
Performance evaluation of LU factorization through
hardware counter measurements

Simplice DONFACK∗ Stanimire Tomov † Jack Dongarra ‡

October 1, 2012

Abstract

The growing demand for scalable and effective scientific and numerical libraries on mul-
ticore architectures forces hardware manufacturers to design solutions that improve both the
processor speed and transfer rates between their memory hierarchies. Several studies show that
these improvement factors are disproportionate and may vary widely from one architecture to
another and then have a strong impact on the tuning and the performance prediction of numer-
ical libraries. In this paper, we analyze the communication and performance of some routines
in well known libraries on different architectures and we establish a relation model between
hardware parameters and performance. We focus on the LU factorization, which is one the
most popular algorithms in the scientific field, therefore also used as a benchmark, e.g., the
HPL benchmark to rank the TOP500 supercomputers. Our experiments in terms of hardware
counter measurements allow us to predict the performance behavior of numerical algorithms
(LU in particular) on different architectures.

1 Introduction
One of the hardest goals in linear algebra is to implement routines that are efficient and achieve
high performance on a variety of platforms. This goal sounds as a contradiction because, on the
first hand, routines should be optimized to exploit the possibilities of the underlying architecture
and, on the other side, they should be quite independent of the architecture to be portable. Then
it is obvious that a routine may be efficient on a specific architecture but leads to significant lost
of performance on another architecture. The scalability of such routine is no more guaranteed if it
does not take into account some important hardware factors that may impact performances. These
factors are: the speed of the processor and the speed of data transfer between several computations
units. Unfortunately, these two factors are increasingly disproportionate on different architectures.
For example, several studies show that the yearly improvements in processor speed is 4 times faster
than the improvements in data transfer speed. By the same way, in order to improve the concurrent

∗Innovative Computing Laboratory, University of Tennessee
†Innovative Computing Laboratory, University of Tennessee
‡Innovative Computing Laboratory, University of Tennessee

1



data access in memory while continuing to increase the number of processors, architectures are in-
volved to become more complex. One of the common point in different architectures is the notion
of caches; which denotes small memory units associated to processors aiming at reducing the time
and the number of slow memory access. Data manipulated are first searched in top level caches
(cache hit) before being sough in lower level of memories that are larger but slower (cache misses).
Reducing data transfer time implies a quick data access and then an increasing performance.

The effective use of caches in order to achieve high performance in a parallel program lies on
the ability to reuse data already in the cache of the processors. However, for complex routines, this
objective usually leads to serious trade-off between the load balancing between processors and the
data locality. In fact, an available task during the execution of a routine should be executed by any
available processor or by the processor which already has the data associated to the task. On archi-
tectures having a fast data transfer between different memory components (such as Intel Nehalem
for example) one will tend to opt for the first solution in order to execute as fast as possible critical
tasks; while on architectures having remote and slow memory accesses (such as AMD Opteron for
example) one will tend to opt for the second one in order to avoid paying the high cost of remote
memory access.

PLASMA [4] and MAGMA[3] are two libraries which implement several routines in linear
algebra. The purpose of these libraries is to design simple, efficient, and portable functions de-
rived from LAPACK such as to achieve high performance on parallel machines. To avoid loss
of performance due to the impact of hardware factors, several approaches and options have been
implemented in PLASMA and are actively evaluated in MAGMA. These options include using
LAPACK and tile layout for data. The advantage of tile layout is that data associated to a task is
stored in a continuous way in memory so, unlike the LAPACK layout, data associated to that task
reside fully in the cache of the processors executing it and then do not generate extra cache misses
(excepted at the extreme border of the whole block of data). Different scheduling approaches
have been developed such as static and dynamic scheduling. Also, solutions of type cache obliv-
ious algorithms[9] have been recently successfully implemented (see parallel recursive panel[8]).
The advantage of such class of algorithms is to use effectively caches without knowing or pre-
evaluating their sizes. Last but not least, a recent approach based on a new class of algorithms
referred to as communication avoiding algorithms [10, 5] has been designed for QR (PLASMA
CAQR [13]). The idea behind communication avoiding algorithms is to reduce communications
and memory transfers by doing some redundant computations.

