of their library as
a PAPI counter for an SDE. The registration of such
a counter happens only once, presumably during the
initialization of the library, so the performance over-
head due to the registration is constant and negligible.
Through this SDE type, PAPI enables entities outside
a library to read a variable that already existed in the
library and was updated by library code when needed.
Therefore, no additional work needs to be performed by
the library code in order to support this type of SDE.

2) Registered function pointers offer library developers
the ability to register a special-purpose function: internal
to the library and invoked by PAPI. When called, the
function acts as an accessor to deliver the counter value.
This type of SDE is useful when a library has no pre-
existing variable that acts as a counter for an event. Also,
in case the value of the event counter must be derived
from a complex internal state of the library rather than
a single variable. The registration of a function pointer
happens only once, so the performance overhead of the
registration is constant and negligible. For this type of
SDE, the registered function is only used to read a value,
not to update a counter and therefore it does not have
to be called by the library. Instead, it is only called by
PAPI when the application which uses the library makes
a call to PAPI_read (). Therefore, this type of SDE
does not add overhead to the fast path of the library. In
other words, when the library is involved in a “maximum

3)

4)

5)

performance run,” where PAPI is not used to monitor its
behavior, the registered function does not get called.
Created counters offer library developers the flexibility
of creating a counter inside PAPI, instead of having
a counter inside the library. The creation of such a
counter happens only once, but updating the value of a
created counter requires a call to a PAPI SDE function.
This type of SDE has two main benefits over registered
counters. First, created counters are always thread safe.
As a result, using a created counter relieves the library
developers from the need to use explicit thread safe
code every time they update the counter. Second, since
PAPI is aware of every update of the counter value,
this type of SDE lends itself to more accurate overflow
support, or other type of notification of performance
analysis toolkits. The drawback of this type of SDE is
that it requires a call to a PAPI SDE function inside
the library code every time the event counter needs to
be updated, and therefore it has higher overhead than
registered counters.

Recorders offer library developers the ability to record
a series of values associated with an event. Similarly to
created counters, the memory associated with a recorder
is managed internally by PAPI, and the creation of a
recorder happens only once, but a PAPI SDE function
needs to be called for every new value that is being
recorded. PAPI makes no assumptions about the type
of the variable being recorded. Instead, the API requires
only a pointer to the variable, and the size of the variable.
This way, library developers are free to record any type
of data from simple integers to complex structures, or
even strings, or arrays of values.

When a recorded is created, PAPI automatically creates
a few additional auxiliary counters. The first has the
same name as the recorder with the additional suffix
“:CNT”. This counter holds the count of elements that
have been recorded at any given time. In addition, there
are five more auxiliary counters automatically created
for each recorder. When read, these counters return the
quantiles of the recorded distribution, and in particular
the minimum and maximum values recorded, as well
as the three quartiles (i.e., 25%, median, 75%). The
names of these counters are formed by adding one of
the prefixes {:MIN, :Q1, :MED, :03, :MAX} to the
name of the recorder. In contrast with the auxiliary
counter “:CNT”, these statistical counters are optional
and depend on the ability of PAPI to compare the
recorded values. Since the recorded values can be of
arbitrary type, when a library creates a recorder it is
expected to provide a pointer to a function which is able
to compare two values of the type that is recorded. If
the function pointer is NULL, then the statistical counters
are not created.

Groups offer library developers the possibility of ag-
gregating the values of multiple counters into a single
entity. Groups are implemented as first class citizens

and can be added into larger groups recursively. When
a library creates a group it must specify if the value that
is reported when this group counter is read consists of
the minimum, the maximum, or the sum of the values of
the counters which belong to the group. Both registered
and created counters can be added to groups, but not
recorders (however, the auxiliary counters associated
with a recorder could be added to groups). In terms
of performance overhead, groups do not require any
additional code to be inserted in the fast path of a
library. The value of a group is assembled when a user
application calls PAPI_read () by reading the values
of all the counters which belong to the group.

C. Overhead-Functionality tradeoff

The design we have adopted gives full control of the
overhead-functionality tradeoff to the library developers. Each
group can choose if the functionality provided by a feature
justifies the amount of performance overhead this features will
add to their library, or if they want to limit the SDE types they
will utilize to those with zero overhead.

Libraries that already count internal quantities and events,
but do not have a standardize way to export this information
to the outside world, will benefit from PAPI SDEs while
facing zero performance overhead. Libraries with no event
counting functionality can benefit by adding internal counters,
or accessor functions, which as we will further discuss in sec-
tion IV, can still be done with negligible or zero performance
overhead. Libraries with events which do not occur frequently
enough for performance overhead to be of primary concern
can use created counters to communicate these events to users,
or analysis toolkits that are “listening”. And finally, libraries
with events whose evolution over time is important can record
long series of custom event values for advanced analysis by
performance conscious users and sophisticated toolkits.

III. EXAMPLES
A. PaRSEC

1) Overview: PaRSEC is a runtime environment that sup-
ports the execution of task systems on large scale distributed
and hybrid computers [3]. Applications written in PaRSEC
express their parallelism as a set of sequential tasks which
exchange data following a directed acyclic graph (DAG).
The PaRSEC runtime fulfills two roles. First, it executes the
application tasks on the computing nodes and accelerators
using a complex set of schedulers guided by the application
developer, by the progress of the execution, and by the
hardware capabilities. Second, it moves data between the
computing resources, transparently for the programmer.

