
For Peer Review

PLASMA: Parallel Linear Algebra Software for Multicore
Using OpenMP

Journal: Transactions on Mathematical Software

Manuscript ID TOMS-2017-0061.R1

Manuscript Type: 5 Regular Paper for RCR Initiative

Date Submitted by the Author: n/a

Complete List of Authors: Dongarra, Jack; University of Tennessee, Department of Electrical
Engineering & Computer Science
Gates, Mark; University of Tennessee, Department of Electrical Engineering
& Computer Science
Haidar, Azzam; University of Tennessee, Department of Electrical
Engineering & Computer Science
Kurzak, Jakub; University of Tennessee, Department of Electrical
Engineering & Computer Science
Luszczek, Piotr; University of Tennessee, Department of Electrical
Engineering & Computer Science
Wu, Panruo; University of Tennessee, Department of Electrical Engineering
& Computer Science

Yamazaki, Ichitaro; University of Tennessee, Department of Electrical
Engineering & Computer Science
YarKhan, Asim; University of Tennessee, Department of Electrical
Engineering & Computer Science
Abalenkovs, Maksims; The University of Manchester, School of
Mathematics
Bagherpour, Negin; The University of Manchester, School of Mathematics
Hammarling, Sven; The University of Manchester, School of Mathematics
Sistek, Jakub; The University of Manchester, School of Mathematics

Computing Classification
Systems:

Mathematics of computing~Mathematical software performance,
Mathematics of computing~Solvers, Computing methodologies~Shared
memory algorithms

Transactions on Mathematical Software

For Peer Review

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

PLASMA: Parallel Linear Algebra Software for Multicore Using
OpenMP

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

JACKDONGARRA,MARKGATES, AZZAMHAIDAR, JAKUBKURZAK, PIOTR LUSZCZEK, PAN-

RUO WU, ICHITARO YAMAZAKI, and ASIM YARKHAN, University of Tennessee, USA

MAKSIMSABALENKOVS,NEGINBAGHERPOUR, SVENHAMMARLING, JAKUBŠÍSTEK,DAVID

STEVENS, and MAWUSSI ZOUNON, The University of Manchester, UK

SAMUEL D. RELTON, The University of Leeds, UK

The recent version of the PLASMA (Parallel Linear Algebra Software for Multicore Architectures) library is based on tasks with
dependencies from the OpenMP standard. The main functionality of the library is presented. Extensive benchmarks are targeted on
three recent multicore and manycore architectures, namely an Intel Xeon, Intel Xeon Phi, and IBM POWER 8 processors.

CCS Concepts: • Mathematics of computing → Mathematical software performance; Solvers; • Computing methodologies
→ Shared memory algorithms;

Additional Key Words and Phrases: Numerical linear algebra libraries, tile algorithms, task-based programming, multicore processors,

OpenMP, PLASMA

ACM Reference Format:
Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Panruo Wu, Ichitaro Yamazaki, Asim YarKhan, Maksims
Abalenkovs, Negin Bagherpour, Sven Hammarling, Jakub Šístek, David Stevens, Mawussi Zounon, and Samuel D. Relton. 2017.
PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP. ACM Trans. Math. Softw. 0, 0, Article 00 (2017), 35 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION

The PLASMA numerical library (Parallel Linear Algebra Software for Multicore Architectures) is a dense linear algebra
package at the forefront of multicore computing. PLASMA has been a response to the advent of multicore processors,
proclaimed in the prominent 2005 article by Herb Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concur-
rency in Software” in Dr. Dobb’s Journal [Sutter 2005]. At that time, it became apparent that both LAPACK1 [Anderson
1http://www.netlib.org/lapack

The authors thank the Intel Corporation for their generous hardware donation and continuous financial support. They also thank the Oak Ridge
Leadership Computing Facility for providing access to the POWER8 system. This work has been supported by the National Science Foundation under
grants CCF-1339822 (SILAS) and CCF-1527706 (DARE), by the European Commission H2020 projects 671633 (NLAFET) and 671602 (INTERTWinE), and
by the Engineering and Physical Sciences Research Council project EP/M01147X/1 (SERT). .
Authors’ addresses: Jack Dongarra; Mark Gates; Azzam Haidar; Jakub Kurzak; Piotr Luszczek; Panruo Wu; Ichitaro Yamazaki; Asim YarKhan, University
of Tennessee, Department of Electrical Engineering & Computer Science, Knoxville, TN, 37996-3450, USA; Maksims Abalenkovs; Negin Bagherpour; Sven
Hammarling; Jakub Šístek; David Stevens; Mawussi Zounon, The University of Manchester, School of Mathematics, Manchester, M13 9PL, UK; Samuel D.
Relton, The University of Leeds, Institute of Health Sciences, Leeds, LS2 9LJ, UK.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

Page 1 of 35 Transactions on Mathematical Software

http://ctuning.org/ae/ppopp2016.html
https://doi.org/0000001.0000001
http://www.netlib.org/lapack

For Peer Review

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Dongarra, J. et al

et al. 1999] and ScaLAPACK2 [Blackford et al. 1997] were ill suited for efficient multicore execution. Initial work focused
on efficient multithreading of standard dense linear algebra algorithms (LU with partial pivoting, Cholesky, QR) using
the canonical, column-major, data layout of LAPACK [Kurzak and Dongarra 2006]. The debut of the STI Cell processor
in 2006 pushed the developments in new directions.

The most influential aspect of the STI Cell was the memory architecture based on software controlled caches. This
motivated tiling of the input matrices for efficient communication between the main memory and the caches. The
memory architecture, and its high internal bandwidth, promoted systolic algorithms with high degrees of pipelining.
At the same time, the 14× performance advantage of single precision over double precision, in the original Cell design,
stimulated the development of mixed precision algorithms. Notable papers from that era highlighted tiling, scheduling,
and mixed precision iterative refinement [Buttari et al. 2007; Gustavson et al. 2012; Kurzak et al. 2008; Kurzak and
Dongarra 2007, 2009; Langou et al. 2006]. All these artifacts influenced the design of the PLASMA library in one form
or another.

Seminal to PLASMA developments was also the idea of superscalar scheduling, which also gained initial traction as
a solution for the Cell processor [Bellens et al. 2006]. The CellSs system from the Barcelona Supercomputer Center
served as the initial inspiration for the development of the QUARK scheduler and its subsequent adoption in PLASMA
alongside Pthreads-based routines [Kurzak et al. 2013].

Before PLASMA managed to get significant traction with the user community, GPUs entered the mainstream of
HPC, and the MAGMA library [Agullo et al. 2009] became the focal point of dense linear algebra developments at UTK.
Due to the differences between GPUs and multicore processors, the design of MAGMA differs significantly from that
of PLASMA. Nevertheless, throughout its existence, PLASMA has served as a tremendous research vehicle for the
development of new algorithms and scheduling techniques.

Eventually, adoption of superscalar scheduling in the OpenMP standard motivated the retirement of QUARK in
favor of OpenMP, as well as retirement of the Pthreads routines. This transition was decided after our successful first
experiments with selected functions using the OpenMP tasks summarized in [YarKhan et al. 2016].

This article describes the final design of the OpenMP version of PLASMA, and assesses performance on a variety of
current multicore hardware configurations for a large set of routines. The most recent version, PLASMA 173, offers an
extensive collection of optimized routines for solving linear systems of equations and least squares problems.

PLASMA is designed to deliver high performance from a system with multiple sockets of multicore processors, an
objective achieved by combining state of the art solutions in parallel algorithms, scheduling, and software engineering.
In particular, PLASMA is built around the following three concepts.

Tile Matrix Layout. PLASMA utilizes a tile-based storage approach. The matrix is subdivided into square blocks,
called tiles, of relatively small size, with each tile occupying a continuous memory region. Tiles are loaded to the cache
memory efficiently with little risk of eviction while being processed. The use of the tile layout minimizes conflict
cache misses, translation lookaside buffer (TLB) misses, and false sharing, and maximizes potential for prefetching.
PLASMA contains parallel and cache efficient routines for converting between the conventional column-major and
the tile layouts. PLASMA currently stores both versions of the matrices, so it has larger memory requirements than
LAPACK.

2http://www.netlib.org/scalapack
3https://bitbucket.org/icl/plasma

Manuscript submitted to ACM

Page 2 of 35Transactions on Mathematical Software

http://www.netlib.org/scalapack
https://bitbucket.org/icl/plasma

For Peer Review

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 3

User Application

plasma_dgemm

plasma_omp_dgemm

plasma_pdgemm

core_omp_dgemm

core_dgemm

dgemm

#pragma omp parallel
#pragma omp master
{
 plasma_omp_dgemm
}

#pragma omp task depend...
{
 core_dgemm
}

{

{

PLASMA

COREBLAS

BLAS, LAPACK

Fig. 1. Overview of PLASMA structure with key parts of the OpenMP implementation. User-level routines are in the box.

Tile Algorithms. PLASMA is based on algorithms redesigned to work on tiles, which maximize data reuse in the
cache levels of multicore systems. Tiles are loaded to the cache and processed completely before being transferred back
to the main memory. Operations on small tiles create fine grained parallelism providing enough work to keep a large
number of cores occupied. Initial work on tile algorithms was published in [Agullo et al. 2009; Buttari et al. 2009], and a
recent overview for the development of tile algorithms can be found in [Abdelfattah et al. 2016].

Dynamic Scheduling. PLASMA relies on concurrent runtime scheduling of sequential tasks. Runtime scheduling
is based on the idea of assigning work to cores based on the availability of data for processing at any given point in
time, and thus is also sometimes called data-driven scheduling. The concept is related closely to the idea of expressing
computation through a task graph, often referred to as the DAG (Directed Acyclic Graph), and the flexibility of exploring
the DAG at runtime. This is in direct opposition to the fork-and-join scheduling, where artificial synchronization
points expose serial sections of the code and multiple cores are idle while sequential processing takes place. Currently,
PLASMA relies on OpenMP for dynamic, task-based, scheduling. Comparison of the two runtimes for PLASMA was
presented in [YarKhan et al. 2016] showing that the more general-purpose tasks of OpenMP are able to provide the
same performance as the more specialized QUARK. PLASMA makes use of tasks with dependencies and priorities,
therefore a compiler supporting these features of the OpenMP 4.5 standard is required.

The asynchronous execution of the sequential tasks generally makes very efficient use of the hardware, leading to
compact traces throughout the majority of the runtime. Traces typically become sparse only at the very beginning or
end of the algorithm, where algorithms do not expose enough parallelism and communication costs may dominate.

2 ALGORITHMS IN PLASMA

2.1 Structure of PLASMA

PLASMA closely follows the structuring of functionality found in the LAPACK and BLAS libraries [Dongarra et al.
1990a,b, 1988a,b; Lawson et al. 1979]. Let us take the example of matrix-matrix multiply in double real precision; the

Manuscript submitted to ACM

Page 3 of 35 Transactions on Mathematical Software

For Peer Review

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Dongarra, J. et al

real complex
64 bit (double) dgemm zgemm
32 bit (single) sgemm cgemm

Table 1. An example of the naming conventions for matrix matrix multiply (□gemm).

well known dgemm routine. Four different versions are provided for most subroutines, related to different data precisions
and distinguished by the leading letter; see Table 1. We use □ as a generic symbol for any of these precisions.

The PLASMA routine stack is depicted in Fig. 1. Two different levels of functions are exposed to the user. The top
level function, plasma_dgemm, is a parallel analog of the dgemm from BLAS; see the listing in Fig. 2. Note that this is
rather different from the implementation in the well known PBLAS library4 for distributed memory architectures.
During the execution of this function, a parallel section of OpenMP is opened by #pragma omp parallel. This is where
a number of OpenMP threads are spawned, as specified by the OMP_NUM_THREADS environment variable. All of the code
within this block is executed by the master thread only; note the #pragma omp master directive in Fig. 2. Tasks are
generated by the master thread, inside the function calls within the parallel region, and are executed by all the available
threads in an asynchronous manner. The master thread proceeds to the end of the parallel region, where it joins the
working threads in executing the tasks it has produced. The end of the parallel block acts as a synchronization point,
and the execution proceeds beyond this point only after all the tasks have been completed and OpenMP threads closed.