Although PLASMA shows high performance on underlined architectures, no studies have been
conducted in depth to determine the percentage of performance brought by each optimization sepa-
rately on the overall performance, as well as its behavior on completely different architecture. Our
experiments show that some factors may appear to be neglected or hidden by other optimizations
on the same platform. By the same way, no studies in the literature offer a reliable model to guide
the trade-off between software optimizations and the impact of hardware factors. In the work of
Donfack et al.[6], the authors pointed out the danger of implementing algorithm without taking
into account dynamique change in the system as well as system characteristics. In their approach,
the author propose a new scheduling strategy that self-adapt itself to these change in the system
but it requires several change in existing code in order to be used.

2



In the first part of this report, we evaluate several hardware impacts on performance in linear
algebra routines. To do so, we focus on the LU factorization, which is one of the most solicited
algorithms for this type of evaluation because of its high rate of synchronization and data transfer
caused by the pivoting. In the second part, we propose a theoretical model to guide the design
of routines for futures architectures. In another words, our model should be able to predict the
behavior of an algorithm on parallel machines where architecture type, characteristics of the com-
putations units, and memory transfer parameters are known in advance.

The factors that we have selected for this study are classified in the following table.

Pivoting technique incremental pivoting, recursive parallel panel, TSLU
Cache level and look-aside translation L1, L2, L3, TLB
Data Layout LAPACK, Tile, 2D bloc cyclic LAPACK, 2-level block layout
Scheduling strategy static, dynamic

In the next section, we present a background of PLASMA and communication avoiding LU
(CALU). Then, we show the results of the evaluation of impact factors in these libraries. Then we
present a theoretical approach to link the performance obtained by these routines to these factors.
And finally we give a conclusion.

2 Background
In this section we briefly recall the communication avoiding LU factorization and the LU factor-
ization implementations in PLASMA.

2.1 Data layout
Data layout is important for performance in linear algebra as how the data is stored in memory
influences its access and manipulation by the processors. Linear algebra introduced the column
major layout (CM) which stores the matrix in the memory column by column as shown on Figure
1 a. This data layout is currently used in LAPACK and SCALAPACK. In LAPACK, the initial
matrix is fully represented using a column majour layout while in SCALAPACK, it is cyclically
distributed to the different processors, and each processor stores its part in his local memory using
the column major data layout. The disadvantage of this layout is that it does not match most of the
routines in numerical algebra libraries. For example, the parallel product of matrices (DGEMM)
decomposes matrices into small square blocks and performs several products and additions on
those small blocks. The square blocks are sub-matrices of the initial matrix and their columns are
not continuous in memory, which may cause cache and TLB misses since consecutive columns of
the blocks are not stored continuously in the memory. To reduce this problem in shared memory
machines, several data layouts have been developed such as: tile data layout [4], 2D Block cyclic
data layout, two-level block cyclic data layout [6], and many more. We present in this report the
ones actually implemented in CALU [7] and PLASMA [4].

3



2.1.1 2D Block cyclic data layout

2D Block cyclic data layout (BCL) stores the matrix as in SCALAPACK. Initially, the matrix is
cyclically distributed to all threads participating in the computation. Then each thread stores its
part of the matrix in its local memory using a column major data layout as shown at the left in
Figure 2. In order to physically store a part of the matrix in local memory, each thread allocates a
separate memory space which will be physically committed in its local memory by the operating
system. This step aims at keeping data as close as possible to the thread that manipulates it in order
to avoid latency penalties and make access fast. On NUMA systems, some operating systems do
not allocate memory space in the local memory of the processor that requests the allocation (by
calling malloc in C). Instead, the operation system reorganizes requested memory into pages of
data that are committed into the local memory of the thread which is the first to touch at least one
element on that page. This refers to as first touch policy. The idea behind is to avoid the case where
only one processor allocates memory that gets to be manipulated by other processors. To ensure
that this is not the case, the original matrix can be allocated by the main process, but the blocks
of the matrix belonging to a thread be initialized by that thread (so that the corresponding page is
committed in its local memory).