The PaRSEC engine is at the heart of the runtime environ-
ment: it provides schedulers, data management capabilities,
and various hardware support. Task systems are exposed to
the engine through Domain Specific Languages (e.g., Param-
eterized Task Graphs [4], Dynamic Tasks Discovery [5], etc.).
The PaRSEC environment is completed with debugging and

tracing tools that enable developers and users to visualize the
DAG of tasks, and the execution and scheduling decisions.

2) PaRSEC schedulers: The main advantage of a task
system is that it does not enforce an order on the execution
of tasks, but exposes parallelism to allow dynamic decisions.
This is important, because in large scale computing, where the
hardware increases in complexity (as with hybrid computers
providing most of their computing power from accelerators),
the best order of execution cannot be entirely planned in
advance, and part of the scheduling decisions must remain
dynamic.

However, depending on the application and the platform,
different scheduling approaches achieve different performance.
PaRSEC is built on top of the Modular Component Archi-
tecture (MCA), that was developed for Open MPI [6]. MCA
provides a tool to expose a public API (a component) that
can be implemented with many algorithms (the modules), and
lets the end-user or the programmer select at run time which
module will be used to provide the service. Schedulers in
PaRSEC are implemented over an MCA component, allowing
the user to load and unload different schedulers to guide the
execution of different DAGs of tasks on different hardware,
even within the same application.

As the selection of a scheduler is a performance-critical
task, information on the status of the scheduler and the reasons
it takes some decisions during the execution are valuable feed-
back for the users and developers. To expose this information
in the most straightforward way, we introduced PAPI SDE
counters in the PaRSEC schedulers, allowing users to exploit
the standard performance tools to explore these counters and
experiment with different schedulers.

3) Task-queues for different schedulers: There are 10 dif-
ferent schedulers in the PARSEC base distribution. We will not
describe them exhaustively here, but similar principles apply
to all of them. Depending on the scheduler, a varying number
of queues exist: the simplest scheduler uses a global queue
to order all tasks as they become ready in a first-in first-out
approach. For this scheduler, it is simple to count the number
of tasks ready to be executed at a given time: it is the length
of the queue.

Reporting the number of ready tasks is more complex for
more hierarchical schedulers. The Local Flat Queue scheduler,
which is the default in PaRSEC, uses a hierarchy of bounded
queues: each thread is bound to a single core and maintains
its own queue of ready tasks. When a thread generates more
work (because a task it completed releases more tasks), the
new tasks are inserted into the bounded queue of the thread.
When the queue is full, remaining tasks are queued in a shared
queue. When selecting a task for execution, a thread will first
try to pop it from its local bounded queue. If that queue is
empty, the thread will try to steal a task from the thread bound
on the core closest to its own core, on the memory hierarchy
of the machine. The thread tries to steal from other cores of
the same socket, and if none are ready, it will steal from the
main shared (and unbounded) queue. If that queue is empty,
it will then try all the other cores on the node, and cycle until

new work is found or the operation is completed.

PaRSEC aims at reducing the scheduling overhead. All
these shared queues are implemented with lock-free algo-
rithms, and a minimal number of atomic operations. Because
they are shared, instrumenting them to provide a counter of
length would increase the number of atomic operations and
thus the scheduling overhead. To avoid this, we opted for a
more scalable approach: each thread maintains a collection
of thread-specific counters; when a thread inserts a task in a
queue, or removes a ready task from a queue, it updates the
corresponding local counter.

Since all threads can steal work from each queue, the
sum of the counters across all threads is needed to compute
the number of ready tasks available in each queue. Still,
that number is not exact because no synchronization ensures
that an element is not being inserter, or removed while the
sum is computed. However, this is the trade-off chosen by
PaRSEC developers to provide approximate information about
the ready-task queues with a minimal impact on the normal
execution of the schedulers.

Given the need to sum the local counters across threads,
PaRSEC uses the registered function pointer SDE type, and
provides accessor functions which perform the summation.
Moreover, the bounded queues are by nature hierarchical: the
union of the queues over the same socket represents the work
that has a high probability to run on this socket, and an unbal-
ance in the work leaning toward a socket versus another can
lead to NUMA effects that can explain observed performance.
Thus, we organized all available information by using the PAPI
SDE grouping concept. The base counters expose the number
of ready tasks at each level of the hierarchy of queues, and
the groups are defined to aggregate these numbers following
the hardware hierarchy. This way, we expose to the user more
information about how many tasks are waiting, and where they
might be executed. At the top level of the hierarchy, the largest
group offers the user the simplest number: the number of tasks
which are ready to execute and waiting in a queue at a given
time, for the entire node. Figure 1 shows the evolution of
multiple different PARSEC queues under a typical workload.

