High Performance Development for High End
Computing with Python Language Wrapper (PLW)*

Piotr Luszczek " Jack Dongarra*

May 1, 2006

Abstract

This paper presents a design and implementation of a system that leverages interactive
scripting environment to the needs of scientific computing. The system allows seamless trans-
lation of high level script codes to highly optimized native language executables that can be
ported to parallel systems with high performance hardware and potential lack of the scripting
language interpreter. Performance results are given to show various usage scenarios that vary
in terms of invested programmer’s effort and resulting performance gains.

1 Introduction

The essential idea of PLW is to bring Rapid Application Development (RAD) style to scientific
computing by leveraging the agility of the Python language and a number of compilation tech-
niques to accommodate various High End Computing (HEC) environments. The solution-oriented
nature of Python invites fast prototyping and interactive creation of applications with surprisingly
short time-to-solution. However, the default mode of Python’s execution is interpretation of byte-
code and thus is not suitable for traditional HEC workloads. Using standard compilation techniques
is a very hard problem due to so called “duck typing”: Python is very permissive when it comes
to mixing objects together and using objects in various contexts. This style of programming is
elusive for the standard methods used in main stream language compilers — they rely heavily on
static type information provided by the programmer. However, by restricting a bit the syntax of
Python’s programs to a subset that is interesting to the HEC community, it is still possible to gener-
ate efficient code for scientific computing and leverage many of Python’s RAD features. Hence the
name: Python Language Wrapper (PLW). PLW wraps a Python-like language (by allowing only a
subset of Python syntax) in the Python code in order to deliver both performance and portability

*This work was supported in part by the DARPA, NSF, and DOE though the DAPRA HPCS program under grant
FA8750-04-1-0219.

TUniversity of Tennessee Knoxville

#University of Tennessee Knoxville and Oak Ridge National Laboratory

of the resulting code. As a result, PLW-enabled codes are still valid Python codes but not the other
way around.

This paper is organized as follows: section [2] describes some of the projects similar to PLW,
section [3] motivates the choice of Python and various translation methods, section] gives a more
detailed overview of various aspects of PLW , section [5| shows an example of a parallel code to-
gether with optimization process and resulting performance gains, and finally section [6| concludes
the paper and hints at extensions and future work.

2 Related Work

There have been efforts to make High Performance Computing more friendly to a casual user. A
rather complete approach was taken by the pMatlab project [1]] that not only includes bindings
to Message Passing Interface (MPI) [2] but also provides support for parallel objects. Another
Matlab-based approach was taken by Matlab*P [3] which uses client-server architecture to inter-
face the high performance resources. Finally, MathWorks is planning parallel extension to Matlab
despite the initial resistance to do so [4]. Titanium [35] is a language whose syntax closely resem-
bles Java (in fact it has become a superset of Java language). But with added constructs such as
multidimensional arrays and global address space, Titanium is well suited for parallel applications
such as its driving application: a Poisson solver with mesh refinement. Mixing high level language
such as Java and a low level one such as C was done by the Janet project [6].

The Python community stepped up to the challenge of making scientific computing easier by
creating modules that support multidimensional arrays — an effort collectively called Numeric [7]].
Over the years, the modules have evolved considerablyﬂ Also, a number of extensions provide
bindings to MPI: the difference between them is whether they require an extended interpreter [8]
or not [9]. The scipy.weaveﬂ project is probably the closest to our approach as it compiles
SciPy (Scientific Python) expressions to C++ for faster execution. A different perspective is offered
by Boost .Pytho which allows easy access to Python from C++ code — an example of broader
category of hybrid programmin

Finally, efforts to compile Python code into a native executable started with the py2c project.
It is no longer available but most of its code legacy continues as part of the standard compiler
package. A different effort called PyPy (see http://pypy.org/) has undertaken the task of im-
plementing Python in Python and thus making it much easier to perform various modifications of
the language such as optimization through type inference.

'See http://www.stsci.edu/resources/software_hardware/numarray| for more detailed description of
numarray and http://www.scipy.org/NumPy|for details on numpy.