2.1.2 Tile data layout

The tile data layout stores the blocks of the matrix into a continuous space in memory. Initially, the
matrix is partitioned into square blocks, and each block is stored column by column in memory.
From an algorithmic point of view, the matrix is represented as in the column major data layout,
but physically, the columns of the same block are stored in continuous memory space as illustrated
by the red arrows in Figure 1b. This format allows to minimize cache and TLB misses. For optimal
performance, the size of the blocks can be taken so that they fully fit in the cache of the threads
that perform operations on them in order to avoid hitting the next level of the cache hierarchy. This
data layout is currently implemented in PLASMA and has shown to achieve good performance.

2.1.3 Two-level block cyclic data layout (2l-BL)

The two level block cyclic data layout is a combination of the 2D block cyclic data layout and the
tile data layout. Initially each thread allocates a memory space to store its corresponding part of
the input matrix, then each block of the local matrix is stored using the same principle as in the tile
data layout. This presents two advantages. First, the part of the initial matrix that a thread owns
is stored in its local memory which reduces remote memory accesses. Second, each block of the
local matrix is stored in a tile data layout which reduces the accesses to the next cache level (that is
shared with the others threads of the same socket). Another good property of the multiple blocking
is that it matches perfectly architectures with several level of hierarchical memory. For example,
if a part of the block manipulated by a thread is not present in L1 cache, it can be found in the L2
cache, L3 cache and so on.

2.2 PLASMA
In this section, we briefly introduce PLASMA, which is a software that implements efficiently
various routines derived from LAPACK. The main goal of PLASMA is to remove the fork and

4



a. Column major data layout (CM). The
matrix is stored column by column in
memory.

b. Tile data layout. Blocks of the matrix are
stored column by column in memory.

Figure 1: Example of two data layout formats. The figure shows how the matrix is represented in
an algorithm point of view and red arrows show how elements are stored physically in the memory
for each data layout.

Figure 2: Data layout. The figure on the left displays a matrix partitioning into four blocks using
a block cyclic layout (BCL) based on blocks of size b × b. Each of the four blocks is stored
contiguously in memory. The figure on the right illustrates the two level block layout (2l-BL)
layout, which stores contiguously in memory blocks of size b× b for each of the four blocks.

5



join approach actually used in order to bring multithreaded parallelism in LAPACK routines. In
principle, the naive parallelization of LAPACK routines calls multithreaded BLAS inside each
routines. This solution presents the disadvantage that it requires synchronizations of all the threads
at the beginning and at the end of each call of parallel BLAS, which could be damaging for the
performance. PLASMA removes this bottleneck by decomposing the computation into tasks that
are represented using a DAG. Each task operates on a small part of the matrix and is considered as
an atomic operation that can be executed by a thread using sequential BLAS.

In order to reduce the bottleneck introduced by the partial pivoting, PLASMA has recently
introduced a new approach, so called parallel recursive panel [8] that works well in practice. The
algorithm is based on an approach referred to as cache oblivious [9] that operates on blocks of data
without determining the cache size. The principle behind the parallel recursive panel is to use as
much as possible the data in the thread cache and then to introduce more Level 3 BLAS operations
when updating the small portion of the trailing panel. The process is done recursively.

The previous implementation of LU in PLASMA was based on incremental pivoting where
the first block of a panel is factorized and then used to annihilate the off-diagonal blocks. Due to
stability issue, this algorithm is no longer used by default in PLASMA. But for information, as it
leads to great parallelism at the price of the stability, we evaluate it in this report.