Tasks in different queues/states (DPOTRF, Haswell, 20 cores)

g 60 T T T T T 2000
=} NODE-LEVEL RETIRED o)
X 50 NODE-LEVEL PENDING —*— = 1665 g
g :
T 40 - 1332
c 2
o

T 30 409
o =
. ©
(0]
3 2 -1 666 2
© [0}
> €
S 10[4333 3
1S o
=}
8 O 1 1 1 1 1 0

0 5 10 15 20 25 30

Time (s)

Fig. 1. PaRSEC queue length evolution over time.

B. High Performance Conjugate Gradients (HPCG)

1) HPCG Background and Relevance of SDE In Bench-
marking Process: High Performance Conjugate Gradients [7]
(HPCG) has been a benchmark for measuring performance of
supercomputers since early 2014, and its design dates back
to the year prior [8]. Since then, the biannual release of the
HPCG performance list [9] complements some of the other
HPC industry benchmarks such as TOP500 and Green500.
While the same basic algorithm [10] was used for the HPCG
implementation, over time, the later versions incorporated
some elements of Multi Grid [11]. At the same time, using
latency-hiding techniques and its algorithmic variants such as
pipeling [12] is prohibited. This creates a dynamic interaction
between the HPCG implementers that optimize the code and
the committee that verifies the submitted results. Software-
Defined Events play an important role by giving access to
numerically significant events occurring in the implementation
that may be monitored externally without accessing often
proprietary details of the implementation.

2) HPCG Vendor Implementations: The vendor implemen-
tations of HPCG do not need to be disclosed in source code
form except for extraordinary circumstances. This allows the
vendors to maintain the control of how the information about
low-level hardware details is disseminated, while providing
the benefits of the platform-specific optimizations. This is
almost identical situation of how BLAS [13]-[17] and LA-
PACK [18], [19] provide a reference implementation as open
source code and the hardware-specific implementations are
proprietary and mostly delivered in closed-source form as
a binary-only libraries. This however, is where the analogy
between linear algebra libraries (like BLAS and LAPACK)
and linear algebra benchmark (like HPCG) ends. In order to
gain large user base, the vendor libraries have an incentive
to be both accurate and fast. In particular, they should be as
accurate as the reference implementation and as fast as the
hardware permits. On the other hand, the only incentive for
the vendor implementation of a benchmark is to remain fast.
This may potentially sacrifice the accuracy. Hence, HPCG
officially mandates and enforces certain degree of accuracy
inside the benchmark’s execution harness. But in addition
to the verification and validation (V&V) module of HPCG,
checking for sufficient accuracy may be performed through
mandatory software events. SDEs need to be embedded in the
proprietary code to allow for monitoring numerical events in
the solver that the multigrid and Krylov subspace iteration
would normally generate. Also, these events may be used
for the alternative input data that is not used for runs that
report benchmark’s official performance — the may be called
verification data sets. Then, by manipulating the numerical
properties of the linear system and observing the effects on the
type and count of numerical events being reported, the closed-
source implementation may be checked for the necessary
accuracy. This is not only a tool for the HPCG committee that
verifies the benchmark but also for the vendor’s performance
engineer that needs to know when a given optimization caused

a numerical bug that lowered the achieved accuracy.

Let’s consider one possible recorder SDE that may result
from the main system solver in HPCG resulting from the fol-
lowing discretization of a partial differential equation (PDE)
— a single degree of freedom heat diffusion with zero Dirichlet
boundary condition:

Au=f (1)

where A defines the discretization operator (a 3D regular
27-point stencil in case of HPCG). As in any iterative solver,
computing the residual at each iteration i:

dD = au - 2)

helps in indicating convergence or progressing in the future
iterations. As one of the monitoring metrics, we set up a
recorder SDE for ||d(i)‘| which allows us to ascertain that
the right number of iterations were performed and that the
convergence rate conforms to what is predicted by the theory.

The reference code computes dV), ..., d® and uses ”d(50)”
as the reference by which the optimized code is evaluated.
With the recorder SDE for each iteration, it is possible to
monitor the optimized implementation much more closely. It
is also possible to provide different discretization operator and
observe if the convergence history would change accordingly.
These and other evaluations are possible without the vendor
disclosing the code of their implementation.

IV. PERFORMANCE OVERHEAD

In this section we provide an experimental evaluation of
the performance overhead associated with SDEs. We offer a
multi-faceted investigation, and we discuss our experimental
methodology because accurate attribution of overhead is not
always straight forward.

A. Benchmarks

The simplest form of measurements comes from bench-
marking. All the experiments mentioned in this section
were performed on a Haswell E5-2650 v3 with a fre-
quency of 2.3GHz, running Linux with kernel version 3.10.0-
514.26.1.e17.x86_64. The benchmarks were written in C (as is
PAPI), and compiled with gcc 4.8.5 using optimization level
“-03”.

For our first experiment our code invoked the PAPI SDE
function which creates a counter (SDE type 3, in section II-B)
and then used the SDE API to increment the counter over
100K times. Every time our benchmark called the function
to increment the counter it also measured the time it took to
execute this function by reading the CPU time-stamp counter
using the x86 instruction rdtsc.

The results of this experiment are shown on the left side of
Figure 2, in the form of a (light blue) violin plot overlapped
with a box-and-whiskers plot. As can be seen in the graph,
the median execution time of the function which increments
a created counter was 14.3ns, the box (which includes 50%
of the measurements) extend from 13ns to 17.8ns, and the

whiskers (which include 99% of the measurements) extend
from around 9ns to around 21ns.