The second level functions in this example are plasma_omp_zge2desc, plasma_omp_dgemm, and plasma_omp_zdesc2ge.
The plasma_omp_zge2desc and plasma_omp_zdesc2ge functions serve for translation of the data layout between
LAPACK column-major and tile storage; see Section 2.8. The main function here is plasma_omp_dgemm, which is also
exposed to the user, and its simplified body is shown in Fig. 3. For our chosen dgemm example this function contains just
one call to an internal routine with a tile algorithm; i.e. plasma_pdgemm, however multiple algorithms may be combined
on this level. Combining multiple algorithms in this way allows their execution to overlap in an asynchronous manner.
This overlap of algorithms can significantly reduce the overall execution time for these combined functions, and it is one
of the main strengths of PLASMA. This is also the primary reason for exposing the second level of PLASMA functions,
which an advanced user can fuse in a custom order inside a user-defined OpenMP parallel region. This interface also
allows an advanced user to have fine control over the number of OpenMP threads and their placement. For example,
one can run a PLASMA algorithm on a prescribed number of threads specified at the #pragma omp parallel clause
by the num_threads() keyword.

The heart of PLASMA, a tile-based algorithm, is implemented inside the plasma_pdgemm function; see Fig. 4. Inside
this function, which is still executed only by the master thread, loops over matrix tiles appear and functions that process
tiles are called. These functions, also called computational kernels, are part of the COREBLAS library, which forms a
self-standing part of PLASMA.

In the dgemm example, the only computational kernel involved is the core_omp_dgemm function, see Fig 5. An OpenMP
task with data dependencies is generated inside this function by the master thread and enqueued into the OpenMP
runtime. From the body of the task, a call to the core_dgemm function (Fig. 6) is made. In this example the task consists
of calling a sequential version of the dgemm routine from the CBLAS library (i.e. a C wrapper of BLAS), involving three
tiles. In general, the sequential kernels in PLASMA map to simple calls to BLAS routines, calls to LAPACK routines, or
custom implementations derived specifically for tile algorithms (e.g. in the case of the QR factorization). The reason for

4http://www.netlib.org/scalapack/pblas_qref.html

Manuscript submitted to ACM

Page 4 of 35Transactions on Mathematical Software

http://www.netlib.org/scalapack/pblas_qref.html

For Peer Review

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 5

int plasma_dgemm(plasma_enum_t transA , plasma_enum_t transB ,

double alpha , double *pA, int lda ,

double *pB, int ldb ,

double beta , double *pC, int ldc)

{

...

// asynchronous block

#pragma omp parallel

#pragma omp master

{

// Translate matrices from LAPACK to tile layout

plasma_omp_zge2desc(pA, lda , A);

plasma_omp_zge2desc(pB, ldb , B);

plasma_omp_zge2desc(pC, ldc , C);

// Call the asynchronous function

plasma_omp_dgemm(transA , transB ,

alpha , A,

B,

beta , C);

// Translate result back to LAPACK layout

plasma_omp_zdesc2ge(C, pC, ldc);

}

// implicit synchronization

...

}

Fig. 2. An example of the plasma_dgemm top-level function. Only the master thread executes the code in the parallel block, then
creates and enqueues sequential tasks. The plasma_omp_zge2desc and plasma_omp_zdesc2ge serve for translating a matrix from
LAPACK to tile layout of the PLASMA matrix descriptor and vice versa.

void plasma_omp_dgemm(plasma_enum_t transA , plasma_enum_t transB ,

double alpha , plasma_desc_t A,

plasma_desc_t B,

double beta , plasma_desc_t C)

{

// Call the parallel function

plasma_pdgemm(transA , transB ,

alpha , A,

B,

beta , C);

}

Fig. 3. An example of the second-level function plasma_omp_dgemm. The code is executed only by the master thread.

separating the core_omp_dgemm function, which creates the task, from the core_dgemm, which implements the kernel
is allowing the same kernel to be used from different runtime systems, and even from outside of PLASMA (e.g. by the
DPLASMA library [Bosilca et al. 2011, 2010a,b, 2012]5).

5http://icl.cs.utk.edu/dplasma

Manuscript submitted to ACM

Page 5 of 35 Transactions on Mathematical Software

http://icl.cs.utk.edu/dplasma

For Peer Review

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Dongarra, J. et al

#define A(m, n) (double *) plasma_tile_addr(A, m, n)

#define B(m, n) (double *) plasma_tile_addr(B, m, n)

#define C(m, n) (double *) plasma_tile_addr(C, m, n)

void plasma_pdgemm(plasma_enum_t transA , plasma_enum_t transB ,

double alpha , plasma_desc_t A, plasma_desc_t B,

double beta , plasma_desc_t C)

{

for (int m = 0; m < C.mt; m++) {

int mvcm = plasma_tile_mview(C, m);

int ldcm = plasma_tile_mmain(C, m);

for (int n = 0; n < C.nt; n++) {

int nvcn = plasma_tile_nview(C, n);

if (transA == PlasmaNoTrans && transB == PlasmaNoTrans) {

for (int k = 0; k < A.nt; k++) {

int nvak = plasma_tile_nview(A, k);

int ldbk = plasma_tile_mmain(B, k);

double zbeta = k == 0 ? beta : 1.0;

// Call the kernel

core_omp_dgemm(transA , transB ,

mvcm , nvcn , nvak ,

alpha , A(m, k), ldam ,

B(k, n), ldbk ,

zbeta , C(m, n), ldcm);

}

}

else {

// These options were omitted from the listing.

}

}

}

}

Fig. 4. Skeleton of the tile matrix matrix multiply plasma_pdgemm. The mt and nt are numbers of rows and columns of tiles of
a matrix stored in the tile layout. The macros A(m, n), B(m, n), and C(m, n) at the top expand to the plasma_tile_addr
function, which returns the address of the first entry of the tile on the m-th tile-row and in the n-th tile-column of the corresponding
matrix. The plasma_tile_mview and plasma_tile_nview functions return the number of rows and columns in a local tile. The
plasma_tile_mmain function returns the leading dimension of the tile, which can be different from m if the matrix descriptor is a
submatrix (called ‘view’) of another matrix descriptor without a deep data copy.

2.2 Parallel BLAS

PLASMA contains a full set of routines from the Level 3 BLAS; see Table 2. BLAS routines in PLASMA are parallelized
by tiling. Their implementations are mostly straightforward loop nests, and individual tasks are essentially calls to
sequential BLAS. The listing in Fig. 4 has already shown the simplified tile matrix matrix multiplication (plasma_pdgemm
routine).

Parallel BLAS routines in PLASMA are algorithmically equivalent to their reference Netlib implementations6.

2.3 Parallel Norms

PLASMA contains a set of routines for computing matrix norms, specifically the max, one, infinity, and Frobenius

norms. PLASMA employs tiling for increased parallelism within the norm computations. While being mostly memory
bound, PLASMA norm routines still benefit from multithreading, as usually a single core cannot saturate the memory
6http://www.netlib.org/blas

Manuscript submitted to ACM

Page 6 of 35Transactions on Mathematical Software

http://www.netlib.org/blas

For Peer Review

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 7

void core_omp_dgemm(plasma_enum_t transA , plasma_enum_t transB ,

int m, int n, int k,

double alpha , const double *A, int lda ,

const double *B, int ldb ,

double beta , double *C, int ldc)

{

int ak = (transA == PlasmaNoTrans) ? k : m;

int bk = (transB == PlasmaNoTrans) ? n : k;

#pragma omp task depend(in:A[0:lda*ak]) \

depend(in:B[0: ldb*bk]) \

depend(inout:C[0: ldc*n])

{

core_dgemm(transA , transB ,

m, n, k,

alpha , A, lda ,

B, ldb ,

beta , C, ldc);

}

}

Fig. 5. An example of the definition of the sequential core_omp_dgemm task. The OpenMP task consists of a call to sequential
core_dgemm routine. Some parameters have been omitted for brevity.

void core_dgemm(plasma_enum_t transA , plasma_enum_t transB ,

int m, int n, int k,

double alpha , const double *A, int lda ,

const double *B, int ldb ,

double beta , double *C, int ldc)

{

cblas_dgemm(CblasColMajor ,

transA , transB ,

m, n, k,

alpha , A, lda ,

B, ldb ,

beta , C, ldc);

}

Fig. 6. An example of the definition of the sequential core_dgemm kernel. In this example, the function just calls a sequential BLAS
dgemm routine. Some parameters have been omitted for brevity.

Table 2. Level 3 BLAS routines.

Name Description
□gemm matrix matrix multiply
□hemm Hermitian matrix matrix multiply
□her2k Hermitian rank-2k update to a matrix
□herk Hermitian rank-k update to a matrix
□symm symmetric matrix matrix multiply
□syr2k symmetric rank-2k update to a matrix
□syrk symmetric rank-k update to a matrix
□trmm triangular matrix matrix multiply
□trsm triangular solve with multiple right hand sides

Manuscript submitted to ACM

Page 7 of 35 Transactions on Mathematical Software

For Peer Review

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Dongarra, J. et al

Name Description
□lange norm of a (general) matrix
□lanhe norm of a Hermitian matrix
□lansy norm of a symmetric matrix
□lantr norm of a triangular or trapezoidal matrix

Table 3. Matrix norm routines.

Name Description Definition
PlasmaMaxNorm max norm - maximum absolute value | |A| |max = max

1≤i≤m,1≤j≤n
|ai j |

PlasmaOneNorm one norm - maximum column sum | |A| |1 = max
1≤j≤n

m∑
i=1
|ai j |

PlasmaInfNorm infinity norm - maximum row sum | |A| |∞ = max
1≤i≤m

n∑
j=1
|ai j |

PlasmaFrobeniusNorm Frobenius norm - square root of sum of squares | |A| |F =
*.
,

m∑
i=1

n∑
j=1
|ai j |

2+/
-

1/2

Table 4. Matrix norm types.

bandwidth. Table 3 lists all the norm routines implemented in PLASMA, and Table 4 lists all the types of norms
supported.

An example of the tile version of the function computing the one norm of a general matrix is provided in Fig. 7. In
this routine, the vector of column sums is first computed for each tile. Then the partial results are combined in a final
reduction step. In the infinity norm routine, the same approach is applied row-wise. In the Frobenius norm routine,
the sum of squares is computed for each tile, then the partial results are combined, and then the square root is taken.
The Frobenius norm follows the LAPACK approach of scaling the results along the way, to minimize roundoff errors
(See the LAPACK □lassq routine for details). In general, computing partial sums should be beneficial, rather than
detrimental, to the numerical stability of the norm computations. Tiling has no effect on the max norm, as the operation
is order invariant.

In Fig. 7, the core_omp_dlange kernel is just a simple call to the sequential dlange function from LAPACK, which
computes the matrix norm of the tile. The core_omp_dlange_aux kernel is a custom kernel computing the row or
column sums of the tile into a vector without finding their maxima.

In addition, PLASMA contains the [dz|sc|d|s]amax routine, which computes the max norm for each column of a
matrix, and returns the result as a vector. This routine is needed for checking the convergence of the solution in the
iterative refinement process of the mixed precision solvers; see Section 2.5.

2.4 Linear Systems

PLASMA contains a set of routines for solving linear systems of equations, both full and band. Routines for solving
general systems of equations rely on the LU factorization with partial (row) pivoting, routines for solving symmetric
positive definite (SPD) systems rely on the Cholesky factorization, and routines for solving symmetric (not necessarily
positive definite) systems rely on the LDLT factorization by Aasen’s algorithm [Aasen 1971].
Manuscript submitted to ACM

Page 8 of 35Transactions on Mathematical Software

For Peer Review

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 9

void plasma_pdlange(plasma_enum_t norm ,

plasma_desc_t A, double *work , double *value)

{

switch (norm) {

double *workspace;

case PlasmaOneNorm:

for (int m = 0; m < A.mt; m++) {

int mvam = plasma_tile_mview(A, m);

int ldam = plasma_tile_mmain(A, m);

for (int n = 0; n < A.nt; n++) {

int nvan = plasma_tile_nview(A, n);

core_omp_dlange_aux(PlasmaOneNorm ,

mvam , nvan ,

A(m, n), ldam ,

&work[A.n*m+n*A.nb]);

}

}

#pragma omp taskwait

workspace = work + A.mt*A.n;

core_omp_dlange(PlasmaInfNorm ,

A.n, A.mt,

work , A.n,

workspace , value);

break;

case ...

// Other options were omitted from the listing.

}

}

Fig. 7. Example of the routine for norm of a general matrix plasma_pdlange. Only the one-norm branch is kept in the listing. The
#pragma omp taskwait is a necessary synchronization and the master thread waits for completion of all the enqueued tasks before
proceeding to the final accumulation. The work and workspace arrays contain memory preallocated by the user that is used by the
subroutines for intermediate storage. The listing has been simplified for brevity.