2.3 Communication avoiding algorithms
In this section, we introduce the communication avoiding LU algorithm. The growing communica-
tion cost compared to the time to performs arithmetic floating point operations motivates the search
for new algorithms that reduce communications. Communication avoiding algorithms are a new
class of algorithms that reduce communication by doing some redundant computations. In the LU
factorization, it aims at reducing the number of message exchanged during the panel factorization.
Contrary to SCALAPACK, where each column of the matrix needs synchronization of processors
to place the maximum element on the diagonal during the panel factorization, CALU needs a syn-
chronization only for each columns block of the panel. For a matrix of size n, SCALAPACK will
therefore require O(n logP ) messages while CALU will only require O(n

b
logP ) messages, where

b is the block size. So the larger b is, the lower the number of messages is. For example, for b = n
or for only one panel of size n, CALU will requires O(logP ) messages while SCALAPACK will
require O(n logP ) messages.

The major difference between CALU and the classic LU factorization lies on the panel factor-
ization. CALU partitions the input matrix into block columns of size b. Then each block column
is again partitioned into P blocks, where P is the number of processors participating in the panel
factorization. The panel factorization using CALU is illustrated in Figure 3. At the first step of
the panel factorization, each thread performs Gauss elimination with partial pivoting on its block,
applies the resulting permutation vector on its original block, and then keeps the first b rows of
its permuted local blocks as the pivot candidates for the next level of the computation. This step
is represented by the dash arrows in 3. The next step of the panel factorization is a reduction
operation depending on the underlying reduction tree. For a binary tree, the pivot candidates are
merged one on top of another at each node of the tree, then Gauss elimination with partial pivoting
is applied again as in the first step. The resulting permutation vector is applied on the original
merged blocks and then the pivot candidates are selected for the next level of the reduction. This
requires O(logP ) steps. After the reduction operation, the pivot candidates are moved on the top

6



of the panel being factorized and an LU without pivoting of the entire panel is computed.

Figure 3: Example of a panel factorizing using CALU with 4 processors on the panel. Every
thread is represented by a color. The dashed arrows represent the computations at the first step of
the binary and the solid ones represent communication between threads (the transfert of a b × b
block into a merging operation at the node of the reduction tree).

The stability of the algorithm has been proven on a large set of special and random matrices
[10]. CALU is less stable than Gauss elimination with partial pivoting, but in practice it leads to a
stable algorithm. We present in the next section its implementation for shared memory machines.

2.3.1 Communication avoiding algorithm for multicore

Donfack et al. [7] have adapted and implemented communication avoiding algorithms for mul-
ticore architectures. In their approach, the input matrix is partitioned into block columns of size
b and each block column is factorized iteratively. At each iteration, a block column referred to
as panel is factored, and then the trailing submatrix is updated. In the column major version of
CALU (CM), each panel is partitioned into P parts where P is the number of threads participating
in the operation while in both BCL and 2l-BL version, the panel is partitioned into blocks of size
b. For all versions, the partitioning of the block column in the trailing submatrix follows the same
partitioning as the panel. So, the partitioning leads to rectangular blocks for the column major data
layout version or for square blocks for the BCL or 2l-BL data layout. Each computation on a block
(rectangular or square) is associated to a task; these tasks are represented using a DAG and can be
executed in any order as soon as their dependencies are not violated. By using CALU, the panel

7



factorization is broken into several tasks that can be executed simultaneously and asynchronously
following the dependencies dictated by the underlying reduction tree. When the panel is factored,
the corresponding update is applied on the different tasks of the trailing submatrix.

3 Experimental section
In this section we evaluate the performance of the different variants of CALU and PLASMA on
a two-socket, sixteen core machine based on Intel Xeon X5660 processors and on a four-socket,
twelve-core machine based on AMD Opteron processors running Linux.