For our second experiment our code invoked the PAPI SDE
function which creates a recorder (SDE type 4, in section II-B)
and then used the SDE API to record over 100K values of
type “double” into that recorder. Every time our benchmark
called the function to record a value it also measured the time
it took to execute this function (using rdtsc).

The results of the recording experiment are shown on the
right side of Figure 2, in the form of a (green) violin plot
overlapped with a box-and-whiskers plot. As can be seen in the
graph, the median execution time of the function which records
a value was 17.4ns, the box extend from 16ns to 17.4ns, and
the whiskers extend from around 12ns to around 44ns.

SDE overheads, Haswell E5-2650 v3

45

|

30 [

25

Execution time (ns)

Increment created counter Record value

Fig. 2. Execution time measurements of SDE functions.

The violin plots of both experiments give a more accurate
picture of the distribution of measurements and they reveal
some outliers. In the case of the created counter there is a
small clump of values around the 30ns +~ 35ns range, but they
constitute an insignificantly small fraction of the data set. In
the case of the recorder there is a more significant clump of
values around 40ns. Also, the recorder has some outliers that
are in the range of ~ 4us (not shown in this graph). These,
although they are rare enough not to affect the quartiles of
the distribution, they are not due to noise, but rather they are
an implementation artifact. Specifically, we have implemented
recorders using contiguous memory, which is allocated in
4KiB increments, to avoid having a large memory overhead
in libraries were recording will not be heavily used. As a
result of this policy, for every 512 values of type double
that are recorded, there will be a call to realloc () in
order to increase the available space. The parameter which
defines the size of the increment of memory allocation can be
tuned to reduce the occurrence of reallocating (and copying)
memory, and the overhead associated with it. However, as we
demonstrate in this paper, the overhead is already insignificant,
so fine tuning the increment size should not be a concern for
most users.

The other three types of SDEs mentioned in II-B, namely
registered counters, registered function pointers, and groups,
do not have an inherent overhead, and so they cannot be

directly measured with benchmarks in a systematic way.
Registering a library variable (or a function) as an SDE counter
does not alter the execution of the library code, and therefore
it has zero impact on performance. The same is true if a
library chooses to organize a set of registered counters as
a group. Clearly, if a user application calls PAPI_read ()
to read the value of an SDE there will be an overhead in
the execution of the application, due to the reading, but this
overhead does not come from the library, but rather from the
call to PAPI_read (). If an application uses a library which
contains the “zero-overhead” SDE types mentioned above, but
the application never calls PAPI functions to read the values
of the counters, then the application will not experience any
overhead due to the existence of the SDEs in the library.

There is a scenario in which registered counters can cause
overhead to a library code. Namely, when a library wishes
to export information about an internal event, but does not
already contain any code to record this event. For example,
consider the case of a communication library where the
developers wish to create an SDE which will report the number
of bytes transferred over the network. If the library did not
previously record that number, it will now need to be modified
so that a variable holding the number of bytes transferred
is incremented every time a data transfer takes place. If, in
addition, we consider that the library is multithreaded, then we
see the need for this variable to be atomically incremented, or
protected by some thread safe critical section code. Clearly,
such a modification would cause a performance overhead to
the library, and that overhead would be present even if the
user application never calls PAPI_read ().

However, it can be argued that this overhead is really due
to the additional functionality (keeping track of a value which
was not tracked before) and not due to the fact that this value
is exported as a PAPI SDE. Regardless of the semantics of
overhead attribution, such overheads are highly dependent on
the specifics of the library code and can not be measured by
a benchmark in a meaningful way.

In the following sections we provide a performance over-
head analysis of different types of SDEs across a series of
more realistic uses within existing, well known, third-party
libraries.

B. ATLAS

In the previous section we quantified the overhead due to
calling an SDE function. However, in addition to the actual
code this function executes in order to update a counter, there
is also an indirect cost due to cache pollution. Namely, the
implementation of all types of SDEs relies on some meta-data
structures that are used internally by PAPI for book-keeping.
Furthermore, the recorder SDE continuously stores new data
in memory, and when need be it allocates more memory and
performs a copy (due to realloc()).

In this section, we perform a study which aims to quantify
the total overhead caused by the existence of SDEs in a time
critical library. For this purpose, we used the dense linear
algebra library ATLAS (Automatically Tuned Linear Algebra

Software). The rational was that upon installation ATLAS
tunes its kernels to maximize the utilization of all hardware
features of the system in which it is being installed, and this
is especially true for the cache hierarchy. Therefore, inserting
an SDE inside an ATLAS kernel, after the tuning has taken
place, should interfere with the tuned kernel and provide a
worst case scenario for the SDE overhead.