2scipy.weave is part of the SciPy package and can be found at http://old.scipy.org/documentation/
weave.

3Seehttp://www.boost.org/libs/python/doc/ for details on Boost .Python.

4See http://www.boost-consulting.com/writing/bpl.html for a detailed article on the use of
Boost.Python.

http://pypy.org/
http://www.stsci.edu/resources/software_hardware/numarray
http://www.scipy.org/NumPy
http://old.scipy.org/documentation/weave
http://old.scipy.org/documentation/weave
http://www.boost.org/libs/python/doc/
http://www.boost-consulting.com/writing/bpl.html

3 Motivation

Python is a programming language that enables data abstraction — by now an old concept imple-
mented first by CLU [10]. But it is hardly a distinguishing feature in today’s computer languages.
Python’s unique assets include very large standard library, strong support for multidimensional
arrays through third-party modules, and true multithreading with POSIX threads (rather than just
continuation-based multitasking). In addition, Python’s Standard Library includes a compiler
module: a full featured Python language parsers that produces Abstract Syntax Trees (AST). Con-
tinuous perusal of this module throughout the translation process is the key to creating systems like
PLW where all of the seemingly unrelated components (such as the source code, the source code’s
directives, and external files with static type information) use the familiar Python syntax (but sub-
stantially differ in semantics) and allow for gradual performance tuning of the code as permitted
by the available programmer’s time and as necessitated by profiling information.

The essential ingredient for performance is static typing: all major languages used in HEC
are statically typed. There were many efforts to introduce static typing in Python and all of them
have failed to gain wide spread use [11]. While it is interesting to consider reasons for this, a
more imminent consequence is that attempting to add typing to Python should not be the goal but
rather the means. Also, adding static typing should not render the code inaccessible to the standard
Python interpreter — one of the main drivers behind Python’s application development agility. The
following modes of static type inference are considered in PLW :

1. Manual,
2. Semi-automatic, and
3. Fully automated.

In the manual mode, the programmer decides what are the types of objects. This is preferable
for performance-critical portions of the code and when the other modes fail. In the semi-automatic
mode, the programmer guides the type inference engine by narrowing down the potential set of
resulting types. For example, unit tests associated with a piece of code could be used for type
information and limit the number of usage scenarios. Finally, the fully automated mode would
attempt to infer the types of objects without programmers intervention — a rather ambitious task as
described later on.

As mentioned earlier, sometimes in language design the programmer’s convenience stands
in the way of performance of the resulting executable. Thus, by selecting the features included
in PLW, performance aspects will most often trump other considerations as long as they do not
severely harm the functionality.

4 Design

Figure [I] shows the design of PLW. As the input to the PLW translator, a regular Python code
is used possibly accompanied with directives, native code snippets and static type information.

Annotated Python code
def foo(x):
“PLWinline”

Dynamic library &

[Native code: AST]

[p——
| SWIG) | Pyrex m
_siP_J | Native code:

— C/C++, Fortran

Figure 1: By design, PLW translates annotated Python code into native language by using Python’s
native-language modules in form of dynamic libraries or generating a stand alone executable that
does not require the Python interpreter.

Python code:
- Py

Interpreter Yes

available?

Performance
OK?

Performance
OK?

VO

Python InterpreterJ

?

Dynamic
library
. C -—» C compiler

Directives:
"PLWi nli ne”

v

C compiler

i

Static typing
file:. pl w

\
I
I
I
I
I
| Optimizations based on inlining, static typing,

N and native code inclusion /

Figure 2: Overview of possible use-cases of PLW. The left portion of the diagram represents the
standalone executable scenario while the right hand side corresponds to the interpreted execution.

Depending on the invocation, the translator generates Python modules or a stand alone executable,
both of which come from the generated native code that may speed up the application execution.