Each core of the Intel machine has a frequency of 2.8GHz, a private L1 cache of size 32 Kbytes,
a private L2 cache of size 256 Kbytes, and a L3 cache of size 12,288 Kbytes shared with the other
cores of the same socket. Each core of the AMD machine has a frequency of 2.1 GHz, a private
L1 cache of size 64 Kbytes, a private L2 cache of size 512 Kbytes, and a L3 cache of size 5,118
Kbytes shared with the other cores of the same socket.

We first present measurements of hardware counters such as the L1, L2, and L3 cache misses,
TLB misses, and the performance for CALU and PLASMA on the systems described above. Then
we discuss the impact of the data layout on these metrics for CALU. Finally, we discuss the impact
of the scheduling strategy for a chosen data layout.

For these experiments, we use PLASMA 2.4.5 and all routines are linked with the BLAS
version of MKL 11.1.069 [12] vendor library.

CALU static refers to the version of CALU that uses a static scheduling, while CALU dynamic
refers to the version that uses a dynamic scheduling. In the static approach, tasks are assigned to
threads during the compilation while in the dynamic approach the assignment is during the runtime.
The 2l-BL, BL, CM, and Tile notations given in brackets refer correspondingly to the version
of CALU or PLASMA that use two-level block data layout, block cyclic data Layout, column
major data layout or tile data layout. PLASMA recLU refers to the new parallel recursive panel
in PLASMA [8], and PLASMA incpiv refers to the incremental pivoting algorithm implemented
in PLASMA. The incremental pivoting algorithm is no longer used as default algorithm for LU
factorization in PLASMA because of the stability issue.

3.1 Hardware counter measurements and performance
3.1.1 Number of flops

Figure 4 shows the number of floating point operations performed by CALU and PLASMA mea-
sured by the PAPI counter FP OPS. As shown in Figure 4a, the variations in terms of flops be-
tween various implementations of CALU is very low. While for PLASMA, as shown in Figure
4b, these variations are more important. We observe a difference of up to 15% when we compare
PLASMA incpiv (Tile) and PLASMA incpiv (CM), or when we compare PLASMA recLU (Tile)
and PLASMA recLU (CM). On average, all implementations in PLASMA using column major
data layout perform slightly more flops than those using tile data layout.

Surprisingly PLASMA performs more floating point operations than CALU in our experi-
ments. In practice, this difference can be explained on the first hand, by what PAPI considers as
floating point operation. The measurements of the routine with PAPI include the number of flops

8



done by the scheduler and by the same way some internal computations not directly related to the
factorization; on the other hand it can be explained by the optimizations introduced in PLASMA in
order to increase performance. At this point it is difficult to know how these additional operations
impact the measurements. However, CALU (2l-BL) and CALU (BL) have the same implementa-
tion but only the data layout changes, and no significative additional flops are observed for these
two implementations.

a. Versions of CALU b. Versions of PLASMA and CALU (CM)

Figure 4: Number of floating point operations of CALU and PLASMA

9



3.1.2 L1, L2, L3 cache misses

Figure 5 shows L1 and L2 data cache misses for CALU and PLASMA on the Intel and AMD
machines. We observed that on these systems, PLASMA incpiv has the highest L1 data caches
misses while PLASMA and CALU do slightly the same number of L1 caches misses. As shown
on Figure 5, PLASMA recLU has the lowest L2 data cache misses on the Intel machine but the
highest one on the AMD one. We recall that CALU aims at minimizing the global number of
communications, that is, at reducing the number of data moved from main memory to core cache,
while recursive LU implemented in PLASMA aims at reusing as soon as possible the local data in
the cache of each core in order to reduce bandwidth usage.

a. L1 data cache misses on keeneland b. L2 data cache misses on keeneland

c. L1 data caches misses on pluto d. L2 data cache misses on pluto

Figure 5: L1 and L2 data cache misses of CALU and PLASMA

Figure 6 shows that CALU and PLASMA recLU are competitive in terms of L3 cache misses
on the Intel machine. Although there is a significative difference in terms of L2 data cache misses
between PLASMA and CALU, the two implementations generate almost the same number of L3
cache misses on that machine. PLASMA incpiv leads to few L3 data cache misses compared to
PLASMA and CALU. Due to hardware limitations, it was not possible to measure L3 cache misses
on AMD machine.