In graphs 3 and 4 we present the results of our experiments.
Both graphs show distributions of runs, because for each set
of parameters we made over 1000 runs and we plot the whole
distribution (as well as a boxplot). Both graphs show results
from the same type of experiment, the only difference being
the problem size varying between small and medium (matrix
size 504x504 for the first, and 2016x2016 for the second). The
kernel we chose for all experiments was ATL_dNBmm_b0.c
which performs a double precision matrix-matrix multiply
on matrix tiles of size 56x56. The ATLAS version we used
was 3.10.3, and all our experiment were performed on the
same hardware as the benchmarks described in section IV-A
(Haswell E5-2650 v3 @2.3GHz).

The code snippet below is taken from this kernel and shows
only the part which we modified for our experiment.

void ATL_USERMM(...) {

do /* N-loop =*/
{
do /* M—-loop =/
{
rC0_0 =
rCl_0 =

_mm256_setzero_pd();
_mm256_setzero_pd();

The first (dark purple) violin in our graphs shows the distri-
bution of execution times for the vanilla version of the ATLAS
kernel. This version does not contain any modifications done
by us. The second (orange) violin shows the execution time
when the outer loop (N-loop) of the kernel is modified to
add a call to the SDE function which increments a created
counter. The Y2 axis of the graph (the one on the right)
shows the percent overhead in comparison to the median
execution time of the vanilla version. As can be seen in
the graph the total overhead on the kernel, after adding the
SDE call, was about 1% for the small size problem and less
than 0.5% for the larger problem—and this is true for all
quartiles compared to the corresponding quartiles of the vanilla
distribution. The number of iterations of the N-loop was 2,268
for the small problem size and 36,288 for the large one, so
the total execution overhead of incrementing the SDE counter
was 52ns per increment for the smaller problem and 62ns per
increment for the larger problem (comparing the medians of
the distributions).

The third (blue) violin shows the execution time of the AT-
LAS kernel when a call to the SDE function which increments
a created counter is inserted to both loops. In this case the total
iteration count jumps to 34,020 for the smaller problem and
544,320 for the larger. The overhead becomes about 3% and

1% for the two problem sizes, but the overhead per increment
drops to 12ns and 14ns respectively.

The fourth (magenta) violin shows the execution time of
the kernel when a call the the SDE function which records
a value inserted to the outer loop. The overhead of this SDE
was about 1% for the smaller problem and less than 0.5% for
the larger problem, which translates to 56ns per recording and
37ns per recording, respectively.

Finally, the fifth (green) violin shows the execution time
of the kernel when a we record a value in both loops. The
overhead in this case was about 4% for the smaller problem
and 2% for the larger problem, which translates to 18ns per
recording and 32ns per recording, respectively.

SDE overhead on ATLAS DGEMM N=M=K=504, Haswell E5-2650 v3

16 T T T
Vanilla ATLAS 114% &
15.8 One created counter === 5
[Two created counters == 4 129 8
15.6 One recorder = ° 3
D 154 | Two recorders = ©
£ 110%
g 152r g
= 15 F 180% §
c S
S @
3 148 16.0% E
X 146 2
; L 140% 28
2 144 8
& 1421 120% <
i s
100% =
138 8
136 | @
Vanilla 1XCNTR 2xCNTR 1xREC 2xREC
Fig. 3. ATLAS with small size matrix.
SDE overhead on ATLAS DGEMM N=M=K=2016, Haswell E5-2650 v3
908 -
906 | Vanilla ATLAS == S
004 | One created counter 1 25 3
[Two created counters Hmmmm A
> 902 One recorder $
£ 900 Two recorders = 120% Z
o 898 g
£ o8| s
s 115% 8
S 894l -
3 892 F E
% 890 F 1 1.0% 9
o
S 888 [k]
Z 886 105% 8
O ggaf g
882 [100% 2
880 [3]
878 E

876

Vanilla 1XCNTR 2xCNTR 1xREC 2xREC

Fig. 4. ATLAS with medium size matrix.

Clearly, the examples we used in this section are extreme
and unreasonable. We do not envision performance critical
libraries, such as ATLAS, to add hundreds of thousands of
invocations to our API inside their kernels. However, even
under this level of load, we see that the performance overhead
remains within a few percent. In the following sections we
demonstrate the performance overhead in more realistic use
scenarios.

Scheduler: Global Dequeue

o ” > O O
a | ! o

S 500 i i |

5 I

g 400 o o= »

g !

£

£ 300 Version

o

5 ;P- 3 Vanilla

& 200 ! BN With SDEs

T T T T T T T T T 1
dgelgf dgemm dgeqrf dgetrf dpotrf dsyev dsymm dsyrk dtrmm dtrsm
Benchmark

Scheduler: Absolute Priority

600
o o > O '\
a ! i o
& 500 | ! |
g |
< 400 o o= >
o H i
< ; i
€ 300 Qo
5 : Version
S 200 7 = Vanilla
o

[With SDEs
100

T T T T T T T T T 1
dgelgf dgemm dgeqrf dgetrf dpotrf dsyev dsymm dsyrk
Benchmark

dtrmm dtrsm

Scheduler: Local Flat Queues

600 r P —

o

s

& 500 | P

w i

o .

g 400 o o »

< ! i '

£ 300 :)

S Qo= Version
5 I = Vanilla
& 200 J EEE With SDEs

T T T T T T T T T 1
dgelgf dgemm dgeqrf dgetrf dpotrf dsyev dsymm dsyrk dtrmm dtrsm
Benchmark