Dense. Table 5 lists all the linear systems routines implemented in PLASMA. Like LAPACK, PLASMA provides a
routine for solving a system of linear equations, as well as a routine for only factoring the matrix, and a routine for
solving a system using a previously factored matrix. This allows for a matrix to be factorized once, and reusing the
result for repeatedly solving different right hand sides.

Band. Table 6 lists all the band linear solvers that PLASMA implements. PLASMA’s nonsymmetric band linear solver
is based on a band version of the LU factorization, while for solving an SPD band system of linear equations, it uses a
band version of the Cholesky factorization.

To maintain the numerical stability, our band LU routine performs partial (row) pivoting. When the pivoting is
applied to the previous columns of L, it could completely destroy its band structure. In order to avoid these fills, LAPACK
only applies the pivoting to the remaining columns. On the other hand, PLASMA’s band LU routine relies on the
PLASMA’s LU panel factorization routine that explicitly applies the pivots to the previous columns within the panel.
Hence, though PLASMA returns the LU factors in the LAPACK’s band matrix format, to store these potential fills, its
leading dimension must accommodate the additional nd − 1 entries on the bottom, where nd is the tile size.

Manuscript submitted to ACM

Page 9 of 35 Transactions on Mathematical Software

For Peer Review

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Dongarra, J. et al

Name Description
□gesv linear system solve
□getrf triangular factorization
□getrs linear system solve (previously factored)
[z|c] hesv Hermitian linear system solve
[z|c] hetrf Hermitian triangular factorization
[z|c] hetrs Hermitian linear system solve (previously factored)
□posv positive definite linear system solve
□potrf positive definite triangular factorization
□potrs positive definite linear system solve (previously factored)
[d|s] sysv symmetric linear system solve
[d|s] sytrf symmetric triangular factorization
[d|s] sytrs symmetric linear system solve (previously factored)

Table 5. Linear systems routines.

Name Description
□gbsv band linear system solve
□gbtrf band triangular factorization
□gbtrs band linear system solve (previously factored)
□pbsv band positive definite linear system solve
□pbtrf band positive definite triangular factorization
□pbtrs band positive definite linear system solve (previously factored)

Table 6. Band linear systems routines.

Algorithm 1: Cholesky-based solution of AX = B (plasma_omp_dposv)
Data: A, B
Result: X
A = LLT Cholesky factorization of matrix A, plasma_pdpotrf;
LY = B forward solve, plasma_pdtrsm;
LTX = Y backward solve, plasma_pdtrsm;

2.4.1 Cholesky factorization. The Cholesky factorization is a straightforward algorithm to be written in the tile-
oriented fashion [Buttari et al. 2009; Haidar et al. 2011], and Fig. 8 shows the algorithm used in PLASMA. Apart from
using the core_omp_dgemm kernel from Fig. 5, it uses the core_omp_dpotrf kernel for Cholesky factorization of a tile
by calling the LAPACK dpotrf function, the core_omp_dtrsm function for solving a system with a triangular matrix,
and the core_omp_dsyrk for a rank-k update of a symmetric matrix.

The Cholesky factorization is the basis for solving linear systems of equations, where coefficients form a symmetric
positive definite (SPD) matrix. It is part of the plasma_omp_□posv routine (Algorithm 1), in which the individual stages
are overlapped. A call to the plasma_□potrf routine should also precede a call to the plasma_□potrs routine, which
can be called repeatedly for new right hand sides, and uses the Cholesky factors as input. While this version based
on the top-level PLASMA interfaces would not be overlapped, doing the same with the second-level interfaces of
plasma_omp_□potrf and plasma_omp_□potrs allows a user to benefit from the overlapping. Cholesky factorization is
also the basis for computing the inverse of an SPD matrix, see Section 2.6.
Manuscript submitted to ACM

Page 10 of 35Transactions on Mathematical Software

For Peer Review

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 11

void plasma_pdpotrf(plasma_enum_t uplo , plasma_desc_t A)

{

if (uplo == PlasmaUpper) {

for (int k = 0; k < A.nt; k++) {

int nvak = plasma_tile_nview(A, k);

int ldak = plasma_tile_mmain(A, k);

core_omp_dpotrf(PlasmaUpper , nvak ,

A(k, k), ldak);

for (int m = k+1; m < A.nt; m++) {

int nvam = plasma_tile_nview(A, m);

core_omp_dtrsm(PlasmaLeft , PlasmaUpper ,

PlasmaConjTrans , PlasmaNonUnit ,

A.nb, nvam ,

1.0, A(k, k), ldak ,

A(k, m), ldak);

}

for (int m = k+1; m < A.nt; m++) {

core_omp_dsyrk(

PlasmaUpper , PlasmaConjTrans ,

nvam , A.mb,

-1.0, A(k, m), ldak ,

1.0, A(m, m), ldam);

for (int n = k+1; n < m; n++) {

core_omp_dgemm(

PlasmaConjTrans , PlasmaNoTrans ,

A.mb, nvam , A.mb,

-1.0, A(k, n), ldak ,

A(k, m), ldak ,

1.0, A(n, m), ldan);

}

}

}

}

else {

// This option was omitted from the listing.

}

}

Fig. 8. Algorithm for the Cholesky factorization plasma_pdpotrf. Only the branch for storing the upper triangle of the matrix is
shown. The listing has been simplified for brevity.

2.4.2 LU factorization. The critical component of the LU factorization is the step of factoring a panel, which in
PLASMA is a column of tiles. This operation is on the critical path of the algorithm and has to be optimized to the
fullest. At the same time, a naive implementation, such as the □getf2 routine in LAPACK, is memory bound.

The current implementation of the LU panel factorization in PLASMA is a result of convergence of multiple different
research efforts, specifically the work on Parallel Cache Assignment (PCA) by Castaldo et al. [Castaldo and Whaley
2010], and the work on parallel recursive panel factorization by Dongarra et al. [Dongarra et al. 2014]. Also, the survey
by Donfack et al. [Donfack et al. 2015] provides a good overview of different implementations of the LU factorization.

The panel factorization is shown in Fig. 9. It relies on internal blocking and persistent assignment of tiles to threads.
Unlike past implementations, it is not recursive, as plain recursion proved inferior to blocking. Memory residency
provides cache reuse for the factorization of sub-panels, while blocking provides some level of compute intensity for

Manuscript submitted to ACM

Page 11 of 35 Transactions on Mathematical Software

For Peer Review

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Dongarra, J. et al

Algorithm 2: LU-based solution of AX = B (plasma_omp_dgesv)
Data: A, B
Result: X
PA = LU LU factorization of matrix A, plasma_pdgetrf;
B̃ = PB row permutation of B, plasma_pdgeswp;
LY = B̃ forward solve, plasma_pdtrsm;
UX = Y backward solve, plasma_pdtrsm;

the sub-tile update operations. The result is an implementation that is not memory bound and scales well with the
number of cores.

Priorities on tasks serve as hint for the OpenMP runtime to schedule the tasks on the critical path, namely the panel
factorization, the update of the subsequent block column, and their nested tasks, as soon as their dependencies are
satisfied.

The complete LU factorization, including the panel factorization, and the updates to the trailing submatrix, is
multithreaded differently than other operations in PLASMA. Due to some operations affecting entire columns of tiles,
data-dependent tasks are created for column operations, not tile operations, i.e., dependency tracking is resolved
at the granularity of columns, not individual tiles. To allow transition between the tile-oriented algorithms and the
column-oriented LU, dummy tasks have been introduced. These tasks do not perform any useful work, and their only
purpose is inserting data dependencies of the column on all its tiles and vice versa. This translation of data dependency
seems needed due to the lack of multi-dependencies in OpenMP, which would allow a loop over addresses in the depend
clause. An example of dummy tasks inserted in front of the panel factorization is shown in Fig. 10.

Nested tasks are created within each panel factorization, and internally synchronized using thread barriers. Similarly,
nested tasks are created within each column of □gemm updates, and synchronized with the #pragma omp taskwait

clause, before exiting the parent task. Waiting for completion of the nested tasks is necessary for correct dependency-
tracking at the column granularity.

The LU factorization is the basis for routines for solving systems of linear equations. It is part of the plasma_omp_□gesv
routine (Algorithm 2), in which the individual stages are overlapped. A call to the plasma_dgetrf routine should also
precede a call to the plasma_dgetrs routine, which can be called repeatedly for new right hand sides, and uses the LU
factors as input.

2.4.3 LDLT factorization. To solve a symmetric indefinite linear system, PLASMA first reduces the symmetric matrix
into a band form by the tiled Aasen’s algorithm [Aasen 1971; Ballard et al. 2014], see also [Higham 2002] for its analysis.
This is different from the blocked Aasen’s algorithm [Rozložník et al. 2011] implemented in LAPACK, and the bound on
the backward error depends linearly on the tile size. At each step, the algorithm first updates the panel in a left-looking
fashion. To exploit the limited parallelism for updating each tile of the panel, PLASMA applies a parallel reduction and
accumulates a set of independent updates into a user-supplied workspace. How much parallelism the algorithm can
exploit depends on the number of tiles in the panel and the amount of the workspace provided by the user. Once the
update is completed, the panel is factorized using the LU panel factorization routine. Hence, the algorithm follows the
task dependencies by columns in the nested fashion, as described in the previous section.

Then, in the second stage of the algorithm, the band matrix is factored using the PLASMA band LU factorization
routine. Since there is no explicit global synchronization, a task to factor the band matrix can be started as soon as all
Manuscript submitted to ACM

Page 12 of 35Transactions on Mathematical Software

For Peer Review

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 13

double *a00 , *a20;

a00 = A(k, k);

a20 = A(A.mt -1, k);

int ma00k = (A.mt-k-1)*A.mb;

int na00k = plasma_tile_nmain(A, k);

int lda20 = plasma_tile_mmain(A, A.mt -1);

int nvak = plasma_tile_nview(A, k);

int mvak = plasma_tile_mview(A, k);

int ldak = plasma_tile_mmain(A, k);

int num_panel_threads = imin(plasma ->max_panel_threads ,

minmtnt -k);

#pragma omp task depend(inout:a00 [0: ma00k*na00k]) \

depend(inout:a20 [0: lda20*nvak]) \

depend(out:ipiv[k*A.mb:mvak]) \

priority(1)

{

volatile int *max_idx = (int*) malloc(num_panel_threads*sizeof(int));

volatile double *max_val = (double *) malloc(num_panel_threads*sizeof(double));

volatile int info = 0;

plasma_barrier_t barrier;

plasma_barrier_init (& barrier);

#pragma omp taskloop untied shared(barrier) \

num_tasks(num_panel_threads) \

priority(2)

for (int rank = 0; rank < num_panel_threads; rank ++) {

{

plasma_desc_t view =

plasma_desc_view(A,

k*A.mb, k*A.nb,

A.m-k*A.mb, nvak);

core_dgetrf(view , &ipiv[k*A.mb], ib,

rank , num_panel_threads ,

max_idx , max_val , &info ,

&barrier);

}

}

#pragma omp taskwait

free((void*) max_idx);

free((void*) max_val);

for (int i = k*A.mb+1; i <= imin(A.m, k*A.mb+nvak); i++)

ipiv[i-1] += k*A.mb;

}

Fig. 9. Implementation of the LU panel factorization based on nested tasks with priorities. The plasma_desc_view function creates a
descriptor for a submatrix, using the original memory of the parent matrix. The ipiv array stores the indices of rows for permutation
due to pivoting.

the data dependencies are satisfied. This allows the execution of these two algorithms to be merged, improving the
parallel performance, especially since both algorithms have limited amount of parallelism that can be exploited. A more
detailed description and performance analysis of the algorithm can be found in [Yamazaki et al. 2018].

Manuscript submitted to ACM

Page 13 of 35 Transactions on Mathematical Software

For Peer Review

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Dongarra, J. et al

double *a00 = A(k, k);

for (int m = k+1; m < A.mt -1; m++) {

double *amk = A(m, k);

#pragma omp task depend (in:amk [0]) \

depend (inout:a00 [0])

{ // Some useless work is done here.

int l = 1;

l++;

}

}

Fig. 10. An example of dummy tasks introduced for creating dependency of a panel starting at address A(k, k) on all its tiles A(m, k).