Figure 2)illustrates various PLW’s usage scenarios. And so from the Python interpreter perspec-
tive, a PLW code is a regular Python source code and can be executed directly without changes.
If the performance of the code is acceptable and Python interpreter is available on the target plat-
form then no further action needs to be taken by the programmer: the use of PLW should not
impede Python’s standard development cycle. However, if either of the two is not true then the
PLW’s translator needs to be involved. If the translation is done because of portability problems,
then (most often) the code does not need to be changed and the porting is done by simply running
the PLW translator in the “dynamic typing” mode. If performance is an issue, then PLW may be
used to produce better performing native code from the original Python code. The native code can
be made available to a regular Python interpreter using Pyrex [12] or similar technologies. If using
the interpreter is not an option then the native code is generated for execution. The generation of
native code is done in two phases: first the AST of the native code is generated and then the actual
text is produced. This of course gives opportunity to perform additional optimization step on the
AST of the native code but currently is not done.

As was mentioned before, a subset of Python is available while working with PLW translator.
Currently the following data types, modules and libraries are available to PLW programs:

e Most of Python’s syntax is supported, except for highly dynamic features of Python that
modify various namespaces (modules, classes, functions) at runtime and the newest additions
to the language, e.g. generators, that have not gained wider acceptance from programmers’
community yet.

e Standard Python user data types: booleans, strings, integers, floats, complex values, lists,
tuples, slices, files, etc..

e Essential Python built-in functions.
e Essential Python modules: array, os, socket, string, sys, time.
e Multidimensional array module (a subset of numarray module).

e Numerical linear algebra libraries: BLAS [[13,114,15,116]], LAPACK [17], ScaLAPACK [18]],
PBLAS [[19]

e Communication libraries: MPI [20, 21, 22]] and BLACS][23]].
This has been sufficient to generate code for many useful applications but extending the above list

is certainly planned in the future.

4.1 Target Languages and Platforms

As mentioned above, one of the possibilities while developing an application is to translate it to
native code (for either performance or portability). PLW does not use assembly language as the

5

target but rather the C language. The generated code uses only a subset of C for maximum porta-
bility and lack of extra linker dependences (as opposed to languages like C++ or Fortran which
require extra libraries linked in to produce a binary). The disadvantage of using C as the target is
that many optimization techniques have to be implemented — techniques that, for example, C++
programmers take for granted such as inlining, template instantiation and template expressions.
Consequently, C++ is considered as a possible target but is only in experimental phase as of this
writing. In the future, the use of C++ might lead to a more compact output code by, for example,
the use of the Resource Allocation Is Initialization (RAII) technique and smart pointers for ref-
erence counting (the current automatic garbage-collection method). But the biggest advantage of
generating C++ is ability to directly interface to existing C++ libraries. By the similar argument,
using Fortran as translation target is also considered. Fortran 2003 has extensions to previous ver-
sions of the standard specification that make it an easy target for code generation and allow for
seamless interfacing with existing C libraries. Targeting multiple languages would require special
syntax for code inlining depending on the targeted language: such syntax is already present in the
current PLW implementation (see below).

As mentioned already, PLW targets architectures that are of interest for HEC tasks. It would
be hard (if not impossible) to port the Python interpreter to some of these architectures. As an
example, consider dynamic libraries — a feature heavily relied upon by the interpreter. Dynamic
linking is a problematic issue on IBM’s BlueGene/L. In general, on systems with light-weight
OS kernels (for example Cray XT3) many standard OS features are missing which might be a
major obstacle for porting the Python interpreter. This is when PLW’s translation to C becomes
very useful — the resulting C code has minimal requirements from the C compiler. Another feature
targeted for such non-standard environments is ability to remove features and modules from PLW’s
runtime to accommodate porting of the translated code. This is done by splitting the runtime into
separate libraries each of which may be built in a dummy mode — without any functionality and
no dependences. For example, if the target architecture does not support sockets, then the library
that implements the socket module is built in the dummy mode — applications can be ported
to such an architecture as long as they do not communicate through the socket interface. In the
standard Python environment, the socket module resides in a dynamic library and cannot be
disabled during the building and installation process.