Scheduler: Local Lists
600

0 = v G &
g 500 I o
5 I ! : i
% 400 o ‘. ’
e
£
5 300 O Version
5 H 3 Vanilla
& 200 ! BN With SDEs
T T T T T T T T T 1
dgelgf dgemm dgeqrf dgetrf dpotrf dsyev dsymm dsyrk dtrmm dtrsm
Benchmark
Scheduler: Random
— o - O il
@ 500 | o
3 i '
5 400 o= ?‘ ’ ‘
8 300 :
% Qe
£ 200 ! !
5 Version
E, 100 [Vanilla

[With SDEs

T T T T T T T T T 1
dgelgf dgemm dgeqrf dgetrf dpotrf dsyev dsymm dsyrk
Benchmark

dtrmm dtrsm

Fig. 5. Performance comparison between PaRSEC with SDE and ParSEC
Vanilla, for different benchmarks and different schedulers. Matrix size of
4, 000 x 4, 000, on a Haswell E5-2650 v3 at 2.3GHz

C. PaRSEC

Figure 5 compares the performance of 10 different bench-
marks running on top of PaRSEC, with 5 different schedulers,
on a 20-core Haswell E5-2650 v3 at 2.3GHz, with and
without SDE support. Violin plots with outliers are shown
in order to focus on the impact of the SDE instrumentation
on performance. As explained in Section III-A, the different
schedulers use different hierarchies of lists, each of them being
instrumented with PAPI-SDE counters that are aggregated
using the PAPI-SDE function and grouping interfaces. The
scheduler “Local Lists” features one list per core, while the
scheduler “Local Flat Queues” adds a shared dequeue to
those; “Global Dequeue” uses a single list modified only with
atomics, while “Absolute Priority” uses a sorted list protected
by a lock. The “Random” scheduler uses an array with read-
write lock for resizing, and atomic swap for insertion and
selection.

Names dgelgf, dgemm, dgeqrf, dgetrf, dpotrf, dsyev, dsymm,
dsyrk, dtirmm and dirsm are dense linear algebra operations
from the DPLASMA library [20], which is written on top of
PaRSEC. We chose the input size for the benchmarks such that
it results in thousands of tasks, keeping each core relatively
busy (depending on the DAG of tasks resulting from the
operation). The violin plot shows the performance distribution
over a sample of a thousand runs for each combination of
parameters. Runs that were outside of twice the interquartile
range have been sorted as outliers (shown as points on the
figure), and they represent less than 5% of the total runs.

The figure shows that the SDE instrumentation has no
statistically significant impact on the performance of the runs,
for all benchmarks, and independently of the scheduler. This
is the sought-after behavior for such instrumentation.

D. HPCG

In section III-B, we gave an example of a recorder SDE for
64-bit floating-point values that registers norms of the residuals
||d(i)|| in an iterative solver of an instrumented HPCG imple-
mentation. We set up additional recorder SDEs to more com-
prehensively address the complexity of the HPCG solver that
uses Krylov space iterations with a multigrid preconditioner
that features Gauss-Seidel smoother. For verification purposes,
the extra counters recorded useful runtime information such as
data sizes of neighborhood collectives’ and smoothing errors
at all three multigrid levels. In total, the standard 50-iteration
run recorded over 1200 events per MPI process. To evaluate
the overhead associated with such monitoring, we ran HPCG
on a 65 node Inifiniband cluster with single-socket Intel Xeon
x5660 CPU running at 2.8 GHz with 12 cores and MPICH
3.2.1. Figure 6 shows violin plots of performance for running
both the reference and instrumented versions of HPCG on
node counts from 1 to 65 (12 core to 780 cores). The scaling
is nearly linear but it trails off at high core counts due to the
global reductions inside HPCG that were designed to stress the
interconnect — both versions show the same scaling behavior
regardless of overhead. More importantly, the overhead due to
PAPI SDE instrumentation has statistically indistinguishable

Version
175 ~ 3 Vanilla
I With SDEs

150 ?QQQ%’Q 4 ¢

125

100 44@3?

total gflops

0 100 200 300 400 500 600 700 800
cores

Fig. 6. Total performance for weak scaling of HPCG on a cluster with 65 X
12 =780 cores.

effect on the resulting performance and the observed statistical
distribution of performance samples. This is the desirable
property for performance-critical benchmark runs.

Figure 7 shows similar information to the previous fig-
ure but it features performance per core as the core count
increases from 1 to 65. Consequently, the figure shows the
efficiency expressed as per-core Gflop/s rather than normalized
percentage value. As mentioned already, the scaling of the
interconnect does not keep up with the number of cores and,
as a consequence, the per-core performance drops with the
increasing number of cores. The overhead of instrumentation
does not meaningfully change the distribution of the observed
results which was already observed on the previous figure with
the weak scaling results.

Version
[Vanilla
035 I With SDEs
2
8 0.30
IS
o
Q
o
5 0.25 4% Q é 9 Q
o i Q
0.20 a %4 4)
0 100 200 300 400 500 600 700 800

cores

Fig. 7. Per-core performance for weak scaling of HPCG on a cluster with
65 x 12 = 780 cores.