Name Description

[zc|ds]gesv linear system solve
[zc|ds]posv positive definite linear system solve

Table 7. Mixed precision routines

2.5 Mixed Precision

PLASMA implements mixed precision routines for the solution of general linear systems of equations and SPD systems
of equations. PLASMA mixed precision routines are algorithmically equivalent to their LAPACK counterparts. Table 7
lists all the mixed precision routines implemented in PLASMA.

The algorithms are based on factorizing the matrix in reduced precision (32 bits) and recovering the full precision
accuracy (64 bits) in the process of iterative refinement. The approach is motivated by the performance advantage
of single precision arithmetic over double precision arithmetic, which is typically twofold. If the input matrix is well
conditioned, and the full precision can be recovered in a few steps of refinements, double precision solution can be
delivered almost at the speed of computing the single precision solution [Baboulin et al. 2009; Buttari et al. 2007; Langou
et al. 2006].

Algorithm 3 summarizes the iterative refinement method in mixed precision for SPD matrices implemented in
PLASMA. Dotted quantities Ȧ, L̇, ẋ , ẏ, ḃ, ḋ, ṙ denote values in single precision. Adding and removing a dot to a vector
corresponds to conversion from double to single precision and vice versa. In order for the algorithm to calculate
a residual, a copy of the matrix in full precision needs to be preserved. This incurs additional memory requirements.

In case the refinement procedure does not converge (i.e. backward error stopping criterion is not met) after 30 itera-
tions, the routine falls back to solving the system with a standard algorithm in full precision.

2.6 Matrix Inversion

PLASMA contains a set of routines for computing the inverse of a matrix. Routines for inverting general matrices rely
on the LU factorization with partial (row) pivoting, whilst routines for inverting SPD matrices rely on the Cholesky
factorization, see Algorithms 4 and 5. The inversion routines are split into three phases: the factorization of the matrix
into triangular factors, the inversion of a triangular factor, and the reconstruction of the inverse from its factor.

In general, matrix inversion should not be used for solving linear systems of equations for stability reasons. Instead,
matrix factorizations such as LU, LLT or LDLT should be used, followed by forward and backward substitution. Yet,
Manuscript submitted to ACM

Page 14 of 35Transactions on Mathematical Software

For Peer Review

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 15

Algorithm 3: Iterative refinement procedure for solution of linear system Ax = b with an SPD matrix A in mixed
precision (plasma_dsposv)
Data: A,b
Result: x
Ȧ = L̇ L̇T Factorize Ȧ using Cholesky algorithm, plasma_pspotrf;
L̇ ẏ = ḃ Solve linear system, plasma_pstrsm;
L̇T ẋ = ẏ Solve linear system, plasma_pstrsm;
r = b −Ax Compute residual, plasma_pdsymm;
if | |r | |max ≥ ||x | |max | |A| |∞ ε

√
n then

x1 = x Save computed solution;
repeat

L̇ ẏ = ṙi Solve linear system for vector ẏ, plasma_pstrsm;
L̇T ḋi = ẏ Solve linear system for vector ḋ , plasma_pstrsm;
xi+1 = xi + di Update computed solution, plasma_pdgeadd;
ri+1 = b −Axi+1 Compute residual, plasma_pdsymm;

until | |ri+1 | |max < | |xi+1 | |max | |A| |∞ ε
√
n;

end

Name Description
□getri matrix inversion (LU factorization as input)
□potri positive definite matrix inversion (Cholesky factorization as input)
□geinv matrix inversion (includes the LU factorization)
□poinv positive definite matrix inversion (includes the Cholesky factorization)

Table 8. Matrix inversion routines.

Algorithm 4: Cholesky-based computation of A−1 (plasma_omp_dpoinv)
Data: A
Result: A−1

A = LLT Cholesky factorization of matrix A, plasma_pdpotrf;
L−1 inverse of L, plasma_pdtrtri;
A−1 = (LT)−1L−1 multiplication of the triangular parts, plasma_pdlauum;

finding the explicit inverse of a matrix is still required in some applications, such as inverting the covariance matrix in
statistics.

Table 8 lists all the matrix inversion routines implemented in PLASMA. The poinv function uses the Cholesky
factorization (potrf) for finding the inverse of a positive definite matrix (Algorithm 4). This function was introduced to
PLASMA to allow overlapping between the three phases of the inversion using the asynchronous tasks. By contrast,
the potri function does not include the Cholesky factorization, and it expects a Cholesky factor as input. Similarly,
the new geinv function for computing the inverse of a general matrix computes the LU factorization (Algorithm 5),
whereas the traditional getri function expects LU factors as input.

Merging the individual stages is known to lead to high performance implementations [Agullo et al. 2010; Bouwmeester
and Langou 2010], and it provides very compact traces.

Manuscript submitted to ACM

Page 15 of 35 Transactions on Mathematical Software

For Peer Review

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Dongarra, J. et al

Algorithm 5: LU-based computation of A−1 (plasma_omp_dgeinv)
Data: A
Result: A−1

PA = LU LU factorization of matrix A, plasma_pdgetrf;
U −1 inverse of U , plasma_pdtrtri;
Ã−1L = U −1 find A−1 as the solution to a linear system of equations, plasma_pdgetri_aux;
A−1 = Ã−1P column permutation of Ã−1, plasma_pdgeswp;

2.7 Least Squares

PLASMA contains routines for solving overdetermined and underdetermined systems of linear equations. It uses QR
and LQ factorizations, based on block Householder transformations. PLASMA implementations are rather different from
LAPACK. While LAPACK reduces the input matrices by columns, PLASMA does so by tiles. This approach produces
algorithms with higher levels of parallelism and excellent scheduling properties [Buttari et al. 2008, 2009]. Generally,
PLASMA QR and LQ algorithms show exceptional strong scaling, while being somewhat handicapped in asymptotic

performance, due to reliance on more complex serial kernels than simple calls to BLAS.
Table 9 lists all the PLASMA routines related to solving overdetermined and under-determined systems of linear

equations. This includes routines for QR and LQ factorizations, generation of the Q matrices, as well as application of
the orthogonal transformations without explicit generation of the Q matrices.

PLASMA routines have the same numerical stability as LAPACK, but are not algorithmically equivalent to LAPACK.
This is because PLASMA reduces the input matrices by tiles, not by full columns, and generates sets of tile reflectors in
the process. This makes no difference to the user, as long as PLASMA functions are used for operations involving the
reflectors, such as generation of the Q matrix or application of the transformations to another matrix.

PLASMA includes support for QR factorization of tall and skinny matrices, for which the number of rowsm is much
larger than the number of columns n. In this scenario, algorithmic parallelism is increased by concurrent elimination of
blocks within a panel, and proceeds according to a reduction tree until all tiles below the diagonal are eliminated. The
approach was described in [Demmel et al. 2008], and extended e.g. in [Dongarra et al. 2013]. Tree-based Householder
reductions were recently used for singular value decomposition (SVD) in [Faverge et al. 2016].

Since different trees may be beneficial in different circumstances, PLASMA 17 has introduced several trees and a
new flexible implementation of this functionality. A tree is first traversed and the elimination kernels are registered
into a 1D array. After this, tasks are created following the order given by this array. This approach permits a quick
reuse of a certain tree across all QR and LQ routines as well as the possibility to apply Householder reflectors to form
an action of Q or its transpose.

The QR and LQ algorithms are the basis for solving systems with rectangular matrices — the least squares problems
form ≥ n, and the underdetermined systems form < n. The structure of the plasma_omp_dgels routine is in Algo-
rithm 6. In addition, the QR and LQ factorizations are performed either by the standard algorithms in plasma_pdgeqrf

(see Fig. 11) and plasma_pdgelqf, or by their versions based on the reduction tree plasma_pdgeqrf_tree and
plasma_pdgelqf_tree. QR algorithm requires custom kernels core_omp_dtsqrt and core_omp_dtsmqt for QR factor-
ization and QT application of a matrix composed from two tiles. Although the tile QR factorization (core_omp_dgeqrt)
and QT application (core_omp_dormqr) correspond to their LAPACK counterparts, inner blocking with block size ib is
performed inside these kernels and nonblocked implementations from LAPACK are called.
Manuscript submitted to ACM

Page 16 of 35Transactions on Mathematical Software

For Peer Review

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 17

Name Description
□gelqf LQ factorization
□gelqs minimum norm solve using LQ factorization
□gels overdetermined or underdetermined linear systems solve
□geqrf QR factorization
□geqrs least squares solve using QR factorization
□[un|or]glq generate the Q matrix from LQ factorization
□[un|or]gqr generate the Q matrix from QR factorization
□[un|or]mlq apply the Q matrix from LQ factorization
□[un|or]mqr apply the Q matrix from QR factorization

Table 9. Least squares routines.

Algorithm 6: Solving overdetermined and underdetermined systems of equations AX = B (plasma_omp_dgels)
Data: A,B
Result: X
if m ≥ n then

A = QR QR factorization of A, plasma_pdgeqrf;
Y = QT B application of QT to B, plasma_pdormqr;
RX = Y finding the least-squares solution X , plasma_pdtrsm;

else
A = LQ LQ factorization of A, plasma_pdgelqf;
LY = B solve the linear system for Y , plasma_pdtrsm;
X = QTY find the minimum norm solution to the underdetermined system, plasma_pdormlq;

end

2.8 Other implementation details.

PLASMA is written in C, with interfaces for Fortran provided via automatic code generation during compilation of the
library. In particular, PLASMA is shipped with a Python script which parses the C header files, and generates a Fortran
module with the interface. The bindings are based on features provided by the Fortran 2003 standard, most importantly
the iso_c_binding intrinsic module. PLASMA includes several Fortran examples of using the top-level as well as the
second-level functions.

The four different precisions (Table 1) are generated by another Python script. This takes the prototypes in the
double complex precision and produces the other precisions by textual substitutions in the source codes.

Additional details on functionality implemented in PLASMA can be found in [Abalenkovs et al. 2017a].

3 PERFORMANCE EVALUATION

In this section we present a comprehensive set of benchmarks for the PLASMA routines previously described. Perfor-
mance is reported for each PLASMA routine on three distinct platforms within a shared memory environment. In each
case we utilize the maximum available number of cores and examine performance across a range of matrix sizes. We
use real double precision variables throughout, with the exception of the mixed precision routines, which combine real
double and real single precision variables. A major focus of this study is to asses the performance of state-of-the-art tile
based algorithms, in comparison to block-column based algorithms, such as those present in the LAPACK library.

Manuscript submitted to ACM

Page 17 of 35 Transactions on Mathematical Software

For Peer Review

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Dongarra, J. et al

void plasma_pdgeqrf(plasma_desc_t A, plasma_desc_t T)

{

for (int k = 0; k < imin(A.mt, A.nt); k++) {

int mvak = plasma_tile_mview(A, k);

int nvak = plasma_tile_nview(A, k);

int ldak = plasma_tile_mmain(A, k);

core_omp_dgeqrt(mvak , nvak , ib,

A(k, k), ldak ,

T(k, k), T.mb);

for (int n = k+1; n < A.nt; n++) {

int nvan = plasma_tile_nview(A, n);

core_omp_dormqr(PlasmaLeft , PlasmaTrans ,

mvak , nvan , imin(mvak , nvak), ib,

A(k, k), ldak ,

T(k, k), T.mb,

A(k, n), ldak);

}

for (int m = k+1; m < A.mt; m++) {

int mvam = plasma_tile_mview(A, m);

int ldam = plasma_tile_mmain(A, m);

core_omp_dtsqrt(mvam , nvak , ib,

A(k, k), ldak ,

A(m, k), ldam ,

T(m, k), T.mb);

for (int n = k+1; n < A.nt; n++) {

int nvan = plasma_tile_nview(A, n);

core_omp_dtsmqr(PlasmaLeft , PlasmaTrans ,

A.mb, nvan , mvam , nvan , nvak , ib,

A(k, n), ldak ,

A(m, n), ldam ,

A(m, k), ldam ,

T(m, k), T.mb);

}

}

}

}

Fig. 11. Skeleton of the standard tile QR factorization. A.mt and A.nt are numbers of rows and columns of tiles in matrix A stored in
the tile layout.

3.1 Hardware, Library and Compiler Details

Three recent shared-memory multicore platforms have been selected for this study, namely: a two-socket compute
node based on Intel Xeon processors (Haswell generation, 20 cores), an Intel Xeon Phi 7250 processor (Knights Landing
generation, 68 cores), and a two-socket machine based on an IBM Power 8 processor (20 cores). Details of the individual
platforms are presented in Table 10.