Finally, to make the exposition more specific we list here the architectures on which the
PLW runtime was deployed. The operating systems that we used are AIX 4.3, AIX 5.2, Apple
Darwin PowerPC G5, IRIX64 6.5, Linux 2.4.21 ia64, Linux 2.4.18 x86, Linux 2.6.{8,14} x86
Linux 2.6.{5,13} x86-64, Linux 2.6.14 ppc64, Solaris 5.9, Solaris 5.10, UNICOS/mp 3.1.05, Cray
XT3 Catamount OS (no socket networking support). The tested compilers were from GNU, The
Portland Group, Cray, IBM, Sun, SGI, Intel (version 8.0 on x86 and ia64 architectures), and Path-
Scale. Tested processors were from Intel, AMD (x86, x86-64 and Itanium 2), IBM Power3,4,5,
PowerPC 440/GS5, UltraSPARC 1I/T1(Niagra), MIPS R12000, and Cray X1E. In the future we plan
investigate possibility of porting PLW to non-UNIX platforms such as Microsoft Windows and in
particular the Compute Cluster Edition as it sees acceptance for HPC workloads.

4.2 Adding Directives to Python Code

Code directives in scientific programs have a long history, the well known examples of standardized
code directives include High Performance Fortran (HPF) special comments and OpenMP pragmas
and comments. This concept can easily be used in Python. Python’s compiler module removes
comments during the parsing process. As a consequence, directives in the Python code cannot be
done with comments as it is the case with Fortrarﬂ Rather, strings could be used for that purpose.
The following example shows how adding directives is done in PLW: a function has directives
inside the so called doc-string (documentation string) and a for loop has a directive included in a
preceding string that has no effect on execution:

def square(x):
H""PLW inlinell""

"PLW parallel"
for i in range(len(x)):
x[1] *= x[i]

Again, both of these directives do not affect the execution process (and in fact are removed if the
Python interpreter is started with optimization enabled) but are included in the resulting AST (gen-
erated by the compiler module) for PLW’s back-end perusal. It is beneficial for the directives
not to use a new syntax but rather keep them as Python expressions and/or statements so that the
Python’s compiler module can be used to parse the directives. In addition, adhering to Python
syntax makes the resulting code look consistent.

The previous example showed a directive that looked like an OpenMP pragma — such func-
tionality is currently experimented with. The advantage of using OpenMP at Python level allows
for implementing transparent fallback to, for example, POSIX threads where there is no OpenMP
compiler available. A similar procedure for C-level pragmas would require interfacing with the
C compiler front-end or parsing the C code — neither of which is comparable to the ease of the
PLW approach. The same technique may be applied to, for example, request loop unrolling of
certain depth or inform the PLW translator of data dependences (or lack thereof) between objects
to allow more efficient code generation.

A more evolved example with static typing directives is shown on the left hand side of Figure[3]
The “PLW{” and “PLW}” mark the beginning and the end, respectively, of the section with type
declarations. The section itself is a valid Python code and can be easily parsed with the standard
compiler module. The meaning of the directive is deduced by traversing the resulting AST: in
this instance, the types of e and x are prescribed to be f1oat values. There is an alternative form
of providing static typing information: an external file (with extension plw) that has Python syntax
but semantics is valid only within PLW’s translator — an example is shown in Figure [3] on the
right. In fact, the code on the left in the figure may be considered a template while the declaration
on the right may be considered a template instantiation — a novel approach that makes generic
programming syntax shorter than, for example, C++ templates.

31t is possible to recover comments by using line information contained in the AST. However, it is complicated and
simpler methods are readily available.

def power(e, x): def power(e, x):
e e, x = float
PLW{ return float
e, x = float
PLW}

wmnn

return e ** x

Figure 3: Two ways of providing static type information: in function doc-strings (left) and in
external file with Python syntax (right).

Another use for directives could be programming by contract and aspect oriented programming.
The latter is particularly interesting in the context of parallel computing. However, both of these
features are beyond the scope of this article.