V. RELATED WORK

The need for software developers to acquire knowledge
of the internal behavior of libraries has been recognized by

some of the communities that develop performance critical
libraries. Particularly, the de facto standard for developing
distributed memory applications, MPI [21], and one of the
leading efforts for delivering multi-threaded shared memory
applications, OpenMP [22], provide both instrumentation and
profiling mechanisms as part of their standard. The two distinct
efforts, MPI_T [1] and OMPT [2], [23] respectively, make it
clear once more that experts in performance critical libraries
recognize the need for exporting internal library information
to their users through instrumentation and profiling interfaces.

« MPL_T is an interface for tools introduced in the 3.0
version of MPL. It allows tools to understand and manip-
ulate internal MPI variables in order to provide a more
efficient and application-adapted execution environment.
Similar to the PAPI interface, the MPI Tool Interface
allows the implementation to specify internal control
and performance variables, allowing tools to iterate over
all possible variables to query their properties, retrieve
descriptions about their meaning, and access and (if
appropriate) alter their values.

o The OpenMP standard includes OMPT, a first-party in-
terface for performance tools. It offers functions to query
OpenMP states and callback functionality for relevant
OpenMP events. This allows tools to explore details of
an OpenMP implementation, examine runtime states as-
sociated with an OpenMP thread, identify parallel regions
and tasks, and to collect call stacks.

While these efforts provide a useful view of the execution of
a parallel application, the granularity of the analysis interval is
too coarse grain (mostly at the level of entry and exit point of
MPI functions, OpenMP regions or tasks). More importantly,
unlike the approach described in this paper, these solutions are
specific to MPI and OpenMP, and so, they do not fit easily or
naturally into the performance tool ecosystem. To incorporate
them, developers of performance critical applications or higher
level profiling tools would have to implement profiling code
customized for the communication layer of their parallel
application. This paper addresses these challenges. The new
SDE support in PAPI is not limited to a specific library, but
enables any library developers to expose internal information
about their libraries in a consistent and standardized way.
Additionally, the PAPI SDE extension enables performance
toolkits and application developers to capture and utilize
such information across all the software layers used in an
application.

TAU [24] is a profiling and tracing toolkit aimed at the
performance evaluation of parallel programs, providing useful
performance visualization analyses and displays. Like many
performance analysis and auto-tuning tools, TAU relies on
PAPI for retrieving performance counter measurements. TAU
also offers the functionality to profile so-called user-defined
events. The meaning of these events is entirely determined
by the user. Unlike PAPI’s SDE effort, however, TAU’s user-
defined events are limited to single-value events and are
specific to TAU only.

Another related project is Caliper [25], which offers a
source-code annotation API for program instrumentation and
performance measurement. Caliper is primarily aimed as a tool
for performance experts to bake performance analysis capabil-
ities directly into the applications they are trying to study.
Among other performance values, such as timers, Caliper
reads PAPI counters, so it can work synergistically with PAPI
SDE by enabling performance experts to query library specific
SDEs through Caliper.

VI. CONCLUSIONS

PAPI has provided a unification layer for hardware-based
events, and enabled application developers and performance
toolkits to access these events in a uniform and consistent way
for more than 15 years. This paper presents our latest SDE
developments that allow PAPI to perform the same role for
software-based events. The addition of SDE in PAPI enables
developers of libraries, application components, and runtime
systems to expose internal, performance-critical information
about their software in a consistent and standardized way.

The SDE integrations which we discussed in this paper
highlight the importance of the different types of SDEs and
their versatility for a wide variety of software layers such as
PaRSEC and HPCG. The overhead analysis demonstrated that
even for the most expensive SDE functionality (Recorder) the
monitoring overhead is very low (tens of nanoseconds) under
extreme use with benchmarks, and inconsequential in realistic
usage scenarios.

In summary, scientific application developers can monitor
SDEs together with traditional hardware performance counter
data to acquire a more complete picture of the entire appli-
cation performance. Using PAPI SDEs, both types of events
can be monitored without the need for users to modify their
applications or learn a new set of library and instrumentation
primitives.

REFERENCES

[1] T. Islam, K. Mohror, and M. Schulz, “Exploring the MPI tool infor-
mation interface: features and capabilities,” The International Journal
of High Performance Computing Applications, vol. 30, no. 2, pp. 212—
222, 2016.

[2] A. E. Eichenberger, J. Mellor-Crummey, M. Schulz, M. Wong, N. Copty,
R. Dietrich, X. Liu, E. Loh, and D. Lorenz, “OMPT: An OpenMP
tools application programming interface for performance analysis,” in
OpenMP in the Era of Low Power Devices and Accelerators. INOMP
2013, M. M. Rendell A.P., Chapman B.M., Ed. Springer, Berlin,
Heidelberg, 2013, lecture Notes in Computer Science, vol 8122.

[3] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J.
Dongarra, “PaRSEC: Exploiting heterogeneity to enhance scalability,”
Computing in Science and Engineering, vol. 15, no. 6, pp. 3645, 2013.