On these three hardware platforms we compare the performance of PLASMA to other numerical libraries. In particular
the Netlib LAPACK library version 3.7.0, linked with a multithreaded optimized BLAS library, provides the baseline
for performance comparisons. In the case of Intel architectures we also compare the performance of PLASMA against
that of the Intel Math Kernel Library (MKL). For the IBM Power 8 based system, the IBM Engineering and Scientific
Manuscript submitted to ACM

Page 18 of 35Transactions on Mathematical Software

For Peer Review

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 19

Subroutine Library (ESSL) is used for comparison instead. It should be noted that PLASMA is also linked with these
libraries and relies on their sequential implementations of BLAS.

For most tests square matrices of growing size are used; however, non-square matrices are also examined where
appropriate to the algorithm, such as in the case of QR factorization. For each test, three runs were performed at each
matrix size, using randomly generated matrices. The highest performance obtained from these three runs is reported in
the plots.

A crucial parameter within PLASMA is the size of the square tile; i.e., the nb parameter. Lower values will typically
increase the parallelism of the algorithm, while higher values allow more efficient utilization of arithmetic units.
Consequently PLASMA performance is examined for several tile sizes, with the highest performing tile size reported.
The optimal tile size tends to grow slightly as the matrix size is increased. A quick way for users to determine an nb
parameter suitable for their architecture and matrix size is to run the PLASMA tester on a range of tile sizes, and then
set the one that leads to the best performance through a call to the plasma_set function.

On both the Haswell and Phi platforms, PLASMA and MKL are linked using the GNU C compiler, and utilize the
GNU OpenMP (gomp) runtime library. Due to issues with using this combination for LAPACK linked with MKL BLAS,
we present results for this combination using the Intel C compiler, and the Intel OpenMP (iomp) runtime library.

On the Haswell platform tests are performed using the following options:
OMP_NUM_THREADS=20 OMP_PROC_BIND=true OMP_MAX_TASK_PRIORITY=100 numactl --interleave=all

For the Phi platform tests are run using:
OMP_NUM_THREADS=68 OMP_PROC_BIND=true OMP_MAX_TASK_PRIORITY=100 numactl -m=1

where the last flag has led to using the fast MCDRAM memory for storing the matrices. The Phi processor was in the
flat memory mode, allowing the allocation of large matrices in the MCDRAM memory. This had a significant effect on
performance compared to allocating matrices in RAM. The quadrant cluster mode was used, although this did not seem
to have a significant impact on performance. The effect of the different memory modes of Phi on performance for linear
algebra has been studied in more detail in [Haidar et al. 2017].

POWER8 runs use the following:
OMP_NUM_THREADS=20 OMP_PROC_BIND=true OMP_PLACES="{0}:20:8" OMP_MAX_TASK_PRIORITY=100 where the
OMP_PLACES environment variable maps each OpenMP thread to one physical CPU core, rather than simply taking the
first 20 available logical cores.

We present an execution trace for the Cholesky-basedmatrix inversion.Manymore traces can be found in [Abalenkovs
et al. 2017b].

3.2 Parallel BLAS

PLASMA contains a full parallel implementation of the Level 3 BLAS routines. However, this section focuses only on
the performance results of gemm and trsm. This is motivated by the fact that all level 3 BLAS routines, except trsm, can
be viewed as a specialized implementation of gemm [Kågström et al. 1998].

We present the performance of plasma_dgemm and plasma_dtrsm routines on three different architectures, and
compare it with the performance of the vendor-provided optimized implementations. Unlike LAPACK routines we do
not report the performance of the Netlib reference implementation of BLAS, as it is fully sequential.

Figures 12 and 13 show the performance results on Haswell. For the dgemm routine, MKL performs about 15% better
than PLASMA throughout the range of matrix sizes. This result suggests that the current plasma_dgemm routine may

Manuscript submitted to ACM

Page 19 of 35 Transactions on Mathematical Software

For Peer Review

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Dongarra, J. et al

Label Hardware overview Compilers and libraries

Haswell

• 2× Intel Xeon CPU E5-2650 v3, 2.30GHz
• 2×10 = 20 cores
• 32 GB DRAM
• theoretical peak performance 736 Gflop/s

• GNU Compiler Collection (GCC) 7.1.0
• Intel C Compiler 16.0.3
• MKL 17.2

Phi

• Intel Xeon Phi 7250
• 68 cores
• 16 GB MCDRAM
• theoretical peak performance 3046
Gflop/s
• quadrant cluster mode
• flat memory mode

• GNU Compiler Collection (GCC) 7.0.1
• Intel C Compiler 16.0.3
• MKL 17.2

POWER8

• 2× IBM POWER8, 3.5GHz
• 2× 10 = 20 cores
• 256 GB DRAM
• theoretical peak performance 560 Gflop/s

• GNU Compiler Collection (GCC) 6.3.1
• IBM XL 20161123
• IBM ESSL 5.5.0

Table 10. Platforms selected for the benchmarks.

have potential room for performance improvement. For the plasma_dtrsm routine, PLASMA provides performance
similar to MKL, whilst offering a more smooth and predictable performance scaling.

The results on the Phi architecture (Figs. 14 and 15) demonstrate that MKL is making significantly better use of the
68 available cores. For moderate-sized matrices; i.e. in the 2000 to 10000 range, a performance gap of around 500 Gflop/s
can be observed for dgemm. For dtrsm the performance gap is consistently around 200 Gflop/s. These results suggest a
significant deficit in efficiency for the PLASMA BLAS routines, in comparison to multithreaded MKL, despite the fact
that PLASMA calls sequential MKL BLAS for processing individual tiles.

On the IBM POWER8 platform, PLASMA and the vendor optimized multithreaded library, ESSL, exhibit comparable
results for both dgemm and dtrsm. As shown in Figs. 16 and 17, both routines reach in excess of 450 Gflop/s, representing
around 85% of the theoretical peak performance (560 Gflop/s). This result demonstrates the capability of PLASMA to
efficiently exploit all 20 cores of the POWER8 machine. Again, PLASMA tasks call sequential dgemm from ESSL to
process individual tiles.

The optimal tile size parameter (nb) was either 336 or 560 on Haswell, for matrices larger than 4000. The optimal size
was 560 on Phi, and 384 on POWER8. Smaller matrices require somewhat smaller tiles for optimal performance.

3.3 Parallel Norms

We present benchmarks for computation of the one norm, for general and symmetric matrices; i.e., the dlange and
dlansy routines respectively. These routines are heavily memory bound; hence, their performance is reported in GB/s
rather than Gflop/s.

Results on Haswell are summarized in Figs. 18 and 19. For both general matrices (Fig.18), and symmetric matrices
(Fig. 19), MKL significantly out-performs PLASMA and LAPACK. It should be noted that the high performance of
MKL was obtained only after calling the C interface function without the ‘not a number’ (NaN) checking; namely, the
Manuscript submitted to ACM

Page 20 of 35Transactions on Mathematical Software

For Peer Review

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 21
GF

LO
PS

0

100

200

300

400

500

600

700

SIZE

0 5,000 10,000 15,000 20,000

PLASMA
MKL

dgemm: general matrix multiplication in double precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 12. Performance of dgemm on Haswell.

GF
LO

PS

0

100

200

300

400

500

600

700

SIZE

0 5,000 10,000 15,000 20,000

PLASMA
MKL

dtrsm: triangular solve in double precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 13. Performance of dtrsm on Haswell.

GF
LO

PS

0

500

1,000

1,500

2,000

SIZE

0 4,000 8,000 12,000 16,000

PLASMA
MKL

dgemm: general matrix multiplication in double precision
Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 14. Performance of dgemm on Phi.

GF
LO

PS

0

500

1,000

1,500

2,000

SIZE

0 5,000 10,000 15,000 20,000

PLASMA
MKL

dtrsm: triangular solve in double precision
Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 15. Performance of dtrsm on Phi.

GF
LO

PS

0

125

250

375

500

SIZE

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PLASMA
ESSL

dgemm: general matrix multiplication in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 16. Performance of dgemm on POWER8.

GF
LO

PS

0

125

250

375

500

SIZE

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PLASMA
ESSL

dtrsm: triangular solve in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 17. Performance of dtrsm on POWER8.

Manuscript submitted to ACM

Page 21 of 35 Transactions on Mathematical Software

For Peer Review

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Dongarra, J. et al

LAPACKE_dlange_work and LAPACKE_dlansy_work. With LAPACKE_dlange and LAPACKE_dlansy, the performance
was significantly worse. In this benchmark, PLASMA is penalized due to the inclusion of translation to the tile layout
into the measured time, since this conversion significantly increases the number of memory accesses required. To
quantify this effect, we have also performed an experiment excluding the layout conversion from the timing. These
results are denoted as ‘PLASMA*’ (with asterisk) in the plots. We can see that if the matrix is already in the tile layout,
the norm computations can be performed even faster than by MKL.

The results on the Phi platform are presented in Figs. 20 and 21. As in the case of Haswell, MKL significantly
outperforms both PLASMA and LAPACK, with the performance differential growing significantly with increasing
matrix size. The increased parallelism of the Phi platform does allow PLASMA to significantly out-perform LAPACK
however. We have repeated the experiment excluding the layout conversion time of PLASMA also on Phi. In this
scenario, MKL still performs better for general matrices, while PLASMA outperforms MKL for symmetric ones.

Results obtained on the POWER8 platform are shown in Figs. 22 and 23. For both general and symmetric matrices,
PLASMA out-performs ESSL by around 50%, and offers roughly twice the performance of LAPACK.

The dominant optimal tile size parameter (nb) was found to be 560 on Haswell, 1024 on Phi, and 384 on POWER8.

3.4 Linear Systems

The PLASMA library provides a range of routines for the factorization of matrices. In this section we examine perfor-
mance for the PLASMA implementations of LU factorization (plasma_dgetrf), Cholesky factorization (plasma_dpotrf),
and LDLT factorization (plasma_dsytrf) with dense matrices. We also consider performance for the band-matrix
versions of LU and Cholesky factorization; i.e, (plasma_dgbtrf) and (plasma_dpbtrf). The performance of QR factor-
ization routines for solving least squares problems are presented in Section 3.7.

We consider first the performance of PLASMA on the Haswell platform. For LU factorization (Fig. 24), MKL shows
a moderate performance gain over PLASMA throughout the range of matrix sizes, at around 15%. PLASMA does
significantly outperform LAPACK however, showing around a 50% improvement. This improvement is partially due to
the parallel panel factorization of PLASMA, in contrast to the standard LU algorithm of LAPACK, which introduces
parallelism only through parallel BLAS used for the trailing matrix update.

Fig. 25 shows the performance of Cholesky factorization. Here PLASMA and MKL offer very similar performance,
with MKL slightly faster for small matrices, and PLASMA slightly ahead for mid-sized matrices. Both MKL and PLASMA
again offer significantly improved performance over LAPACK.

Results for the LDLT factorization are shown in Fig. 26. While LU and Cholesky factorization shows a high perfor-
mance up to 600 Gflop/s, which is around 80% of the theoretical peak performance (see Table 10), none of the dsytrf
implementations achieve even 50% of the theoretical peak. The bottlenecks to providing a scalable implementation
of the symmetric indefinite matrix have been discussed in Section 2.4.3; the main issue being the need for symmetric
pivoting. Nevertheless, PLASMA is able to outperform MKL and LAPACK by significant margin, for moderate to large
matrices.

Results on the Phi platform are shown in Figs. 27–29. Overall trends are very similar to Haswell; in particular for
the LU and Cholesky algorithms. In the case of LDLT factorization, PLASMA outperforms MKL by a more significant
margin than on Haswell, offering more than double the performance on larger matrices.

On the IBM POWER8 architecture, both the ESSL and PLASMA implementations of LU factorization substantially
outperform the LAPACK equivalent, as showed in Fig. 30. For smaller matrices ESSL demonstrates good performance
relative to PLASMA; however it stagnates early whilst PLASMA performance continues to grow with increasing
Manuscript submitted to ACM

Page 22 of 35Transactions on Mathematical Software

For Peer Review

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 23
G

B
/s

0

10

20

30

40

50

60

70

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA*

PLASMA

MKL

LAPACK

dlange: general matrix 1-norm in double precision

Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 18. Performance of dlange on Haswell.

G
B

/s

0

7.5

15

22.5

30

37.5

45

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA*

PLASMA

MKL

LAPACK

dlansy: symmetric matrix 1-norm in double precision

Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 19. Performance of dlansy on Haswell.