Figure 4] shows a sequential code for the STREAM test — a part of the HPC Challenge bench-
mark suite [24]. There is no explicit for loop: the iteration is made implicit using overloaded
operators + and * from a third-party module for multidimensional arrays called numarray. How-
ever, operator overloading as it is implemented now allocates additional arrays to store temporary
results. While in general, this does not create a substantial overhead, it might be necessary in some
situations (for example in constrained memory environments) to remove necessity for temporaries.
PLW offers another directive for such situations: the programmer may insert the native code. In the
figure, the native code consists of a few initialization statements and an explicit for loop. Upon
translation to C, the overloaded operator expression is replaced by the C code from the directive.
In this way, the programmer can include raw native code to be used whenever PLW cannot provide
a faster alternative — this could be used especially for performance-critical portions of the code as
is the case with the main for loop of the RandomAccess function. The directive includes (in the
square brackets) the language of the native code. Thus, if the example was translated to Fortran,
the code between “PLW[C] {” and “PLW[C] }”” would not be used and an alternative form in Fortran
would have to be provided.

Finally, decorators could be used for Python directives. However they have a number of draw-
backs. To begin with, only functions can have decorators so using directive for loops is out of
question. That, combined with still fresh deployment status (decorators were introduced in core
Python in version 2.4) of decorators makes them an unlikely tool for general purpose code direc-
tives.

4.3 Automatic Type Inference

It is possible to perform basic type-inference [25] in systems with recursive types and subtyp-
ing [26]. However, open questions still remain thus preventing broader use of such techniques in
common languages such as C [27], C++ [28] and Java [29] — at least to the extent it is done in
ML [30]. The inference mechanism becomes yet harder for the dynamically typed languages such
as Smalltalk [31], Self [32] or Python. Consequently, in order to use existing tools for automatic

def STREAM_Triad(a, b, x, c):
PLW[C]{
double *A, *B, X, *C;
int n;
PLW[C]}

nmnn

nmun

PLW[C]{

= plw_float_to_double (x);

(double*)plw_numarray_obj (

(double*)plw_numarray_obj (

(double*)plw_numarray_ob7 (

= plw_numarray_obj(a)->dim[1

for (1 = 0; 1 < n; ++i) {
A[i] = B[i] + X * C[1];

}

PLW[C]}

nmn

a)->data;
b)->data;
c
]

) ->data;

S5 QW o X
I

4

al:] =b + x * ¢

Figure 4: Reference implementation of STREAM-Triad test from the HPC Challenge suite.

def pingpong(nmax) :
buf = netlib.zeros(nmax, netlib.Int32)

npme = mpi.COMM_WORLD.rank ()
npall = mpi.COMM_WORLD.size ()
if npall < 2 or npme > 1: return

n=1
while n <= nmax:
t = -mpi.Wtime ()
if np.me:
mpi.COMM_WORLD.Recv (buf[:n], l1-np.me, 0)
mpi.COMM_WORLD.Send (buf[:n], l-np.me, 0)
else:
mpi.COMM_WORLD.Send (buf[:n], l1-np.me, O0)
mpi.COMM_WORLD.Recv (buf[:n], 1-np.me, O0)
t += mpi.Wtime ()

size = n * 4
if not np.me:
print size, t, size/t

n+=n/ 10 + 1

Figure 5: Python code for a simple MPI ping-pong test.

type analysis we are considering further restriction of Python syntax similarly to the notion of
RPython (Restricted Python) used by the PyPy project. The work on this aspect of PLW is still
preliminary.

5 Performance Results

The driving applications for PLW so far were the computational server of the LFC project [33]]
and the HPC Challenge benchmark. Both of them are too large to be discussed here in sufficient
detail. Instead, simplified examples were chosen: an MPI ping-pong code and a reduced version
of RandomAccess function from the HPC Challenge suite.

Figure [5] shows the MPI ping-pong program written in Python — the code should be self-
explanatory. The code could be used to test an MPI installation and is often used as a benchmark
for bandwidth and latency. The latter usage will be emphasized here to show how PLW allows con-
tinuous refinement of Python source code to achieve performance on par with low-level compiled
language.