One notion that may affect the behavior of cache policy is the false sharing. It occurs when
two threads access different data that reside on the same cache line and one of them performs an
update of that data. In that situation, the cache line is invalided and then the other thread is forced
to reload its data from the main memory. Since on both of our systems, each core has a private L1
and L2 cache, and shared L3 cache, false sharing is likely to occur for L3 cache. Detecting false

10



sharing is difficult in practice, so its impact of L3 measurements is also difficult to predict.

Figure 6: L3 total cache misses on keeneland machine using 12 cores.

3.1.3 TLB counter

As we have presented in the previous section, one advantage of using a tile data layout is to min-
imize TLB misses. Figure 7 shows that PLASMA incpiv leads to lowest TLB misses on both
Intel and AMD machines. We observe that, CALU generates up to 30% less TLB misses than
PLASMA. Surprisingly, PLASMA using tile data layout, does not provide less TLB misses as
expected and at this point, it is difficult to know exactly why.

a. TLB misses on keeneland b. TLB misses on pluto

Figure 7: TLB misses

3.1.4 Performance

Figure 8 shows the performance of CALU and PLASMA on both systems. On the Intel machine,
PLASMA recLU is up to 10% faster than CALU, while on the AMD machine, it is up to 20%
slower than CALU.

On the NUMA AMD system, the remote memory access is relatively high compared to the
processor speed. Thus, the additional flops that CALU performs help to latency overheads and
to achieve better performance. On the Intel machine the additional flops introduced by CALU do

11



not lead to better performance because of the fast memory access compared to processor speed.
In that case, the addition computations (in the reduction of the panel) bring more cache misses.
The volume of cache misses can be expressed as N

b
O(b2) logP where N is the matrix size, b the

block size, and P the number of threads working on the panel. In fact, at each step of the reduction
operation in the panel factorization using a binary tree, at least a block of size b2 is moved from
one thread to another.

a. Performance on keeneland b. Performance on pluto

Figure 8: Performance of CALU and PLASMA

12



3.2 Impact of data layout
This section studies the impact of the data layout on hardware counters and performance when
using dynamic scheduling. We choose CALU here because its implementation has less impact on
performance when the data layout changes. In terms of L2 data cache misses, CALU dynamic
(2l-BL) is often the best, but sometimes CALU dynamic (CM) is better. This obviously shows
that using a dynamic scheduling may annihilate the effort brought by the data layout in order to
minimize data movement. The same behavior is observed for L3 cache misses as shown in Figure
10.

3.2.1 L1, L2, and L3 counters

Figure 9 shows that by using a dynamic scheduling, the different implementations of CALU gen-
erate almost the same number of L1 cache misses

a. L1 data cache misses on keeneland b. L2 data cache misses on keeneland

c. L1 data caches misses on pluto d. L2 data cache misses on pluto

Figure 9: L1 and L2 data cache misses of CALU using dynamic scheduling with different data
layouts

13



Figure 10: L3 total cache misses of CALU using dynamic scheduling with different data layouts
on keeneland using 12 cores.

3.2.2 TLB counter

Figure 11 shows that, on both system, CALU (2l-BL) leads to less TLB misses than using the other
data layouts. We observe that using block cyclic data layout (BL) leads to growing TLB misses.

a. TLB misses on keeneland b. TLB misses on pluto

Figure 11: TLB misses of CALU using dynamic scheduling with different data layouts

3.2.3 Performance

Figure 12 shows that CALU using block data layout is less efficient than CALU using the other
data layouts. On Intel machine, CALU (2l-BL) is faster than CALU(CM) while on AMD machine,
CALU (CM) shows an important speedup compared to CALU(2l-BL). Although CALU(2l-BL)
may lead to less TLB and cache misses, it can not achieve better performance on all systems. This
shows that reducing communication is not enough to guarantee performance.