G
B

/s

0

40

80

120

160

200

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA*

PLASMA

MKL

LAPACK

dlange: general matrix 1-norm in double precision

Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 20. Performance of dlange on Phi.

G
B

/s

0

16

32

48

64

80

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA*

PLASMA

MKL

LAPACK

dlansy: symmetric matrix 1-norm in double precision

Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 21. Performance of dlansy on Phi.

GB
/s

0

4

8

12

16

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
ESSL
LAPACK

dlange: general matrix 1-norm in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 22. Performance of dlange on POWER8.

GB
/s

0

4

8

12

16

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
ESSL
LAPACK

dlansy: symmetric matrix 1-norm in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 23. Performance of dlansy on POWER8.

Manuscript submitted to ACM

Page 23 of 35 Transactions on Mathematical Software

For Peer Review

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Dongarra, J. et al

matrix sizes. The POWER8 experiments for Cholesky factorization; Fig. 31, show ESSL and PLASMA achieving similar
performance for smaller matrices, while PLASMA pulls ahead by around 25% for moderately large matrices.

The results for LDLT factorization arise more curiosity. For matrices of size ranging from 1000 to 5000, the three
curves completely overlap, which suggests that either for such small matrices there is no much room for parallelism
exploitable by the LDLT algorithm, or ESSL and PLASMA failed to achieve a better optimization than LAPACK. The
latter is more true for ESSL that did not succeed in showing any performance gain over LAPACK for all the matrix sizes
considered. On the other hand, the performance of PLASMA’s LDLT , increased almost linearly, with the matrix size.

To examine the performance of band routines we consider the dgbtrf and dpbtrf functions, which employ LU and
Cholesky factorization respectively, to solve the band systems. In each case we consider a matrix with a 10 percent
band occupancy; that is, the bandwidth is equal to one tenth of the matrix size.

Figures 33 and 34 show the performance of the band routines on the Haswell platform. For Cholesky factorization
(Fig. 34) we see a very similar performance profile across all three platforms; however, with LU factorization (Fig. 33)
PLASMA pulls ahead of MKL and LAPACK for large matrix sizes, showing up to a 100% increase in performance over
MKL. The improved relative performance of PLASMA in this case appears to be a result of the multi-threaded panel
factorization.

Performance on the Xeon Phi is shown in Figs. 35 and 36. Here performance with LU is similar between PLASMA
and MKL; PLASMA offers better performance on large matrix sizes, with MKL ahead for small matrices. For Cholesky
all three routines provide similar performance with smaller matrices, while PLASMA offers increasingly superior
performance as the matrix size grows.

The results on POWER8, given in Figs. 37 and 38, show significant performance improvements for PLASMA over
LAPACK and ESSL throughout the range of matrix sizes, on both routines. The difference is particularly evident for LU
factorization, where PLASMA performance grows to more than double that of the other routines at large matrix sizes.

It is important to note that, for band routines in general, performance will scale much more strongly with bandwidth
than with matrix size. Increasing the matrix size whilst using a fixed bandwidth of modest size will typically provide a
flat performance profile, as memory bandwidth becomes saturated before the floating point capacity is exhausted.

The dominant optimal tile size parameter (nb) for Cholesky factorization of a dense matrix was 336 on Haswell, 448
on Phi, and 384 on POWER8. For LU factorization, it was 228 on Haswell, 448 on Phi and 336 on POWER8. Performance
of the LU factorization was found to be sensitive to the maximum number of threads for panel factorization (mtpf),
which was set to 8 on Haswell, 20 on Phi, and 4 on POWER8. The inner blocking parameter (ib) was set to 16 on
Haswell, 40 on Phi, and 32 on POWER8. Finally, for the LDLT factorization, the dominant optimal nb was found to be
192 on Haswell, 352 on Phi, and 128 on POWER8.

For band Cholesky factorization, the dominant nb was 224 on Haswell and Phi, and 128 on POWER8. For band LU
factorization, the dominant optimal nb was 168 on Haswell, 224 on Phi and 128 on POWER8. The maximal number of
threads for panel factorization (mtpf) was set to 4 on Haswell and POWER8, and to 8 on Phi.

3.5 Mixed Precision

Performance of the mixed precision iterative refinement based on the LU factorization is presented in Figs. 39, 41,
and 43. At the time of writing, an issue is present with the coupling of PLASMA to the gomp runtime library version
7. This issue is related to the assignment of priorities for nested OpenMP tasks; an approach employed by the LU
factorization in PLASMA. To circumvent this issue task priorities are not enabled for the presented results; i.e. setting
OMP_MAX_TASK_PRIORITY=0. Even with this limitation PLASMA is able to achieve around 25% higher performance than
Manuscript submitted to ACM

Page 24 of 35Transactions on Mathematical Software

For Peer Review

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 25
GF

LO
PS

0

100

200

300

400

500

600

700

SIZE

2000 6000 10000 14000 18000 22000 26000

PLASMA
MKL
LAPACK

dgetrf: LU factorization in double precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 24. Performance of dgetrf on Haswell.

GF
LO

PS

0

100

200

300

400

500

600

700

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
MKL
LAPACK

dpotrf: Cholesky factorization in double precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 25. Performance of dpotrf on Haswell.

GF
LO

PS

0

125

250

375

500

SIZE

2000 8000 14000 20000 26000 32000 38000 44000

PLASMA
MKL
LAPACK

dsytrf: LDLT factorization in double precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 26. Performance of dsytrf on Haswell.

GF
LO

PS

0

400

800

1200

1600

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
MKL
LAPACK

dgetrf: LU factorization in double precision
Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 27. Performance of dgetrf on Phi.

GF
LO

PS

0

400

800

1200

1600

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
MKL
LAPACK

dpotrf: Cholesky factorization in double precision
Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 28. Performance of dpotrf on Phi.

Manuscript submitted to ACM

Page 25 of 35 Transactions on Mathematical Software

For Peer Review

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Dongarra, J. et al

GF
LO

PS
0

200

400

600

800

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
MKL
LAPACK

dsytrf: LDLT factorization in double precision
Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 29. Performance of dsytrf on Phi.

GF
LO

PS

0

100

200

300

400

500

SIZE

1000 3000 5000 7000 9000 11000 13000 15000

PLASMA
ESSL
LAPACK

dgetrf: LU factorization in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 30. Performance of dgetrf on POWER8.

GF
LO

PS

0

100

200

300

400

500

SIZE

1000 3000 5000 7000 9000 11000 13000 15000

PLASMA
ESSL
LAPACK

dpotrf: Cholesky factorization in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 31. Performance of dpotrf on POWER8.

GF
LO

PS

0

40

80

120

160

200

SIZE

1000 3000 5000 7000 9000 11000 13000 15000

PLASMA
ESSL
LAPACK

dsytrf: LDLT factorization in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 32. Performance of dsytrf on POWER8.

Manuscript submitted to ACM

Page 26 of 35Transactions on Mathematical Software

For Peer Review

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 27
GF

LO
PS

0

20

40

60

80

100

120

140

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
MKL
LAPACK

dgbtrf: band LU factorization in double precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 33. Performance of dgbtrf on Haswell.

GF
LO

PS

0

50

100

150

200

250

300

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
MKL
LAPACK

dpbtrf: band Cholesky factorization in double precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 34. Performance of dpbtrf on Haswell.

GF
LO

PS

0

15

30

45

60

75

90

SIZE

2000 6000 10000 14000 18000 22000

PLASMA
MKL
LAPACK

dgbtrf: band LU factorization in double precision
Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 35. Performance of dgbtrf on Phi.

GF
LO

PS

0

50

100

150

200

250

300

SIZE

2000 6000 10000 14000 18000 22000 26000

PLASMA
MKL
LAPACK

dpbtrf: band Cholesky factorization in double precision
Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 36. Performance of dpbtrf on Phi.

GF
LO

PS

0

80

160

240

320

400

SIZE

2000 6000 10000 14000 18000 22000

PLASMA
ESSL
LAPACK

dgbtrf: band LU factorization in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 37. Performance of dgbtrf on POWER8.

GF
LO

PS

0

100

200

300

400

SIZE

2000 6000 10000 14000 18000 22000

PLASMA
ESSL
LAPACK

dpbtrf: band Cholesky factorization in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 38. Performance of dpbtrf on POWER8.

Manuscript submitted to ACM

Page 27 of 35 Transactions on Mathematical Software

For Peer Review

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Dongarra, J. et al

MKL, and more than double the performance of LAPACK on Haswell. On Phi the difference is even more significant;
PLASMA achieves around double the performance of MKL, and around quadruple the performance of LAPACK. On
POWER8 the performance of PLASMA is comparable with that of ESSL. Here PLASMA offers slightly better performance
for smaller matrices, with ESSL slightly ahead for larger matrices. Both libraries provide roughly double the performance
of LAPACK.

Performance results of the mixed precision iterative refinement routine dsposv, based on Cholesky factorization, are
presented in Figs. 40, 42, and 44. The number of right hand side vectors is set to one in all experiments. On the Haswell
platform, PLASMA achieves significantly higher performance than MKL for large matrix sizes. On Phi, the PLASMA
routine provides a dramatic four- to five-fold improvement compared to its MKL counterpart, for moderate to large
matrix sizes.

The dominant optimal tile size for the plasma_dsgesv routine on Haswell was 384, with inner blocking ib = 40,
and 4 threads used for panel factorization. The same setup was used on POWER8. On Phi, tile size was 352, the inner
blocking ib = 64, and 8 threads were assigned to panel factorization. Optimal tile sizes for the plasma_dsposv routine
were more varied, while being dominated by 480 for Haswell, 576 for Phi, and 384 for POWER8.

Figs. 41 and 42 present two additional curves corresponding to conventional linear system solutions in single and
double precisions, denoted by PLASMA(S) and PLASMA(D) respectively. In order to compare performance of all three
variants of the linear system solution; s{ge,po}sv, d{ge,po}sv and ds{ge,po}sv, the performance for all routines
was calculated using the same formula for the number of floating point operations.

As expected, the mixed precision routine delivers a performance curve that lies between that of the native single and
double precision results. The mixed precision performance curve lies much closer to the single precision results in case
of the □posv routine, whereas in case of □gesv, performance is more comparable to that of the native double precision
routine.

3.6 Matrix Inversion

The routines used to explicitly invert a matrix are described in section 2.6. The performance results on the various
systems are collated in Figs. 46–51. On the Haswell architecture (Figs. 46 and 47) we see that PLASMA is more
performant than MKL and LAPACK for all matrix sizes. PLASMA is particularly effective for Cholesky inversion, where
performance improvements over MKL are mostly around 50-100%. On the Phi platform (Figs. 48 and 49) the performance
of PLASMA is slightly higher than MKL for dgeinv, though PLASMA is once again around twice as fast for dpoinv.
For both algorithms the performance of LAPACK is well below that of the more heavily optimized libraries. On the
POWER8 machine (Figs. 50 and 51) things behave rather differently. For dgeinv the performance of PLASMA is the
best for matrices larger than around 5000. The dpoinv implementation in PLASMA once again provides the fastest
implementation, though by a smaller margin than on the other platforms. Here ESSL is roughly halfway between the
performance of PLASMA and LAPACK.

In summary, for dgeinv PLASMA obtains slightly superior performance to MKL on Intel architectures and it is faster
than ESSL for large matrices on the POWER8 system. However, for dpoinv, PLASMA significantly outperforms the
other implementations on all systems.