10

110 — T T T T T T T T T

' D'y'r'1a|'”nic't'y'pi'ng'
Static typing —
100 .
90 .

80 r .

Fraction of C bandwidth [%]

50 r .

40 1 1 1 1 1 1 1 1
1 10 100 1000 100001000001e+06 le+07 1e+08 1e+09

Message size

Figure 6: Performance results on a GigE switch for the MPI ping-pong test.

110 L e B e e LS L

100 §

80 r .

60 r .

Fraction of C bandwidth [%]

40 + -

30 r Dynamic typing i

§tatic tylping —

20 1 1 1 1
1 10 100 1000 10000100000 1e+06 le+07 1e+08 1e+09

Message size

Figure 7: Performance results using memory-memory copy for the MPI ping-pong test.

def pingpong(nmax) :
nmax = int
buf = netlib.array(int, 1)
np-me, npall = int
n = int
t = double
size = int
return void

Figure 8: Static typing directives for the ping-pong code.

Figures [6] and [7] show results from running the program from Figure [5|on Intel Xeon 2.4 GHz
cluster with dual processor (single core) nodes and LAM 6.5.8 as an MPI implementation. Both
figures show performance relative to that of a reference C implementation. For each data size, a
few measurements were done and the maximum value is reported on the figures. The lines are
still not smooth enough due to the fact that the tested system was not completely dedicated during
runs and the ping-pong test code was simplified from the one that is used in the HPC Challenge.
Figure [6] shows performance numbers when data is sent through a GigE switch while the results
from Figure [/| were obtained on a single box with two processors: the MPI processes were com-
municating through shared memory and memory copying. Both of these test environments show
different performance characteristic with respect to PLW’s translation methods.

Two types of Python-to-C translation scenarios were tested. The “dynamic typing” scenario
did not use any of the static typing information and treated all objects (even the primitive ones like
int’s) as generic Python objects — the PLW runtime figured out the interactions between the objects
and thus added an interpretation overhead. The “static typing” scenario involved an external file
whose content is shown in Figure |8} This file informed the PLW translator about the types of the
objects. The information was then passed from PLW to the C compiler by generating an appropriate
source code with more specific type information. It was up to the C compiler then to deduce at
compile time the right interactions between objects.

The least effort approach is of course the dynamic typing scenario when the user only writes
Python code. As seen from Figures [6] and [7] this approach delivers the bandwidth of the native C
code at message sizes of about 100 KiB. However, if this is not satisfactory from the user perspec-
tive, just adding static type information from Figure (8| fully recovers the performance of C (note
that the static typing file uses Python syntax and can be parsed with Python’s compiler module).
Except for possibly message sizes below 10: if this is still not satisfactory, the programmer may
use techniques from section .2] to further improve the results.

Figure [0] shows a sequential code for the RandomAccess test — a part of the HPC Challenge
benchmark suite. The main for loop is preceded by a directive that includes C source code.
When the RandomAccess function is translated to C, the loop is replaced by the C code from the
directive rather than the translated Python code. In this instance, this is the only way to achieve
optimal performance as no Python modules can provide functionality required by RandomAccess
at the speed of the native code. Figure [10[shows the performance (measured in Giga Updates Per

12

def RandomAccess (table, n):
PLW[C]{
int i, N, Ran=1, *Table;
PLW[C]}

nmnn

ran = numarray.array(l, type=numarray.Int32)
nmmwn
PLW[C]{
N = plw_int_to_long(n);
Table = (int *)plw_numarray_obj(table)->data;
for (1 = N; 1; —-i) {
Ran = (Ran << 1) © ((Ran < 0) 2 7 : 0);
Table[Ran & (N-1)] "= Ran;
}
PLW([C]}
for i in range(n):
ran = (ran << 1) ° (numarray.any(ran < 0) and 7 or 0)
table[ran & (n-1)] "= ran

Figure 9: Reference implementation of the RandomAccess test using directives with embedded C
code.