[4] A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and J. J. Dongarra,

“PTG: an abstraction for unhindered parallelism,” in Proceedings of

the Fourth International Workshop on Domain-Specific Languages and
High-Level Frameworks for High Performance Computing, WOLFHPC
'14, New Orleans, Louisiana, USA, November 16-21, 2014, 2014, pp.
21-30.

[5] R. Hoque, T. Herault, G. Bosilca, and J. J. Dongarra, “Dynamic task

discovery in parsec: a data-flow task-based runtime,” in Proceedings of

the 8th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems, ScalA@SC 2017, Denver, CO, USA, November 13, 2017,
2017, pp. 6:1-6:8.

[6]

[7]

[8]

[9]
(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

R. L. Graham, B. Barrett, G. M. Shipman, T. S. Woodall, and G. Bosilca,
“Open MPI: a high performance, flexible implementation of MPI point-
to-point communications,” Parallel Processing Letters, vol. 17, no. 1,
pp. 79-88, 2007.

J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” The International Journal of High
Performance Computing Applications, vol. 30, no. 1, pp. 3-10, 2016.
M. A. Heroux, J. Dongarra, and P. Luszczek, “HPCG technical speci-
fication,” Sandia Nationalal Laboratories, Tech. Rep. SAND2013-8752,
2013.

J. Dongarra, M. A. Heroux, and P. Luszczek, “A new metric for ranking
high performance computing systems,” National Science Review, 2016.
Jack Dongarra and Michael A. Heroux and Piotr Luszczek, “The High-
Performance Conjugate Gradients Benchmark,” SIAM News, vol. 51,
no. 1, pp. 12-12, January/February 2018.

U. Trottenberg, C. W. Oosterlee, and A. Schiiller, Multigrid, ser. (with
guest contributions by A. Brandt, P. Oswald, and K. Stiiben). London
NW1 7BY, UK: Academic Press, A Harcourt Science and Technology
Company, 2001.

I. Yamazaki, M. Hoemmen, P. Luszczek, and J. Dongarra, “Improving
performance of GMRES by reducing communication and pipelining
global collectives,” in Proceedings of 31st IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW 2017), ser.
18th IEEE International Workshop on Parallel and Distributed Scientific
and Engineering Computing (PDSEC 2017) PDSEC-17, Buena Vista
Palace Hotel, Orlando, Florida, USA, June 2, 2017, best paper award.
C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, “Basic
Linear Algebra Subprograms for FORTRAN usage,” ACM Transactions
on Mathematical Software, vol. 5, pp. 308-323, 1979.

J. J. Dongarra, J. D. Croz, I. S. Duff, and S. Hammarling, “Algorithm
679: A set of Level 3 Basic Linear Algebra Subprograms,” ACM
Transactions on Mathematical Software, vol. 16, pp. 1-17, March 1990.
Jack J. Dongarra and J. Du Croz and lain S. Duff and Sven Hammarling,
“A Set of Level 3 Basic Linear Algebra Subprograms,” ACM Transac-
tions on Mathematical Software, vol. 16, pp. 18-28, March 1990.

J. J. Dongarra, J. D. Croz, S. Hammarling, and R. Hanson, “An
Extended Set of FORTRAN Basic Linear Algebra Subprograms,” ACM
Transactions on Mathematical Software, vol. 14, pp. 1-17, March 1988.
Jack J. Dongarra and J. Du Croz and Sven Hammarling and R. Hanson,
“Algorithm 656: An Extended Set of FORTRAN Basic Linear Algebra
Subprograms,” ACM Transactions on Mathematical Software, vol. 14,
pp. 18-32, March 1988.

J. J. Dongara, J. R. B. Cleve B. Moler, and G. W. Stewart, LINPACK
Users’ Guide. Philadelphia, PA: Society for Industrial and Applied
Mathematics, 1979.

Ed Anderson and Z. Bai and C. Bischof and Susan L. Blackford and
James W. Demmel and Jack J. Dongarra and J. Du Croz and A.
Greenbaum and Sven Hammarling and A. McKenney and Danny C.
Sorensen, LAPACK User’s Guide, 3rd ed. Philadelphia: Society for
Industrial and Applied Mathematics, 1999.

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan,
and J. J. Dongarra, “Flexible development of dense linear algebra
algorithms on massively parallel architectures with DPLASMA,” in 25th
IEEE International Symposium on Parallel and Distributed Processing,
IPDPS 2011, Anchorage, Alaska, USA, 16-20 May 2011 - Workshop
Proceedings, 2011, pp. 1432-1441.

MPI Forum, “MPI: A Message-Passing Interface Standard Version 3.1,”
http://mpi-forum.org/docs/mpi-3.1/mpi3 1-report.pdf, June 4 2015.
OpenMP Architecture Review Board, “OpenMP Application
Program Interface, Version 4.0, http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf.

OpenMP Tools Working Group, “OpenMP Technical Report 2 on the
OMPT Interface,” http://openmp.org/mp-documents/ompt-tr2.pdf.

S. S. Shende and A. D. Malony, “The TAU Parallel Performance
System,” The International Journal of High Performance Computing
Applications, vol. 20, no. 2, pp. 287-311, May 2006.

Lawrence Livermore National Laboratory, “Caliper: Application Intro-
spection System,” https://computation.llnl.gov/projects/caliper.