The performance benefit of the plasma_dpoinv routine stems from the fact that its tile-based Cholesky factorization
algorithm is well suited for overlapping the factorization with the subsequent stages (see Algorithm 4). The effect is
best shown in an execution trace, see e.g. Fig. 45. It is clear that kernels of the subsequent stages start before the end of
the factorization itself, filling the gaps of the factorization algorithm towards the end of the factorization, where this
Manuscript submitted to ACM

Page 28 of 35Transactions on Mathematical Software

For Peer Review

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 29
GF

LO
PS

0

200

400

600

800

1000

SIZE

2000 6000 10000 14000 18000 22000 26000

PLASMA
MKL
LAPACK

dsgesv: LU factorization and solve using mixed precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 39. Performance of dsgesv on Haswell

GF
LO

PS

0

200

400

600

800

1000

1200

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
MKL
LAPACK

dsposv: Cholesky factorization and solve using mixed precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 40. Performance of dsposv on Haswell

G
FL

O
PS

0

300

600

900

1200

1500

1800

SIZE

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

PLASMA (S)

PLASMA

PLASMA (D)

MKL

LAPACK

dsgesv: LU factorization and solve using mixed precision

Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 41. Performance of dsgesv on Phi

G
FL

O
PS

0

500

1000

1500

2000

2500

3000

3500

SIZE

2000 6000 10000 14000 18000 22000 26000

PLASMA (S)

PLASMA

PLASMA (D)

MKL

LAPACK

dsposv: Cholesky factorization and solve using mixed precision

Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 42. Performance of dsposv on Phi

GF
LO

PS

0

100

200

300

400

500

600

SIZE

1000 3000 5000 7000 9000 11000 13000

PLASMA
ESSL
LAPACK

dsgesv: LU factorization and solve using mixed precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 43. Performance of dsgesv on POWER8

GF
LO

PS

0

100

200

300

400

500

600

700

SIZE

1000 3000 5000 7000 9000 11000 13000

PLASMA
ESSL
LAPACK

dsposv: Cholesky factorization and solve using mixed precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 44. Performance of dsposv on POWER8

Manuscript submitted to ACM

Page 29 of 35 Transactions on Mathematical Software

For Peer Review

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Dongarra, J. et al

Fig. 45. Trace of plasma_dpoinv on Phi, matrix size 11 648, tile size 448.

does not generate enough parallelism itself. Unfortunately, partial pivoting prevents such a high degree of overlap in
the LU-based routine plasma_dgeinv.

The optimal tile size parameter (nb) did not tend to change much with the matrix size. For the dgeinv routine, the
dominant optimal nb was 384 for Haswell, 448 for Phi, and 256 for POWER8. For the dpoinv implementation, the
dominant nb was 544 on Haswell, 448 on Phi, and 256 on POWER8.

3.7 Least Squares

Solving overdetermined problems in PLASMA relies on the QR factorization of the matrix (see Algorithm 6). We
perform the benchmarks for the QR factorization routine (plasma_dgeqrf) which allows us to avoid dependence on
the number of right hand sides. We run PLASMA using the standard QR algorithm, in which the plasma_pdgeqrf
function (Figure 11) is called, and also with the tree-based QR algorithm, in which the plasma_pdgeqrf_tree function
is used instead. In the charts to follow, ‘PLASMA’ (no asterisk) refers to the standard algorithm, while ‘PLASMA*’ (with
asterisk) refers to the tree-based one.

Results are summarized in Figs. 52–57. The first experiment is monitoring the performance of the QR factorization
on square matrices of increasing dimension. In this scenario, updating the trailing matrix provides enough parallelism
to keep the cores busy. As a result, for PLASMA, the tree-based algorithm is providing slightly lower performance
than the standard algorithm on all the tested platforms. This is related to the worse data locality due to the need for
visiting some tiles twice when eliminating them by the tt (triangle-on-top-of-triangle) kernels rather than by the ts
(triangle-on-top-of-square) kernels, see e.g. [Bouwmeester and Langou 2010] for related discussion. This experiment
also suits the MKL library, which is faster than PLASMA by about 15% on Haswell and by more than 30% on Phi. It
suits also the ESSL, which is about 10% faster than PLASMA on POWER8. Finally, LAPACK with multithreaded BLAS
provides significantly lower performance, which is around 40% of the one by PLASMA on Haswell and Phi, and around
60% for POWER8.

The situation changes significantly if updating the trailing matrix does not provide enough parallelism, which is the
case for matrices withm >> n, also called ‘tall and skinny’ in literature. Our second experiment aims at performance
Manuscript submitted to ACM

Page 30 of 35Transactions on Mathematical Software

For Peer Review

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 31
GF

LO
PS

0

150

300

450

600

SIZE

2000 6000 10000 14000 18000 22000 26000

PLASMA
MKL
LAPACK

dgeinv: general matrix inversion in double precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 46. Performance of dgeinv on Haswell.

GF
LO

PS

0

150

300

450

600

SIZE

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

PLASMA
MKL
LAPACK

dpoinv: SPD matrix inversion in double precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 47. Performance of dpoinv on Haswell.

GF
LO

PS

0

200

400

600

800

1000

1200

1400

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
MKL
LAPACK

dgeinv: general matrix inversion in double precision
Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 48. Performance of dgeinv on Phi.

GF
LO

PS

0

400

800

1200

1600

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
MKL
LAPACK

dpoinv: SPD matrix inversion in double precision
Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 49. Performance of dpoinv on Phi.

GF
LO

PS

0

100

200

300

400

500

SIZE

1000 3000 5000 7000 9000 11000 13000 15000

PLASMA
ESSL
LAPACK

dgeinv: general matrix inversion in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 50. Performance of dgeinv on POWER8.

GF
LO

PS

0

100

200

300

400

500

SIZE

1000 3000 5000 7000 9000 11000 13000 15000

PLASMA
ESSL
LAPACK

dpoinv: SPD matrix inversion in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 51. Performance of dpoinv on POWER8.

Manuscript submitted to ACM

Page 31 of 35 Transactions on Mathematical Software

For Peer Review

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Dongarra, J. et al

of QR factorization for such matrices, in particular, on a matrix with 90 000 rows, and variable number of columns.
In this scenario, it is crucial to introduce parallelism also into elimination of the columns of tiles, as it is done for
the tree-based algorithm of PLASMA. Indeed, this algorithm significantly outperforms the standard algorithm in this
regime. Nevertheless, for increasing number of matrix columns, the standard algorithm gets enough parallelism and
reaches the performance of the tree-based elimination. In our experiments, this has happened already for 8 columns
of tiles. LAPACK results follow the trend of the standard PLASMA algorithm, not having parallelism for very skinny
matrices and resembling the results for square matrices for increasing number of columns.

A somewhat surprising performance profile was provided by MKL for this experiment. On Haswell (Fig. 53), the initial
performance for matrix with 300 columns is almost as high as for the tree-based PLASMA algorithm, suggesting that
MKL also introduces some parallelism into the panel elimination. However, the performance does not increase for larger
matrices, and it got even lower than for LAPACK for the case with 9600 columns. On Phi however, the performance of
MKL started as low as for the standard PLASMA algorithm, while keeping higher than it for more columns, consistently
with the square-matrix results. Performance of ESSL on POWER8 starts between the two PLASMA algorithms, while
being lower between 1200 and 4800 columns, and matching them for the case with 9600 columns.

The performance of PLASMA is not particularly sensitive to the tile size parameter (nb) on Haswell, with most of the
results obtained using nb = 288. The dependence was stronger on Phi, with 448 and 560 being the optimal values for
larger matrices. The results on POWER8 were obtained with nb = 336. The ib parameter for inner blocking inside the
kernels for QR factorization has been consistently set to ib = nb/4 on Haswell and Phi, while it has been set to 64 on
POWER8.

4 CONCLUSIONS

During the latest major revision of PLASMA, the library has been ported from an in-house developed runtime system;
QUARK, to OpenMP tasks with dependencies. While QUARK has features specific to the needs of a numerical library,
OpenMP is a more general purpose tool. Consequently, the transition has also led to the redesigning of some algorithms;
most notably the LU factorization code.

A comprehensive set of performance benchmarks has been performed, considering three recent multicore shared
memory architectures, namely Haswell, Xeon Phi, and POWER8. In general, the performance of PLASMA is comparable
to the optimized vendor libraries; Intel MKL in the case of Intel architectures, and IBM ESSL for POWER8. In addition,
the LAPACK library using multithreaded BLAS from the vendor optimized library has been also included for the
comparison.

Testing shows that MKL provides higher performance for BLAS routines; especially on the Xeon Phi platform. A
significant performance difference in favour of MKL has been also observed for matrix norm computations. On the
other hand, PLASMA has proven superior to the other libraries for algorithms suited to tile-oriented implementation.
This includes the LDLT factorization, and QR factorization of tall and skinny matrices, where tiling readily provides
potential for increased parallelism.

PLASMA offers an important advantage for operations composed of several base algorithms, such as solving a
system of linear equations composed of matrix factorization and back-substitution. While executing the corresponding
algorithms in a synchronous way suffers from lack of parallelism at the beginning and towards the end of the execution,
asynchronous execution allows the merging of these parts of the execution. An operation with a potentially large
performance advantage from such merging is computing an inverse of an SPD matrix. Thanks to the asynchronous
execution, the performance of PLASMA is typically as much as two times higher than that of the other libraries.
Manuscript submitted to ACM

Page 32 of 35Transactions on Mathematical Software

For Peer Review

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 33
GF

LO
PS

0

100

200

300

400

500

600

SIZE

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

PLASMA
PLASMA*
MKL
LAPACK

dgeqrf: QR factorization in double precision
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 52. Performance of dgeqrf on Haswell.

GF
LO

PS

0

100

200

300

400

500

M=90,000, N=

300 600 1200 2400 4800 9600

PLASMA
PLASMA*
MKL
LAPACK

dgeqrf: QR factorization in double precision - tall matrix
Intel Haswell, two sockets, 20 cores, 2.3 GHz

Fig. 53. Performance of dgeqrf on Haswell, tall matrix.

GF
LO

PS

0

300

600

900

1200

1500

SIZE

2000 6000 10000 14000 18000 22000 26000 30000

PLASMA
PLASMA*
MKL
LAPACK

dgeqrf: QR factorization in double precision
Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 54. Performance of dgeqrf on Phi.

GF
LO

PS

0

250

500

750

1000

M=90,000, N=

300 600 1200 2400 4800 9600

PLASMA
PLASMA*
MKL
LAPACK

dgeqrf: QR factorization in double precision - tall matrix
Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 55. Performance of dgeqrf on Phi, tall matrix.

GF
LO

PS

0

125

250

375

500

SIZE

1000 3000 5000 7000 9000 11000 13000 15000

PLASMA
PLASMA*
ESSL
LAPACK

dgeqrf: QR factorization in double precision
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 56. Performance of dgeqrf on POWER8.

GF
LO

PS

0

125

250

375

500

M=90,000, N=

300 600 1200 2400 4800 9600

PLASMA
PLASMA*
ESSL
LAPACK

dgeqrf: QR factorization in double precision - tall matrix
IBM POWER8, two sockets, 20 cores, 3.5 GHz

Fig. 57. Performance of dgeqrf on POWER8, tall matrix.

Manuscript submitted to ACM

Page 33 of 35 Transactions on Mathematical Software

For Peer Review

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Dongarra, J. et al

PLASMA 17 currently does not contain all the functionality of the previous version. Specifically, extending the
library to eigenvalue problems and singular value decomposition is the current work in progress.

REFERENCES
Jan Ole Aasen. 1971. On the reduction of a symmetric matrix to tridiagonal form. BIT Numerical Mathematics 11, 3 (1971), 233–242. https://doi.org/10.

1007/BF01931804
Maksims Abalenkovs, Negin Bagherpour, Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Samuel Relton, Jakub Sistek, David

Stevens, Panruo Wu, Ichitaro Yamazaki, Asim YarKhan, and Mawussi Zounon. 2017b. PLASMA 17 Performance Report. Technical Report 292. LAPACK
Working Note. http://www.netlib.org/lapack/lawnspdf/lawn292.pdf

Maksims Abalenkovs, Negin Bagherpour, Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Samuel Relton, Jakub Sistek, David
Stevens, Panruo Wu, Ichitaro Yamazaki, Asim YarKhan, and Mawussi Zounon. 2017a. PLASMA 17.1 Functionality Report. Technical Report 293.
LAPACK Working Note. http://www.netlib.org/lapack/lawnspdf/lawn293.pdf

Ahmad Abdelfattah, Hartwig Anzt, Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, Ichitaro Yamazaki, and
Asim YarKhan. 2016. Linear algebra software for large-scale accelerated multicore computing. Acta Numerica 25 (2016), 1–160.

Emmanuel Agullo, Henricus Bouwmeester, Jack Dongarra, Jakub Kurzak, Julien Langou, and Lee Rosenberg. 2010. Towards an efficient tile matrix inversion
of symmetric positive definite matrices on multicore architectures. In International Conference on High Performance Computing for Computational
Science. Springer, 129–138. https://doi.org/10.1007/978-3-642-19328-6_14

Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien Langou, Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. 2009.
Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects. In Journal of Physics: Conference Series, Vol. 180. IOP
Publishing, 012037.