13

1.73e-06

1.72e-06
1.71e-06

1.7e-06
1.69e-06
1.68e-06
1.67e-06
1.66e-06
1.65e-06
1.64e-06
1.63e-06

1.62e-06 -t —
1000 10000 100000 1e+06 le+07 1e+08

Table size

Performance [GUPS]

Figure 10: Performance of Python version of RandomAccess function.

0.12

0.1

0.08

0.06

0.04

Performance [GUPS]

0.02

0 L L M| L L L L L L L L L
1000 10000 100000 le+06 le+07 1le+08

Table size

Figure 11: Performance of translated Python version of RandomAccess function with inserted
native C code.

14

Second — GUPS) achieved at Python level while Figure |1 1| shows results of the code translated
using the directive with native code. The difference is three orders of magnitude. Also, the native
code version clearly shows how the performance of RandomAccess depends on the main table size
as it spills various cache levels. Any such effects in the Python version are suppressed by the
interpretation overhead.

6 Concluding Remarks

This paper showed a design and implementation of a software system called PLW that improves
application development time by leveraging agility of the Python language. At the same time,
PLW allows many options for gradual and selective improvement of performance of the resulting
code so that it can achieve the speed of the native code. This allows very focused tuning effort of
the performance-critical portion of the code while keeping the rest of the code unchanged and thus
easy to maintain.

Out of many possible future directions to consider for PLW is support for Global Address
Space (GAS) by using a back-end library such as GASNet [34] with a fallback support using one-
sided communication available in MPI-2. This would allow us to experiment with global address
space semantics in Python. Also, as mentioned previously, adding new computing platforms and
exploring type inference are interesting research directions to pursue.

References

[1] Nadya Travinin, R. Bond, Jeremy Kepner, and H. Kim. pMatlab: High productivity, high
performance scientific computing. 2005 SIAM Conference on Computational Science and
Engineering, February 12 2005. Orlando, FL.

[2] Jeremy Kepner and Stan Ahalt. MatlabMPI. Journal of Parallel and Distributed Computing,
64(8):997-1005, Aug 2004.

[3] Long Yin Choy and Alan Edelman. @ MATLAB*P 2.0: A unified parallel MAT-
LAB. Technical report, Massachusetts Institute of Technology, January 2003. URI:
http://libraries.mit.edu/dspace-mit/.

[4] Cleve Moler. Why there isn’t parallel Matlab. Mathworks Newsletter, 1995. Cleve’s corner.
2

[5] Kathy Yelick, Luigi Semenzato, Geoft Pike, Carleton Miyamoto, Ben Liblit, Arvind Krish-
namurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex Aiken. Tita-
nium: A high-performance Java dialect. Concurrency: Practice and Experience, 10(11-13),
September-November 1998. [2]

15

[6] Marian Bubak, Dawid Kurzyniec, and Piotr Luszczek. Convenient use of legacy software in
Java with Janet package. Future Generation Computer Systems, 17(8):987-997, June 2001.
Available: http://janet-project.sourceforge.net/. [

[7] Paul E. Dubois, Konrad Hinsen, and J. Hugunin. Numerical Python. Computers in Physics,
10(3), May-June 1996. [2]

[8] P. Miller. pyMPI — an introduction to parallel Python using MPI, 2002. Available:
http://www.1llnl.gov/computing/develop/python/pyMPI.pdf. 2]

[9] Konrad Hinsen. ScientificPython. URI: http://starship.python.net/~
hinsen/ScientificPython/.

[10] Barbara Liskov and Stephen Zilles. Programming with data types. In ACM SIGPLAN Con-
ference on Very High Level Languages. ACM, 1974.