It is well known that performance of an algorithm depends not only on the memory movement
but also on the scheduling time. One advantage of column major layout is that tasks are performed
on coarse grain. This implementation takes full advantage of the matrix-matrix product (dgemm)
kernel and pays less time on scheduling overhead. On contrary, for CALU(2l-BL), the number
of tiles grows faster with the matrix size. Increasing the number of tiles increases the scheduling
overhead and leads to a negative impact on performance.

14



a. Performance on keeneland b. Performance on pluto

Figure 12: Performance of CALU using dynamic scheduling with different data layouts

3.3 Impact of scheduling
As we have seen in the previous section, scheduling plays an important role on performance. Using
static scheduling is usually recommended to keep the advantage of the data layout. Figure 13 shows
that CALU static (2l-BL) is faster than CALU dynamic (2l-BL) on the NUMA AMD machine but
slower than CALU dynamic (2l-BL) on Intel machine. This shows that, by using the same data
layout, the best scheduling strategy depends on the hardware.

3.3.1 Performance

a. Performance on keeneland b. Performance on pluto

Figure 13: Performance of CALU static and CALU dynamic using 2l-BL data layout

4 Conclusion
This study evaluates the different metrics of the current implementations of CALU and LU in
PLASMA. We target two objectives: first, predict the behaviour of these libraries on more complex
architectures, and second, improve and optimize the performance of these implementations. The
various measurements show that CALU and PLASMA recursive LU are very competitive and they
minimizes sometimes the L2 and L3 caches depending on the system.

15



CALU has shown to reduce global communication while recursive LU has shown to be ef-
fective on reducing local communication or bandwidth. In perspective, it could be interesting to
design an algorithm that reduces communication at the global point of view by using communica-
tion avoiding technique, and then reducing bandwidth at the local level by using parallel recursive
approaches.

Acknowledgments
The authors would like to thank the National Science Foundation, the Department of Energy,
NVIDIA, and the MathWorks for supporting this research effort.

References
[1] Basic linear algebra subprogram. http://www.netlib.org/blas/.

[2] LAPACK. http://www.netlib.org/lapack/.

[3] Magma. http://icl.cs.utk.edu/magma/.

[4] Plasma. http://icl.cs.utk.edu/plasma/.

[5] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Implementing communication-optimal
parallel and sequential qr factorizations. Arxiv preprint arXiv:0809.2407, 2008.

[6] S. Donfack, L. Grigori, W.D. Gropp, and V. Kale. Hybrid static/dynamic scheduling for
already optimized dense matrix factorization. In Parallel & Distributed Processing (IPDPS),
2012 IEEE International Symposium on, to appear.

[7] S. Donfack, L. Grigori, and A.K. Gupta. Adapting communication-avoiding lu and qr fac-
torizations to multicore architectures. In Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pages 1–10. IEEE, 2010.

[8] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek. Exploiting fine-grain parallelism in
recursive lu factorization. In International Conference on Parallel Computing, 2011.

[9] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In
Foundations of Computer Science, 1999. 40th Annual Symposium on, pages 285–297. IEEE,
1999.

[10] L. Grigori, J.W. Demmel, and H. Xiang. Communication avoiding gaussian elimination. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, page 29. IEEE Press,
2008.

[11] F. Gustavson. Recursion leads to automatic variable blocking for dense linear-algebra algo-
rithms. IBM Journal of Research and Development, 41(6):737–755, 1997.

[12] Intel. Math kernel library (mkl). http://www.intel.com/software/products/mkl/.

16



[13] F. Song, H. Ltaief, B. Hadri, and J. Dongarra. Scalable tile communication-avoiding qr
factorization on multicore cluster systems. In High Performance Computing, Networking,
Storage and Analysis (SC), 2010 International Conference for, pages 1–11. IEEE, 2010.

[14] A. YarKhan, J. Kurzak, and J. Dongarra. Quark users guide.

17