Edward Anderson, Zhaojun Bai, Christian Bischof, Susan L. Blackford, James W. Demmel, Jack J. Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven J.
Hammarling, Alan McKenney, and Danny C. Sorensen. 1999. LAPACK User’s Guide (Third ed.). Society for Industrial and Applied Mathematics,
Philadelphia.

Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie Langou, Julien Langou, Piotr Luszczek, and Stanimire Tomov. 2009. Accelerating
scientific computations with mixed precision algorithms. Computer Physics Communications 180, 12 (2009), 2526–2533. https://doi.org/10.1016/j.cpc.
2008.11.005

Grey Ballard, Dulceneia Becker, James Demmel, Jack Dongarra, Alex Druinsky, Inon Peled, Oded Schwartz, Sivan Toledo, and Ichitaro Yamazaki. 2014. A
Communication Avoiding Symmetric Indefinite Factorization. SIAM J. Matrix Anal. Appl. 35, 4 (2014), 1364–1406.

Pieter Bellens, Josep M Perez, Rosa M Badia, and Jesus Labarta. 2006. CellSs: a programming model for the Cell BE architecture. In SC 2006 Conference,
Proceedings of the ACM/IEEE. IEEE, 5–5.

Susan L. Blackford, Jaeyoung Choi, Andrew Cleary, Ed D’Azeuedo, James W. Demmel, Inderjit Dhillon, Jack J. Dongarra, Sven J. Hammarling, Greg Henry,
Antoine Petitet, Ken Stanley, David W. Walker, and Clint R. Whaley. 1997. ScaLAPACK User’s Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA.

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam Haidar, Thomas Herault, Jakub Kurzak, Julien Langou, Pierre Lemarinier,
Hatem Ltaief, Piotr Luszczek, Asim YarKhan, and Jack Dongarra. 2011. Flexible Development of Dense Linear Algebra Algorithms on Massively
Parallel Architectures with DPLASMA. In Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops
(IPDPSW ’11). IEEE Computer Society, Washington, DC, USA, 1432–1441. https://doi.org/10.1109/IPDPS.2011.299

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam Haidar, Thomas Herault, Jakub Kurzak, Julien Langou, Pierre Lemarinier,
Hatem Ltaief, Piotr Luszczek, Asim Yarkhan, and Jack J. Dongarra. 2010a. Distibuted Dense Numerical Linear Algebra Algorithms on Massively Parallel
Architectures: DPLASMA. Technical Report. Innovative Computing Laboratory, University of Tennessee. http://icl.cs.utk.edu/news_pub/submissions/
ut-cs-10-660.pdf

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam Haidar, Thomas Herault, Jakub Kurzak, Julien Langou, Pierre Lemarinier,
Hatem Ltaief, Piotr Luszczek, Asim Yarkhan, and Jack J. Dongarra. 2010b. Distributed-Memory Task Execution and Dependence Tracking within DAGuE
and the DPLASMA Project. Technical Report 232. LAPACK Working Note. http://www.netlib.org/lapack/lawnspdf/lawn232.pdf UT-CS-10-660.

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, Pierre Lemarinier, and Jack Dongarra. 2012. DAGuE: A generic distributed DAG
engine for High Performance Computing. Parallel Comput. 38, 1-2 (2012), 37–51.

Henricus Bouwmeester and Julien Langou. 2010. A critical path approach to analyzing parallelism of algorithmic variants. Application to Cholesky
inversion. (2010). arXiv:1010.2000 https://arxiv.org/abs/1010.2000

Alfredo Buttari, Jack Dongarra, Julie Langou, Julien Langou, Piotr Luszczek, and Jakub Kurzak. 2007. Mixed precision iterative refinement techniques
for the solution of dense linear systems. The International Journal of High Performance Computing Applications 21, 4 (2007), 457–466. https:
//doi.org/10.1177/1094342007084026

Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. 2008. Parallel tiled QR factorization for multicore architectures. Concurrency and
Computation: Practice and Experience 20, 13 (2008), 1573–1590. https://doi.org/10.1002/cpe.1301

Manuscript submitted to ACM

Page 34 of 35Transactions on Mathematical Software

https://doi.org/10.1007/BF01931804
https://doi.org/10.1007/BF01931804
http://www.netlib.org/lapack/lawnspdf/lawn292.pdf
http://www.netlib.org/lapack/lawnspdf/lawn293.pdf
https://doi.org/10.1007/978-3-642-19328-6_14
https://doi.org/10.1016/j.cpc.2008.11.005
https://doi.org/10.1016/j.cpc.2008.11.005
https://doi.org/10.1109/IPDPS.2011.299
http://icl.cs.utk.edu/news_pub/submissions/ut-cs-10-660.pdf
http://icl.cs.utk.edu/news_pub/submissions/ut-cs-10-660.pdf
http://www.netlib.org/lapack/lawnspdf/lawn232.pdf
http://arxiv.org/abs/1010.2000
https://arxiv.org/abs/1010.2000
https://doi.org/10.1177/1094342007084026
https://doi.org/10.1177/1094342007084026
https://doi.org/10.1002/cpe.1301

For Peer Review

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 35

Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. 2009. A class of parallel tiled linear algebra algorithms for multicore architectures.
Parallel Comput. 35, 1 (2009), 38–53. https://doi.org/10.1016/j.parco.2008.10.002

Anthony Castaldo and Clint Whaley. 2010. Scaling LAPACK panel operations using parallel cache assignment. In ACM Sigplan Notices, Vol. 45. 223–232.
https://doi.org/10.1145/1693453.1693484

James W. Demmel, Laura Grigori, Mark F. Hoemmen, and Julien Langou. 2008. Communication-optimal parallel and sequential QR and LU factorizations.
Technical Report 204. LAPACK Working Note. http://www.netlib.org/lapack/lawnspdf/lawn204.pdf

Simplice Donfack, Jack Dongarra, Mathieu Faverge, Mark Gates, Jakub Kurzak, Piotr Luszczek, and Ichitaro Yamazaki. 2015. A survey of recent
developments in parallel implementations of Gaussian elimination. Concurrency and Computation: Practice and Experience 27, 5 (2015), 1292–1309.
https://doi.org/10.1002/cpe.3306

Jack Dongarra, Mathieu Faverge, Thomas Hérault, Mathias Jacquelin, Julien Langou, and Yves Robert. 2013. Hierarchical QR factorization algorithms for
multi-core clusters. Parallel Comput. 39, 4–5 (2013), 212–232. https://doi.org/10.1016/j.parco.2013.01.003

Jack Dongarra, Mathieu Faverge, Hatem Ltaief, and Piotr Luszczek. 2014. Achieving numerical accuracy and high performance using recursive tile LU
factorization with partial pivoting. Concurrency and Computation: Practice and Experience 26, 7 (2014), 1408–1431. https://doi.org/10.1002/cpe.3110

Jack J. Dongarra, J. Du Croz, Iain S. Duff, and Sven J. Hammarling. 1990a. Algorithm 679: A Set of Level 3 Basic Linear Algebra Subprograms. ACM Trans.
Math. Software 16 (1990), 1–17.

Jack J. Dongarra, J. Du Croz, Iain S. Duff, and Sven J. Hammarling. 1990b. A Set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Software
16 (1990), 18–28.

Jack J. Dongarra, J. Du Croz, Sven J. Hammarling, and R. Hanson. 1988a. Algorithm 656: An Extended Set of FORTRAN Basic Linear Algebra Subprograms.
ACM Trans. Math. Software 14 (1988), 18–32.

Jack J. Dongarra, J. Du Croz, Sven J. Hammarling, and R. Hanson. 1988b. An Extended Set of FORTRAN Basic Linear Algebra Subprograms. ACM Trans.
Math. Software 14 (1988), 1–17.

Mathieu Faverge, Julien Langou, Yves Robert, and Jack Dongarra. 2016. Bidiagonalization with Parallel Tiled Algorithms. (2016). arXiv:1611.06892
https://arxiv.org/abs/1611.06892

Fred Gustavson, Lars Karlsson, and Bo Kågström. 2012. Parallel and cache-efficient in-place matrix storage format conversion. ACM Trans. Math. Software
38, 3 (2012), 17.

Azzam Haidar, Heike Jagode, Asim YarKhan, Phil Vaccaro, Stanimire Tomov, and Jack Dongarra. 2017. Power-aware computing: Measurement, control,
and performance analysis for Intel Xeon Phi. In 2017 IEEE High Performance Extreme Computing Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC.
2017.8091085

Azzam Haidar, Hatem Ltaief, Asim YarKhan, and Jack Dongarra. 2011. Analysis of Dynamically Scheduled Tile Algorithms for Dense Linear Algebra on
Multicore Architectures. Concurr. Comput. : Pract. Exper. 24, 3 (2011), 305–321. https://doi.org/10.1002/cpe.1829

Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2nd ed.). Society for Industrial and Applied Mathematics (SIAM), Philadelphia.
Bo Kågström, Per Ling, and Charles van Loan. 1998. GEMM-based Level 3 BLAS: High-performance Model Implementations and Performance Evaluation

Benchmark. ACM Trans. Math. Software 24, 3 (1998), 268–302. https://doi.org/10.1145/292395.292412
Jakub Kurzak, Alfredo Buttari, and Jack Dongarra. 2008. Solving systems of linear equations on the CELL processor using Cholesky factorization. IEEE

Transactions on Parallel and Distributed Systems 19, 9 (2008), 1175–1186.
Jakub Kurzak and Jack Dongarra. 2006. Implementing linear algebra routines on multi-core processors with pipelining and a look ahead. In International

Workshop on Applied Parallel Computing. Springer, 147–156.
Jakub Kurzak and Jack Dongarra. 2007. Implementation of mixed precision in solving systems of linear equations on the CELL processor. Concurrency

and Computation: Practice and Experience 19, 10 (2007), 1371–1385.
Jakub Kurzak and Jack Dongarra. 2009. QR factorization for the Cell Broadband Engine. Scientific Programming 17, 1-2 (2009), 31–42.
Jakub Kurzak, Piotr Luszczek, Asim YarKhan, Mathieu Faverge, Julien Langou, Henricus Bouwmeester, and Jack Dongarra. 2013. Multithreading in the

PLASMA Library. Multicore Computing: Algorithms, Architectures, and Applications (2013), 119.
Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak, Alfredo Buttari, and Jack Dongarra. 2006. Exploiting the performance of 32 bit floating point

arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems). In SC 2006 Conference, Proceedings of the ACM/IEEE. IEEE,
50–50. https://doi.org/10.1109/SC.2006.30

Charles L. Lawson, Richard J. Hanson, David Kincaid, and Fred T. Krogh. 1979. Basic Linear Algebra Subprograms for FORTRAN usage. ACM Trans.
Math. Software 5 (1979), 308–323.

Miroslav Rozložník, Gil Shklarski, and Sivan Toledo. 2011. Partitioned triangular tridiagonalization. ACM Trans. Math. Software 37, 4 (2011), 1–16.
Herb Sutter. 2005. The free lunch is over: A fundamental turn toward concurrency in software. Dr. Dobb’s journal 30, 3 (2005), 202–210.
Ichitaro Yamazaki, Jakub Kurzak, Panruo Wu, Mawussi Zounon, and Jack Dongarra. 2018. Symmetric Indefinite Linear Solver using OpenMP Task on

Multicore Architecture. IEEE Transactions on Parallel & Distributed Systems (2018). https://doi.org/10.1109/TPDS.2018.2808964 To appear.
Asim YarKhan, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra. 2016. Porting the PLASMA numerical library to the OpenMP standard. International

Journal of Parallel Programming 45, 3 (2016), 1–22. https://doi.org/10.1007/s10766-016-0441-6

Manuscript submitted to ACM

Page 35 of 35 Transactions on Mathematical Software

https://doi.org/10.1016/j.parco.2008.10.002
https://doi.org/10.1145/1693453.1693484
http://www.netlib.org/lapack/lawnspdf/lawn204.pdf
https://doi.org/10.1002/cpe.3306
https://doi.org/10.1016/j.parco.2013.01.003
https://doi.org/10.1002/cpe.3110
http://arxiv.org/abs/1611.06892
https://arxiv.org/abs/1611.06892
https://doi.org/10.1109/HPEC.2017.8091085
https://doi.org/10.1109/HPEC.2017.8091085
https://doi.org/10.1002/cpe.1829
https://doi.org/10.1145/292395.292412
https://doi.org/10.1109/SC.2006.30
https://doi.org/10.1109/TPDS.2018.2808964
https://doi.org/10.1007/s10766-016-0441-6