[11] Michael Salib. Faster than C: Static type inference with Starkiller. In PyCon Proceedings,
Washington DC, March 24 2004. [3|

[12] Paul Prescod. Building python code with Pyrex. In PyCon Proceedings, Washington DC,
March 24 2004. 3

[13] Jack J. Dongarra, J. Du Croz, lain S. Duff, and S. Hammarling. Algorithm 679: A set of
Level 3 Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software,
16:1-17, March 1990. [3]

[14] Jack J. Dongarra, J. Du Croz, Iain S. Duff, and S. Hammarling. A set of Level 3 Basic Lin-
ear Algebra Subprograms. ACM Transactions on Mathematical Software, 16:18-28, March
1990. B

[15] Jack J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended set of FORTRAN
Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 14:1-17,
March 1988.

[16] Jack J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. Algorithm 656: An extended
set of FORTRAN Basic Linear Algebra Subprograms. ACM Transactions on Mathematical
Software, 14:18-32, March 1988. 3]

[17] E. Anderson, Z. Bai, C. Bischof, Suzan L. Blackford, James W. Demmel, Jack J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and Danny C. Sorensen. LAPACK
User’s Guide. Society for Industrial and Applied Mathematics, Philadelphia, Third edition,
1999.

[18] L. Suzan Blackford, J. Choi, Andy Cleary, Eduardo F. D’ Azevedo, James W. Demmel, Inder-
jit S. Dhillon, Jack J. Dongarra, Sven Hammarling, Greg Henry, Antoine Petitet, Ken Stanley,
David W. Walker, and R. Clint Whaley. ScallAPACK Users’ Guide. Society for Industrial
and Applied Mathematics, Philadelphia, 1997. E]

16

[19] Antoine Petitet. Algorithmic Redistribution Methods for Block Cyclic Decompositions. Com-
puter Science Department, University of Tennessee, Knoxville, Tennessee, December 1996.
PhD dissertation.

[20] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. The Inter-
national Journal of Supercomputer Applications and High Performance Computing, 8, 1994.

5

[21] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard (version 1.1),
1995. Available at: http://www.mpi-forum.org/. 3

[22] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface,
18 July 1997. Available at http://www.mpi-forum.org/docs/mpi-20.ps. [j

[23] Jack Dongarra and R. Clint Whaley. A user’s guide to the BLACS vl1.1. Technical Report
UT-CS-95-281, University of Tennessee Knoxville, March 1995. LAPACK Working Note 94
updated May 5, 1997 (VERSION 1.1). [§]

[24] Jack Dongarra and Piotr Luszczek. Introduction to the HPC Challenge benchmark suite.
Technical Report UT-CS-05-544, University of Tennessee, 2005.

[25] Jens Palsberg and Patrick M. O’Keefe. A type system equivalent to flow analysis. ACM
Transactions on Programming Languages and Systems, 17(4):576-599, 1995. Preliminary
version in Proc. POPL’95, 22nd Annual SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 367-378, San Francisco, California, January 1995. [§]

[26] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans. Program.
Lang. Syst., 15(4):575-631, 1993. [§]

[27] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall,
1978.

[28] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

[29] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley,
1996.

[30] Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML. MIT Press,
1990.

[31] Adele Goldberg and David Robson. Smalltalk-80 — the Language and its Implementation.
Addison-Wesley, 1983.

17

[32] David Ungar and Randall B. Smith. Self: The power of simplicity. Lisp and Symbolic Com-
putation, Kluwer Academic Publishers, 4(3), June 1991. First published in Proc. OOPSLA
‘87, Object-Oriented Programming systems, Languages and Applications, pages 227-241,
1987.

[33] Zizhong Chen, Jack Dongarra, Piotr Luszczek, and Kenneth Roche. Self-adapting soft-
ware for numerical linear algebra and LAPACK for Clusters. Parallel Computing, 29(11-
12):1723-1743, November-December 2003. [10]

[34] Dan Bonachea. GASNet specification, v1.1. Technical Report CSD-02-1207, UC Berkeley,
October 29, 2002. [15]

18

	Introduction
	Related Work
	Motivation
	Design
	Target Languages and Platforms
	Adding Directives to Python Code
	Automatic Type Inference

	Performance Results
	Concluding Remarks

